Review of Probability Mark Craven and David Page Computer Sciences 760

www.biostat.wisc.edu/~craven/cs760/

Goals for the lecture

you should understand the following concepts

- definition of probability
- random variables
- joint distributions
- conditional distributions
- independence
- union rule
- Bayes theorem
- expected values
- multinomial distribution
- probability density function
- normal distribution

Definition of probability

 frequentist interpretation: the probability of an event from a random experiment is the proportion of the time events of same kind will occur in the long run, when the experiment is repeated

- examples
 - the probability my flight to Chicago will be on time
 - the probability this ticket will win the lottery
 - the probability it will rain tomorrow
- always a number in the interval [0,1]
 - 0 means "never occurs"
 - 1 means "always occurs"

Sample spaces

sample space: a set of possible outcomes for some event

- examples
 - flight to Chicago: {on time, late}
 - lottery: {ticket 1 wins, ticket 2 wins,...,ticket n wins}
 - weather tomorrow:

```
{rain, not rain} or
{sun, rain, snow} or
{sun, clouds, rain, snow, sleet} or...
```

Random variables

 random variable: a variable representing the outcome of an event

- example
 - X represents the outcome of my flight to Chicago
 - we write the probability of my flight being on time as P(X = on-time)
 - or when it's clear which variable we're referring to, we may use the shorthand P(on-time)

Notation

- uppercase letters and capitalized words denote random variables
- lowercase letters and uncapitalized words denote values
- we'll denote a particular value for a variable as follows

$$P(X = x)$$
 $P(Fever = true)$

we'll also use the shorthand form

$$P(x)$$
 for $P(X = x)$

for Boolean random variables, we'll use the shorthand

$$P(fever)$$
 for $P(Fever = true)$
 $P(\neg fever)$ for $P(Fever = false)$

Probability distributions

• if X is a random variable, the function given by P(X = x) for each x is the *probability distribution* of X

requirements:

$$P(x) \ge 0$$
 for every x

$$\sum_{x} P(x) = 1$$

Joint distributions

- *joint probability distribution*: the function given by P(X = x, Y = y)
- read "X equals x and Y equals y"
- example

x, y	P(X=x, Y=y)	
sun, on-time	0.20	 probability that it's sunny and my flight is on time
rain, on-time	0.20	and my might to on anio
snow, on-time	0.05	
sun, late	0.10	
rain, late	0.30	
snow, late	0.15	

Marginal distributions

• the *marginal distribution* of *X* is defined by

$$P(x) = \sum_{y} P(x, y)$$

"the distribution of X ignoring other variables"

this definition generalizes to more than two variables, e.g.

$$P(x) = \sum_{y} \sum_{z} P(x, y, z)$$

Marginal distribution example

joint distribution

marginal distribution for X

x, y	P(X=x, Y=y)	\mathcal{X}	P(X=x)
sun, on-time	0.20	sun	0.3
rain, on-time	0.20	rain	0.5
snow, on-time	0.05	snow	0.2
sun, late	0.10		
rain, late	0.30		
snow, late	0.15		

Conditional distributions

the conditional distribution of X given Y is defined as:

$$P(X = x | Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)}$$

"the distribution of X given that we know the value of Y"

Rearranging yields product rule, that

$$P(X = x | Y = y)P(Y = y) = P(X = x, Y = y)$$

Chain Rule

Generalization of the product rule, derived by repeated application of product rule:

ChainRule:
$$P(x_1,...,x_n) =$$

$$P(x_n \mid x_{n-1},...,x_1)P(x_{n-1} \mid x_{n-2},...,x_1)...P(x_2 \mid x_1)P(x_1)$$

$$= \prod P(x_i \mid x_{i-1},...,x_1)$$

Conditional distribution example

joint distribution

x, y	P(X=x, Y=y)
sun, on-time	0.20
rain, on-time	0.20
snow, on-time	0.05
sun, late	0.10
rain, late	0.30
snow, late	0.15

conditional distribution for *X* given *Y*=on-time

<u>x</u>	P(X = x Y = on-time)
sun	0.20/0.45 = 0.444
rain	0.20/0.45 = 0.444
snow	0.05/0.45 = 0.111
	•

Independence

• two random variables, X and Y, are independent if $P(x,y) = P(x) \times P(y) \quad \text{for all } x \text{ and } y$

Conditional independence

two random variables, X and Y, are conditionally independent given Z if

$$P(x,y|z) = P(x|z) \times P(y|z)$$
 for all x, y and z

Independence example #1

joint distribution

x, y	P(X=x, Y=y)
sun, on-time	0.20
rain, on-time	0.20
snow, on-time	0.05
sun, late	0.10
rain, late	0.30
snow, late	0.15

marginal distributions

X	P(X=x)
sun	0.3
rain	0.5
snow	0.2
y	P(Y=y)
on-time	0.45
late	0.55

Are *X* and *Y* independent here?

NO.

Independence example #2

joint distribution

x, y	P(X=x, Y=y)
sun, fly-United	0.27
rain, fly-United	0.45
snow, fly-United	0.18
sun, fly-Delta	0.03
rain, fly-Delta	0.05
snow, fly-Delta	0.02

marginal distributions

X	P(X=x)
sun	0.3
rain	0.5
snow	0.2
<i>y</i>	P(Y=y)
fly-United	0.9
fly-Delta	0.1

Are *X* and *Y* independent here? YES.

Probability of union of events

the probability of the union of two events is given by:

$$P(x \lor y) = P(x) + P(y) - P(x,y)$$

Bayes' Rule (or Theorem)

Recall product rule:

$$P(a \wedge b) = P(a|b) P(b)$$

$$P(a \wedge b) = P(b|a) P(a)$$

Equating right - hand sides and dividing by P(a):

$$P(b|a) = \frac{P(a|b) P(b)}{P(a)}$$

For multi - valued variables X and Y:

$$\mathbf{P}(Y|X) = \frac{\mathbf{P}(X|Y)\mathbf{P}(Y)}{\mathbf{P}(X)}$$

Why Use Bayes' Rule

- Causal knowledge such as P(stiff neck|meningitis)
 often is more reliable than diagnostic knowledge such
 as P(meningitis|stiff neck).
- Bayes' Rule lets us use causal knowledge to make diagnostic inferences (derive diagnostic knowledge).

Normalization with Bayes' Rule

```
Might be easier to compute

P(stiff neck | meningitis) P(meningitis) \text{ and}
P(stiff neck | \neg meningitis) P(\neg meningitis)
than to directly estimate
P(stiff neck).
```

Bayes theorem with normalization

$$P(x | y) = \frac{P(y | x)P(x)}{P(y)} = \frac{P(y | x)P(x)}{\sum_{x} P(y | x)P(x)}$$

- this theorem is extremely useful
- there are many cases when it is hard to estimate $P(x \mid y)$ directly, but it's not too hard to estimate $P(y \mid x)$ and P(x)

Bayes theorem example

- MDs usually aren't good at estimating P(Disorder | Symptom)
- they're usually better at estimating *P*(*Symptom* | *Disorder*)
- if we can estimate $P(Fever \mid Flu)$ and P(Flu) we can use Bayes' Theorem to do diagnosis

$$P(flu \mid fever) = \frac{P(fever \mid flu)P(flu)}{P(fever \mid flu)P(flu) + P(fever \mid \neg flu)P(\neg flu)}$$

Another Example

- P(stiff neck|meningitis) = 0.5
- P(meningitis) = 1/50,000
- P(stiff neck) = 1/20
- Then P(meningitis|stiff neck) =

$$\frac{P(stiff neck|meningitis) P(meningitis)}{P(stiff neck)} = \frac{(0.5)(1/50,000)}{1/20} = 0.0002$$

Expected values

 the expected value of a random variable that takes on numerical values is defined as:

$$E[X] = \sum_{x} x \times P(x)$$

this is the same thing as the *mean* (also written μ)

 we can also talk about the expected value of a function of a random variable

$$E[g(X)] = \sum_{x} g(x) \times P(x)$$

Variance

- $E[(X-\mu)^2]$
- $E[X^2] (E[X])^2$

Expected value examples

$$E[Shoesize] = 5 \times P(Shoesize = 5) + ... + 14 \times P(Shoesize = 14)$$

 Suppose each lottery ticket costs \$1 and the winning ticket pays out \$100. The probability that a particular ticket is the winning ticket is 0.001.

$$E[gain(Lottery)] =$$

$$gain(winning)P(winning) + gain(losing)P(losing) =$$

$$(\$100 - \$1) \times 0.001 - \$1 \times 0.999 =$$

$$-\$0.90$$

The binomial distribution

 distribution over the number of successes in a fixed number n of independent trials (with same probability of success p in each)

$$P(x) = \binom{n}{x} p^{x} (1-p)^{n-x}$$

• e.g. the probability of x heads in n coin flips

The geometric distribution

 distribution over the number of trials before the first failure (with same probability of success p in each)

$$P(x) = (1 - p)p^x$$

e.g. the probability of x heads before the first tail

The multinomial distribution

- k possible outcomes on each trial
- probability p_i for outcome x_i in each trial
- distribution over the number of occurrences x_i for each outcome in a fixed number n of independent trials

vector of outcome occurrences
$$P(\mathbf{x}) = \frac{n!}{\prod_{i} (x_i!)} \prod_{i} p_i^{x_i}$$

• e.g. with k=6 (a six-sided die) and n=30

$$P([7,3,0,8,10,2]) = \frac{30!}{7! \times 3! \times 0! \times 8! \times 10! \times 2!} \left(p_1^7 p_2^3 p_3^0 p_4^8 p_5^{10} p_6^2\right)$$

Continuous random variables

- up to now, we've considered only discrete random variables, but we can have RVs describing continuous variables too (weight, temperature, etc.)
- a continuous random variable is described by a probability density function (p.d.f.)

Probability density functions

• a continuous random variable is described by a probability density function f(x)

$$\forall x \ f(x) \ge 0$$

$$P[a \le X \le b] = \int_{a}^{b} f(x) dx$$

$$\int f(x)dx = 1$$

density

The normal (Gaussian) distribution

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Some p.d.f.'s

normal (Gaussian)

uniform

student's t

