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Goals for the lecture 
you should understand the following concepts 

•  definition of probability  
•  random variables 
•  joint distributions 
•  conditional distributions 
•  independence 
•  union rule 
•  Bayes theorem 
•  expected values 
•  multinomial distribution  
•  probability density function 
•  normal distribution 

 



Definition of probability 

•  frequentist interpretation: the probability of an event from 
a random experiment is the proportion of the time events 
of same kind will occur in the long run, when the 
experiment is repeated 

•  examples 
–  the probability my flight to Chicago will be on time 
–  the probability this ticket will win the lottery 
–  the probability it will rain tomorrow 

•  always a number in the interval [0,1] 
0 means “never occurs” 
1 means “always occurs” 



Sample spaces 

•  sample space: a set of possible outcomes for some event 

•  examples 
–  flight to Chicago:  {on time, late} 
–  lottery: {ticket 1 wins, ticket 2 wins,…,ticket n wins} 
–  weather tomorrow:  

{rain, not rain} or 
{sun, rain, snow} or 
{sun, clouds, rain, snow, sleet} or… 



Random variables 

•  random variable: a variable representing the outcome of 
an event 

•  example 
–  X represents the outcome of my flight to Chicago 
–  we write the probability of my flight being on time as   

P(X = on-time)
–  or when it’s clear which variable we’re referring to, we 

may use the shorthand P(on-time)



Notation 
•  uppercase letters and capitalized words denote random 

variables 
•  lowercase letters and uncapitalized words denote values 
•  we’ll denote a particular value for a variable as follows 

•  we’ll also use the shorthand form 

•  for Boolean random variables, we’ll use the shorthand 

 

€ 

P(Fever = true)

€ 

P(X = x)

  

€ 

P(x)   for   P(X = x)

  

€ 

P( fever)  for  P(Fever = true)

  

€ 

P(¬fever)  for  P(Fever = false)



Probability distributions 

•  if X is a random variable, the function given by P(X = x) 
for each x is the probability distribution of X

•  requirements: 

€ 

P(x) =1
x
∑ 0.2 

0.3 

0.1 

  

€ 

P(x) ≥ 0   for every x



Joint distributions 

•  joint probability distribution: the function given by       
P(X = x, Y = y)

•  read “X equals x and Y equals y” 
•   example 

x, y P(X = x, Y = y) 
sun, on-time 0.20 

rain, on-time 0.20 

snow, on-time 0.05 

sun, late 0.10 

rain, late 0.30 

snow, late 0.15 

probability that it’s sunny  
and my flight is on time 



Marginal distributions 

•  the marginal distribution of X is defined by 

“the distribution of X ignoring other variables” 

•  this definition generalizes to more than two variables, e.g. € 

P(x) = P(x,y)
y
∑

€ 

P(x) = P(x,y,z)
z
∑

y
∑



Marginal distribution example 

x, y P(X = x, Y = y) 
sun, on-time 0.20 

rain, on-time 0.20 

snow, on-time 0.05 

sun, late 0.10 

rain, late 0.30 

snow, late 0.15 

x P(X = x) 
sun 0.3 

rain 0.5 

snow  0.2 

joint distribution marginal distribution for X



Conditional distributions 

•  the conditional distribution of X given Y is defined as:  

 “the distribution of X given that we know the value of Y ” 
 
•  Rearranging yields product rule, that  

€ 

P(X = x |Y = y) =
P(X = x,Y = y)

P(Y = y)

P(X = x |Y = y)P(Y = y) = P(X = x,Y = y)



Chain Rule 

Generalization of the product rule, derived by repeated 
application of product rule: 

ChainRule :P(x1,..., xn ) =
P(xn | xn−1,..., x1 )P(xn−1 | xn−2,..., x1)...P(x2 | x1)P(x1 )

= P(xi | xi−1,..., x1)∏



Conditional distribution example 

x, y P(X = x, Y = y) 
sun, on-time 0.20 

rain, on-time 0.20 

snow, on-time 0.05 

sun, late 0.10 

rain, late 0.30 

snow, late 0.15 

x  P(X = x|Y=on-time) 
sun 0.20/0.45 = 0.444 

rain 0.20/0.45 = 0.444 

snow  0.05/0.45 = 0.111 

joint distribution 
conditional distribution for X  
given Y=on-time



Independence 

•  two random variables, X and Y, are independent if  

 
 

 

  

€ 

P(x,y) = P(x) × P(y)    for all x and y



Conditional independence 

•  two random variables, X and Y, are conditionally 
independent given Z if 
 

 
P(x, y | z) = P(x | z)×P(y | z)    for all x, y and z



Independence example #1 

x, y P(X = x, Y = y) 

sun, on-time 0.20 

rain, on-time 0.20 

snow, on-time 0.05 

sun, late 0.10 

rain, late 0.30 

snow, late 0.15 

x P(X = x) 
sun 0.3 

rain 0.5 

snow  0.2 

joint distribution marginal distributions 

y P(Y = y) 
on-time 0.45 

late 0.55 

Are X and Y independent here? NO. 



Independence example #2 

x, y P(X = x, Y = y) 

sun, fly-United 0.27 

rain, fly-United 0.45 

snow, fly-United 0.18 

sun, fly-Delta 0.03 

rain, fly-Delta 0.05 

snow, fly-Delta 0.02 

x P(X = x) 
sun 0.3 

rain 0.5 

snow  0.2 

joint distribution marginal distributions 

y P(Y = y) 
fly-United 0.9 

fly-Delta 0.1 

Are X and Y independent here?   YES. 



Probability of union of events 

•  the probability of the union of two events is given by:  

P(x ∨ y) = P(x)+ P(y)− P(x, y)

this term needed to 
avoid double counting 

X=xY=y



Bayes’ Rule (or Theorem) 

Recall product rule:   
     P( ) =  P( ) P( )
     P( ) =  P( ) P( )
Equating right - hand sides and dividing by P( ):

     P( ) =  
P( ) P( )

P( )
For multi - valued variables  and :

     ) =  
( ) ( )

( )

a b a b b
a b b a a

a

b a
a b b
a

X Y

Y X
X Y Y
X

∧

∧

|
|

|
|

|
|

P
P P
P

(



Why Use Bayes’ Rule 

•  Causal knowledge such as P(stiff neck|meningitis) 
often is more reliable than diagnostic knowledge such 
as P(meningitis|stiff neck). 

•  Bayes’ Rule lets us use causal knowledge to make 
diagnostic inferences (derive diagnostic knowledge). 



Normalization with Bayes’ Rule 

Might
stiff neck meningitis meningitis
stiff neck meningitis meningitis

stiff neck

 be easier to compute
     P(  | ) P( ) and
     P(  | ) P( )
than to directly estimate
     P(  ).

¬ ¬



Bayes theorem with normalization 

•  this theorem is extremely useful 
•  there are many cases when it is hard to estimate P(x | y) 

directly, but it’s not too hard to estimate P(y | x) and P(x)
€ 

P(x | y) =
P(y | x)P(x)

P(y)
=

P(y | x)P(x)
P(y | x)P(x)

x
∑



Bayes theorem example 

•  MDs usually aren’t good at estimating                               
P(Disorder | Symptom)

•  they’re usually better at estimating P(Symptom | Disorder) 
•  if we can estimate P(Fever | Flu) and P(Flu) we can use 

Bayes’ Theorem to do diagnosis 

€ 

P( flu | fever) =
P( fever | flu)P( flu)

P( fever | flu)P( flu)+ P( fever |¬flu)P(¬flu)



Another Example 

•  P(stiff neck|meningitis) = 0.5 
•  P(meningitis) = 1/50,000 
•  P(stiff neck) = 1/20 
•  Then P(meningitis|stiff neck) = 

P(  | ) P(
P(  )

 =

 =  

stiff neck meningitis meningitis
stiff neck

)

( . )( / , )
/

.
05 1 50 000

1 20
0 0002



Expected values 

•  the expected value of a random variable that takes 
on numerical values is defined as: 

 
this is the same thing as the mean (also written µ) 

•  we can also talk about the expected value of a 
function of a random variable 

€ 

E X[ ] = x × P(x)
x
∑

€ 

E g(X)[ ] = g(x) × P(x)
x
∑



Variance 

•  E [(X-µ)2] 

•  E[X2] – (E[X])2 

 



Expected value examples 

  

€ 

E Shoesize[ ] =

     5 × P(Shoesize = 5) + ...+14 × P(Shoesize =14)
   

•  Suppose each lottery ticket costs $1 and the winning ticket pays 
out $100.  The probability that a particular ticket is the winning 
ticket is 0.001. 

  

€ 

E gain(Lottery)[ ] =

     gain(winning)P(winning) + gain(losing)P(losing) =

     ($100 − $1) × 0.001− $1× 0.999 =

    − $0.90
   



•  distribution over the number of successes in  a fixed number n of 
independent trials (with same probability of success p in each) 

•  e.g. the probability of x heads in n coin flips 

The binomial distribution 

€ 

P(x) =
n
x
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•  distribution over the number of trials before the first 
failure (with same probability of success p in each) 

 
•  e.g. the probability of x heads before the first tail 

The geometric distribution 

€ 

P(x) = (1− p)px
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•  k possible outcomes on each trial 
•  probability pi for outcome xi in each trial 
•  distribution over the number of occurrences xi for each 

outcome in a fixed number n of independent trials 

•  e.g. with k=6 (a six-sided die) and n=30

The multinomial distribution 

€ 

P(x) =
n!
(xi!)

i
∏

pi
xi

i
∏

€ 

P([7,3,0,8,10,2]) =
30!

7!×3!×0!×8!×10!×2!
p1
7p2

3p3
0p4

8p5
10p6

2( )

vector of outcome 
occurrences 



•  up to now, we’ve considered only discrete random 
variables, but we can have RVs describing continuous 
variables too (weight, temperature, etc.) 

•  a continuous random variable is described by a 
probability density function (p.d.f.) 

Continuous random variables 

density 

value of RV 



•  a continuous random variable is described by a 
probability density function  f (x)

Probability density functions 

∀x  f (x) ≥ 0

P a ≤ X ≤ b[ ] = f (x)dx
a

b

∫

density 

value of RV 

f (x)dx∫ = 1



The normal (Gaussian) distribution 

f (x) = 1
σ 2π

e
−
x−µ( )2

2σ 2

f (x)



Some p.d.f.’s 
normal (Gaussian) 

student’s t 

uniform 

Gamma 


