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Goals for the lecture

you should understand the following concepts
» confidence intervals for error
* pairwise t-tests for comparing learning systems
» scatter plots for comparing learning systems
* lesion studies
* model selection
+ validation (tuning) sets
* internal cross validation




Confidence intervals on error

Given the observed error (accuracy) of a model over a limited
sample of data, how well does this error characterize its accuracy
over additional instances?

Suppose we have
* alearned model h

+ atest set S containing n instances drawn independently of one
another and independent of &

e n>30
¢ h makes r errors over the n instances

our best estimate of the error of /1 is

errorg(h) = %

Confidence intervals on error

With approximately C% probability, the true error lies in the interval

errory(h)(1-errory(h))
n

errorg(h) £z, \/

where z. is a constant that depends on C (e.g. for 95% confidence, z- =1.96)




Confidence intervals on error

How did we get this?

1.

Our estimate of the error follows a binomial distribution given by n
and p (the true error rate over the data distribution)

Binomial distribution withn =15andp=0.2
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Most common way to determine a binomial confidence interval is to
use the normal approximation (although can calculate exact
intervals if n is not too large)
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Confidence intervals on error

When n = 30, and p is not too extreme, the normal distribution is a
good approximation to the binomial
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We can determine the C% confidence interval by determining what
bounds contain C% of the probability mass under the normal

95%
confidence
interval




Alternative approach: confidence
intervals using bootstrapping

* bootstrap sample: given n examples in data set,

randomly, uniformly, independently draw n examples with
replacement

* repeat 1000 (or 10,000) times:
» draw bootstrap sample
* measure error on bootstrap sample
+ for 95% confidence interval, lower (upper) bound is
set such that 2.5% of runs yield lower (higher) error

Comparing learning systems

How can we determine if one learning system provides
better performance than another

« for a particular task?

* across a set of tasks / data sets?




Motivating example

Accuracies on test sets

System A: 80% 50 75 99
System B: 79 49 74 98
O: +1 +1 +1 . +1

* Mean accuracy for System A is better, but the
standard deviations for the two clearly overlap

* Notice that System A is always better than System B

Comparing systems using a paired ¢ test

» consider &’s as observed values of a set of i.i.d.
random variables

* null hypothesis: the 2 learning systems have the
same accuracy

* alternative hypothesis: one of the systems is more
accurate than the other

* hypothesis test:
— use paired r-test do determine probability p that
mean of &’s would arise from null hypothesis
— if p is sufficiently small (typically < 0.05) then reject
the null hypothesis




Comparing systems using a paired ¢ test

1. calculate the sample mean S = l o)
n

2. calculate the r statistic 5

3. determine the corresponding p-value,
by looking up ¢ in a table of values for
the Student's r-distribution with n-1
degrees of freedom

Comparing systems using a paired ¢ test

/N The null distribution of our ¢
/oo statistic looks like this

\
fin / \ The p-value indicates how far
/ N \ out in a tail our 7 statistic is

) A If the p-value is sufficiently
1 small, we reject the null
/ - 1\: » hypothesis, since it is unlikely
¢ we’d get such a t by chance

for atwo-tailed test, the p-value
represents the probability mass
in these two regions




Why do we use a two-tailed test?
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+ atwo-tailed test asks the question: is the accuracy of the
two systems different

+ aone-tailed test asks the question: is system A better than
system B

* a priori, we don’t know which learning system will be more
accurate (if there is a difference) — we want to allow that
either one might be

Comments on hypothesis testing to
compare learning systems

* the paired r-test can be used to compare two learning
systems

« other tests (e.g. McNemar’s y? test) can be used to
compare two learned models

+ a statistically significant difference is not necessarily a
large-magnitude difference




Scatter plots for pairwise
method comparison

We can compare the performance of two methods A and B by plotting (A
performance, B performance) across numerous data sets
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Lesion studies

We can gain insight into what contributes to a learning system’s
performance by removing (lesioning) components of it

The ROC curves here show how performance is affected when various
feature types are removed from the learning representation
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1.

To avoid pitfalls, ask

Is my held-aside test data really representative of going out to
collect new data?

» Even if your methodology is fine, someone may have collected

features for positive examples differently than for negatives —
should be randomized

+ Example: samples from cancer processed by different people

or on different days than samples for normal controls

2.

To avoid pitfalls, ask

Did | repeat my entire data processing procedure on every fold of
cross-validation, using only the training data for that fold?

*  On each fold of cross-validation, did | ever access in any way
the label of a test instance?

* Any preprocessing done over entire data set (feature
selection, parameter tuning, threshold selection) must not use
labels




To avoid pitfalls, ask

3. Have | modified my algorithm so many times, or tried so many
approaches, on this same data set that | (the human) am
overfitting it?

» Have | continually modified my preprocessing or learning
algorithm until | got some improvement on this data set?

* If so, | really need to get some additional data now to at least
test on

Model selection

* model selection is the task of selecting a model from a
set of candidate models

+ selecting among decision trees with various levels of
pruning

+ selecting kin k-NN

* efc.

* one approach to model selection is to use a tuning set or
internal cross validation
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Validation (tuning) sets revisited

Suppose we want estimates of accuracy during the learning process (e.g. to
choose the best level of decision-tree pruning)?

training set test set
/ learning process
training set validation set |egla‘|r'1§d model
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Partition training data into separate training/validation sets

Internal cross validation

Instead of a single validation set, we can use cross-validation within a
training set to select a model (e.g. to choose the best level of decision-tree
pruning)?

training set test set
/ learning process
S; S, S3 S, S5 learned model

learn select
\ models model




Example: using internal cross
validation to select k in k-NN

given a training set
1. partition training set into n folds, s; ... s,
2. for each value of k considered
fori=1ton
learn k-NN model using all folds but s;
evaluate accuracy on s;
3. select k that resulted in best accuracy for s, ... s,
4. learn model using entire training set and selected k

the steps inside the box are run independently for each training set
(i.e. if we’re using 10-fold CV to measure the overall accuracy
of our k-NN approach, then the box would be executed 10 times)
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