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Goals for the lecture

you should understand the following concepts
 definition of probability
* random variables
« joint distributions
« conditional distributions
* independence
e union rule
« Bayes theorem
* expected values
* multinomial distribution
« probability density function
* normal distribution



Definition of probability

frequentist interpretation: the probability of an event from
a random experiment is the proportion of the time events
of same kind will occur in the long run, when the
experiment is repeated

examples

— the probability my flight to Chicago will be on time
— the probability this ticket will win the lottery

— the probability it will rain tomorrow

always a number in the interval [0,1]
0 means “never occurs’
1 means “always occurs”



Sample spaces

« sample space: a set of possible outcomes for some event

e examples
— flight to Chicago: {on time, late}
— lottery: {ticket 1 wins, ticket 2 wins,...,ticket n wins}
— weather tomorrow:
{rain, not rain} or
{sun, rain, snow} or
{sun, clouds, rain, snow, sleet} or...



Random variables

« random variable: a variable representing the outcome of
an event

 example
— X represents the outcome of my flight to Chicago

— we write the probability of my flight being on time as
P(X = on-time)

— or when it's clear which variable we’re referring to, we
may use the shorthand P(on-time)



Notation

uppercase letters and capitalized words denote random
variables

lowercase letters and uncapitalized words denote values
we’ll denote a particular value for a variable as follows

P(X =Xx) P(Fever = true)
we’ll also use the shorthand form
P(x) for P(X =x)

for Boolean random variables, we’ll use the shorthand

P( fever) for P(Fever = true)
P(=fever) for P(Fever = false)



Probabillity distributions

 if X is a random variable, the function given by P(X = x)
for each x is the probability distribution of X

e requirements:
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Joint distributions

 joint probability distribution: the function given by
PX=x,Y=Yy)

* read “X equals x and Y equals y”

* example
X,y PX=x,Y=y)
sun, on-time 020 — probability that it's sunny
. . and my flight is on time
rain, on-time 0.20
snow, on-time 0.05
sun, late 0.10
rain, late 0.30
snow, late 0.15




Marginal distributions

« the marginal distribution of X is defined by

P(x)= Y P(x,y)

“the distribution of X ignoring other variables”

« this definition generalizes to more than two variables, e.g.

P(x)= ) ¥ P(x.y.2)



Marginal distribution example

joint distribution

marginal distribution for X

X,y PX=x,Y=y) P(X=x)
sun, on-time 0.20 sun 0.3
rain, on-time 0.20 rain 0.5
sSnow, on-time 0.05 SNOW 0.2
sun, late 0.10
rain, late 0.30
snow, late 0.15




Conditional distributions

 the conditional distribution of X given Y is defined as:
P(X=xY=y)

P(X=xlY=y)= PO = )

“the distribution of X given that we know the value of Y~

* Rearranging yields product rule, that

PX=xlY=y)P(Y=y)=P(X=x,Y=Yy)



Chain Rule

Generalization of the product rule, derived by repeated
application of product rule:

ChainRule : P(x,,...,x,) =
P(x |x ,..x)P(x,_ 1x ,.,x)..P(x, |1x)P(x)

=HP(X,- X 5eees X))



Conditional distribution example

joint distribution

conditional distribution for X
given Y=on-time

P(X = x|Y=on-time)

X,y PX=x,Y=y)
sun, on-time 0.20
rain, on-time 0.20
sSnow, on-time 0.05
sun, late 0.10
rain, late 0.30
snow, late 0.15

sun
rain

SNOwW

0.20/0.45 = 0.444
0.20/0.45 = 0.444
0.05/0.45=0.111



Independence

« two random variables, X and Y, are independent if

P(x,y)=P(x)x P(y) forallxandy



Conditional independence

« two random variables, X and Y, are conditionally
independent given Z if

P(x,ylz)=P(xlz)x P(ylz) forallx,y and z



Independence example #1

joint distribution marginal distributions
X,y P(X=x,Y=Y) X P(X=x)
sun, on-time 0.20 sun 0.3
rain, on-time 0.20 rain 0.5
sSnow, on-time 0.05 SNOW 0.2
sun, late 0.10
| y P(Y=y)
rain, late 0.30 on-time 0.45
snow, late 0.15 late 055

Are X and Y independent here? NO.



Independence example #2

joint distribution marginal distributions
X,y P(X=x,Y=y) X P(X=x)
sun, fly-United 0.27 sun 0.3
rain, fly-United 0.45 rain 0.5
snow, fly-United 0.18 SNOW 0.2
sun, fly-Delta 0.03
| Y PY=y)

rain, fly-Delta 0.05 fly-United 0.9
snow, fly-Delta 0.02 fly-Delta 01

Are X and Y independent here?  YES.



Probability of union of events

 the probability of the union of two events is given by:
P(xvy)=P(x)+P(y)- P(x,y)

N

this term needed to
avoid double counting




Bayes’ Rule (or Theorem)

Recall product rule:
P(a n b) = P(alb) P(D)
P(a n b) = P(b|a) P(a)
Equating right - hand sides and dividing by P(a):

P(a|b) P(b)
P —
Bl = =
For multi - valued variables X and Y-
P(X|Y)P

P(X)



Why Use Bayes’ Rule

« Causal knowledge such as P(stiff neck|meningitis)
often is more reliable than diagnostic knowledge such
as P(meningitis|stiff neck).

« Bayes’ Rule lets us use causal knowledge to make
diagnostic inferences (derive diagnostic knowledge).



Normalization with Bayes’ Rule

Might be easier to compute

P(stiff neck|meningitis) P(meningitis) and

P(stiff neck|-~ meningitis) P(- meningitis)
than to directly estimate

P(stiff neck).



Bayes theorem with normalization

P(y|x)P(x) _ P(y|lx)P(x)
P(y) ) P(ylx)P(x)

P(xly)=

 this theorem is extremely useful

* there are many cases when it is hard to estimate P(x | y)
directly, but it's not too hard to estimate P(y | x) and P(x)



Bayes theorem example

MDs usually aren’t good at estimating
P(Disorder | Symptom)

they’re usually better at estimating P(Symptom | Disorder)

if we can estimate P(Fever | Flu) and P(Flu) we can use
Bayes’ Theorem to do diagnosis

P(fever | flu)P( flu)
P(fever | flu)P( flu) + P( fever | =flu)P(=flu)

P(flul fever) =



Another Example

P(stiff neck|meningitis) = 0.5
P(meningitis) = 1/50,000
P(stiff neck) = 1/20
Then P(meningitis|stiff neck) =
P(stiff neck|meningitis) P(meningitis)
P(stiff neck) -
(0.5)(1/50,000)
1/20

= 0.0002



Expected values

» the expected value of a random variable that takes
on numerical values is defined as:

E[X]=) xxP(x)

X

this is the same thing as the mean (also written )

* we can also talk about the expected value of a
function of a random variable

E[g(X)] =) g(x)x P(x)



Variance

* E[(X-p)7]

» E[X?] - (E[X])?



Expected value examples

E [Shoesize] =
5 x P(Shoesize =5)+ ...+ 14 x P(Shoesize =14)

« Suppose each lottery ticket costs $1 and the winning ticket pays

out $100. The probability that a particular ticket is the winning
ticket is 0.001.

E [ gain(Lottery)] =
gain(winning)P(winning) + gain(losing) P(losing) =
($100-$1)x0.001-$1x0.999 =
- $0.90



The binomial distribution

« distribution over the number of successes in a fixed number n of
independent trials (with same probability of success p in each)

n
Px)=| (pd-p™
X

* e.g. the probability of x heads in n coin flips

1

Binomial distribution w/ p=0.5, n=40-
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The geometric distribution

 distribution over the number of trials before the first
failure (with same probability of success p in each)

P(x)=1-p)p
* e.g. the probability of x heads before the first tail

0.6

Geometric distribution w/ p=0.'5, n=40-
0.5




The multinomial distribution

e k possible outcomes on each trial
 probability p, for outcome x; in each trial

» distribution over the number of occurrences x; for each
outcome in a fixed number n of independent trials

vector of outcome P(X) =

occurrences \/‘

* e.g. with k=6 (a six-sided die) and n=30

n! X,
H(xi!) Hpi

30! 7 3 _0_8 10 2
PUT30BI02D = T (1 P2 P P P3P




Continuous random variables

* up to now, we've considered only discrete random
variables, but we can have RVs describing continuous

variables too (weight, temperature, etc.)

* a continuous random variable is described by a
probability density function (p.d.f.)

density

vélue oof R\1/



Probability density functions

* a continuous random variable is described by a
probability density function f(x)

Vx f(x)=0

PlasX sb]=[f(x)dx

ff(x)dx =1

density

vélue oof R\1/



The normal (Gaussian) distribution
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Some p.d.f.’s

normal (Gaussian)

uniform
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