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Some of the slides in these lectures have been adapted/borrowed from materials developed
by Tom Dietterich, Pedro Domingos, Tom Mitchell, David Page, and Jude Shavlik

Goals for the lecture

you should understand the following concepts
* k-NN classification
* k-NN regression
+ edited nearest neighbor
 k-d trees for nearest neighbor identification
* locally weighted regression
inductive bias (hypothesis space bias, preference bias)




Nearest-neighbor classification

learning task

« given a training set (x(”,y(”)...(X(’”),y(’”)), do nothing
(it's sometimes called a lazy learner)

classification task
 given: an instance x9 to classify
« find the training-set instance x® that is most similar to x@
* return the class value y®

The decision regions for nearest-
neighbor classification

Voronoi diagram: each polyhedron indicates the region of feature space that
is in the nearest neighborhood of each training instance

X2




k-nearest-neighbor classification

classification task
 given: an instance x9 to classify
« find the & training-set instances (x‘”,y(“)...(x("),y(“)
that are most similar to x@
* return the classkvalue
y<—arg maxz 3(v,y") S(a,b) = {

vEvalues(Y) i=1

lifa=b
0 otherwise

(i.e. return the class that the plurality of the neighbors have)

How can we determine
similarity/distance

suppose all features are discrete
« Hamming distance: count the number of features for
which two instances differ

suppose all features are continuous
» Euclidean distance:

. . . 2 . .
d(x?,x") = E(x(f” _ x}“) where x represents the " feature of x
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 Manhattan distance:

i Y = O 0)]
d(x(l),x(]))_zf|xf — xf |




How can we determine
similarity/distance

» if we have a mix of discrete/continuous features:

X = xy )‘ if f is continuous
d(x(i) X(j)) — E
b

7| 1-0(x{,x) if f is discrete

« typically want to apply to continuous features some type of
normalization (values range 0 to 1) or standardization (values
distributed according to standard normal)

* many other possible distance functions we could use...

Standardizing numeric features

+ given the training set D, determine the mean and stddev for feature x;
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do the same for test instances, using the same p; and o; derived from
the training data




k-nearest-neighbor regression

learning task
» given a training set (x",y")...(x"”,y™) , do nothing

prediction task
 given: an instance x? to make a prediction for

« find the & training-set instances (X(l),y(l))...(X(k),y(k))
that are most similar to x(@

* return the value
k

i}eézy(”

i=1

Distance-weighted nearest neighbor

We can have instances contribute to a prediction
according to their distance from x¢

classification:
\ 1
v 0]
j— argmaxz w, 0(v,y") W=
vEvalues(¥) 2 d(x(fi)’x( ))2

regression:




Speeding up &-NN

* k-NN is a “lazy” learning algorithm — does virtually nothing
at training time

* but classification/prediction time can be costly when the
training set is large

+ two general strategies for alleviating this weakness

» don’t retain every training instance (edited nearest
neighbor)

* use a smart data structure to look up nearest neighbors
(e.g. ak-d tree)

Edited instance-based learning

» select a subset of the instances that still provide accurate classifications

* incremental deletion
start with all training instances in memory
for each training instance (x, y)
if other training instances provide correct classification for (x@, y®)
delete it from the memory

* incremental growth
start with an empty memory
for each training instance (x, y)
if other training instances in memory don’t correctly classify (x®, y®)
add it to the memory
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k-d trees

a k-d tree is similar to a decision tree except that each internal node

e stores one instance

« splits on the median value of the feature having the highest variance
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Finding nearest neighbors with a k-d tree

» use branch-and-bound search
 priority queue stores
— nodes considered

— lower bound on their distance to query instance

» lower bound given by distance using a single feature

» average case: O(log,m)
» worst case:

O(m) where m is the size of the training-set




Finding nearest neighbors in a k-d tree

NearestNeighbor(instance x@)

PQ={}

best_dist = «

/I minimizing priority queue
/I smallest distance seen so far

PQ.push(root, 0)
while PQ is not empty
(node, bound) = PQ.pop();
if (bound = best_dist)
return best_node.instance /I nearest neighbor found
dist = distance(x@, node. instance)
if (dist < best_dist)
best_dist = dist
best_node = node
if (¢[node.feature] — node.threshold > 0)
PQ.push(node.left, x@[node.feature] — node.threshold)
PQ.push(node.right, 0)
else
PQ.push(node.left, 0)
PQ.push(node.right, node. threshold - x@ [node.feature])
return best_node. instance

k-d tree example (Manhattan distance)

given query
: x@ = (2, 3) 556
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Irrelevant features in
instance-based learning

here’s a case in which there consider the effect of an
is one relevant feature x, and a irrelevant feature x, on distances
1-NN rule classifies each and nearest neighbors
instance correctly
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Locally weighted regression

» one way around this limitation is to weight features
differently

* Jlocally weighted regression is one nearest-neighbor
variant that does this

prediction task
« given: an instance x@ to make a prediction for
+ find the £ training-set instances
that are most similar to x@
* return the value

FEDY=w, +wx? +w, x4+ +w x9

n-n




Locally weighted regression

prediction/learning task
« find the weights w; for each x@ by minimizing

E(x“)= i(f(x(i)) _ y<i>)2

« this is done at prediction time, specifcally for x@
« can do this using gradient descent (to be covered soon)

Strengths of instance-based learning

+ simple to implement

« “training” is very efficient

« adapts well to on-line learning

* robust to noisy training data (when k > 1)
« often works well in practice
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Limitations of instance-based learning

sensitive to range of feature values

sensitive to irrelevant and correlated features, although...

* there are variants (such as locally weighted regression)
that learn weights for different features

» later we'll talk about feature selection methods

classification/prediction can be inefficient, although edited
methods and k-d trees can help alleviate this weakness

doesn’t provide much insight into problem domain because
there is no explicit model
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