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Instance-Based Learning

Mark Craven and David Page
Computer Sciences 760

Spring 2018

www.biostat.wisc.edu/~craven/cs760/

Some of the slides in these lectures have been adapted/borrowed from materials developed 
by Tom Dietterich, Pedro Domingos, Tom Mitchell, David Page, and Jude Shavlik

Goals for the lecture

you should understand the following concepts
• k-NN classification
• k-NN regression
• edited nearest neighbor
• k-d trees for nearest neighbor identification
• locally weighted regression
• inductive bias (hypothesis space bias, preference bias)
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Nearest-neighbor classification

learning task
• given a training set                                , do nothing           

(it’s sometimes called a lazy learner)

classification task
• given: an instance x(q) to classify
• find the training-set instance x(i) that is most similar to x(q)

• return the class value y(i)

x(1), y(1)( )… x(m), y(m)( )

The decision regions for nearest-
neighbor classification

x1

x2

Voronoi diagram: each polyhedron indicates the region of feature space that
is in the nearest neighborhood of each training instance
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k-nearest-neighbor classification

classification task
• given: an instance x(q) to classify
• find the k training-set instances                                   

that are most similar to x(q)

• return the class value

ŷ←
v∈values(Y )
argmax δ(v, y(i)

i=1

k

∑ )

(i.e. return the class that the plurality of the neighbors have)
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δ(a,b) =
1 if a = b     
0 otherwise
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x(1), y(1)( )… x(k ), y(k )( )

How can we determine  
similarity/distance

suppose all features are discrete
• Hamming distance: count the number of features for 

which two instances differ

suppose all features are continuous
• Euclidean distance:

• Manhattan distance:

d(x(i),x( j ) ) = x f
(i) − x f

( j )( )
2

f
∑ where xf

(i) represents the fth feature of x(i)

𝑑(𝒙($), 𝒙(&)) =	∑ 𝑥*
($) − 𝑥*

(&)�
*
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How can we determine  
similarity/distance

• if we have a mix of discrete/continuous features:

• typically want to apply to continuous features some type of 
normalization (values range 0 to 1) or standardization (values 
distributed according to standard normal)

• many other possible distance functions we could use…

d(x(i),x( j ) ) =
 x f

(i) − x f
( j )   if f  is continuous

1−δ x f
(i), x f

(i)( )  if f  is discrete   
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Standardizing numeric features

𝜎$ =
1
𝐷 1 𝑥$

(2) − 𝜇$
4

5

267

�

𝜇$ =
1
𝐷 1 𝑥$

(2)
5

267

• given the training set D, determine the mean and stddev for feature xi

• standardize each value of feature xi as follows

𝑥8$
(2) =

𝑥$
(2) − 𝜇$
𝜎$

• do the same for test instances, using the same  𝜇$ and 𝜎$		derived from 
the training data 
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k-nearest-neighbor regression

learning task
• given a training set                                  , do nothing

prediction task
• given: an instance x(q) to make a prediction for
• find the k training-set instances                                   

that are most similar to x(q)

• return the value

ŷ← 1
k

y(i)
i=1

k

∑

x(1), y(1)( )… x(m), y(m)( )

x(1), y(1)( )… x(k ), y(k )( )

Distance-weighted nearest neighbor

ŷ←
wi  y

(i)

i=1

k

∑

wi  
i=1

k

∑

We can have instances contribute to a prediction 
according to their distance from x(q)

ŷ←
v∈values(Y )
argmax wi  δ(v, y(i)

i=1

k

∑ ) wi =
1

d(x(q), x(i) )2

classification:

regression:
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Speeding up k-NN

• k-NN is a “lazy” learning algorithm – does virtually nothing 
at training time

• but classification/prediction time can be costly when the 
training set is large

• two general strategies for alleviating this weakness
• don’t retain every training instance (edited nearest 

neighbor)
• use a smart data structure to look up nearest neighbors 

(e.g. a k-d tree)

Edited instance-based learning

• select a subset of the instances that still provide accurate classifications

• incremental deletion
start with all training instances in memory
for each training instance (x(i), y(i))

if other training instances provide correct classification for (x(i), y(i))
delete it from the memory

• incremental growth
start with an empty memory
for each training instance (x(i), y(i))

if other training instances in memory don’t correctly classify (x(i), y(i))
add it to the memory
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k-d trees
a k-d tree is similar to a decision tree except that each internal node
• stores one instance
• splits on the median value of the feature having the highest variance 

x1 > 6
f

x2 > 10
c

x2 > 5
h

x2 > 4
e

x1 > 3
b

x1 > 9
g

x1 > 10
i

x2 > 11.5
j

x2 > 8
d

x2 > 11
a

x1

x2

Finding nearest neighbors with a k-d tree

• use branch-and-bound search
• priority queue stores

– nodes considered
– lower bound on their distance to query instance

• lower bound given by distance using a single feature

• average case:  O(log2m)
• worst case:      O(m)  where m is the size of the training-set
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Finding nearest neighbors in a k-d tree
NearestNeighbor(instance x(q))

PQ = { } // minimizing priority queue
best_dist = ∞ // smallest distance seen so far
PQ.push(root, 0)
while PQ is not empty

(node, bound) = PQ.pop();
if (bound ≥ best_dist)

return best_node.instance // nearest neighbor found
dist = distance(x(q), node. instance)
if (dist < best_dist)

best_dist = dist
best_node = node

if (q[node.feature] – node.threshold > 0)
PQ.push(node.left, x(q)[node.feature] – node.threshold)
PQ.push(node.right, 0)

else
PQ.push(node.left, 0)
PQ.push(node.right, node. threshold - x(q) [node.feature])

return best_node. instance

k-d tree example (Manhattan distance)

distance best distance best node priority queue
∞ (f, 0)

4.0 4.0 f (c, 0) (h, 4)
10.0 4.0 f (e, 0)  (h, 4) (b, 7)
1.0 1.0 e (d, 1)  (h, 4)  (b, 7)

given query
x(q) = (2, 3)

q

pop f
pop c
pop e
pop d return e

x1 > 6
f

x2 > 10
c

x2 > 5
h

x2 > 4
e

x1 > 3
b

x1 > 9
g

x1 > 10
i

x2 > 11.5
j

x2 > 8
d

x2 > 11
a
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Irrelevant features in 
instance-based learning

x1

here’s a case in which there
is one relevant feature x1 and a 
1-NN rule classifies each 
instance correctly

consider the effect of an
irrelevant feature x2 on distances 
and nearest neighbors

x1

x2

Locally weighted regression

• one way around this limitation is to weight features 
differently

• locally weighted regression is one nearest-neighbor 
variant that does this

prediction task
• given: an instance x(q) to make a prediction for
• find the k training-set instances                                   

that are most similar to x(q)

• return the value
f (x(q) ) = w0 +w1x1

(q) +w2x2
(q) +... +wnxn

(q)
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Locally weighted regression

prediction/learning task
• find the weights wi for each x(q) by minimizing

• this is done at prediction time, specifcally for x(q)

• can do this using gradient descent (to be covered soon)

E(x(q) ) = f (x(i) )− y(i)( )
2

i=1

k

∑

Strengths of instance-based learning

• simple to implement
• “training” is very efficient
• adapts well to on-line learning
• robust to noisy training data (when k > 1)
• often works well in practice



11

Limitations of instance-based learning
• sensitive to range of feature values

• sensitive to irrelevant and correlated features, although…
• there are variants (such as locally weighted regression) 

that learn weights for different features
• later we’ll talk about feature selection methods

• classification/prediction can be inefficient, although edited 
methods and k-d trees can help alleviate this weakness

• doesn’t provide much insight into problem domain because 
there is no explicit model


