Reinforcement Learning

Mark Craven and David Page
Computer Sciences 760
Spring 2018

www.biostat.wisc.edu/~craven/cs760/

Some of the slides in these lectures have been adapted/borrowed from materials developed
by Tom Dietterich, Pedro Domingos, Tom Mitchell, David Page, and Jude Shavlik

Goals for the lecture

you should understand the following concepts

the reinforcement learning task

Markov decision process

value functions

value iteration

Q functions

Q learning

exploration vs. exploitation tradeoff
compact representations of Q functions

Reinforcement learning (RL)

Task of an agent embedded in an environment

repeat forever
1) sense world
2) reason
3) choose an action to perform
4) get feedback (usually reward = 0)
5) learn

the environment may be the physical world or an artificial one

Example: RL Backgammon Player
[Tesauro, CACM 1995]

white pieces move

World ¢4 23 22 21 20 1% 18 él'- 15 -* COUﬂthClOCkWIse

— 30 pieces, 24 locations §
actions °

. i
— roll dice, e.g. 2, 5
— move one piece 2 iJ
p_ &34; 5 6 78 9 10 1112 black pieCeS

— move one piece 5 move clockwise
rewards

— win, lose

TD-Gammon 0.0

— trained against itself (300,000 games)
— as good as best previous BG computer program (also by Tesauro)
TD-Gammon 2

— beat human champion

Reinforcement learning

set of states S
set of actions A

at each time ¢, agent observes state

s, € S then chooses action a, € A

then receives reward r, and changes

to state s,,

agent

state/ /‘reward \ action

environment

Reinforcement learning as a
Markov decision process (MDP)

 Markov assumption

P(s

agent

state/ / reward \ action

ls,,a,s,_,,a,_, ...)=P(St+1 ls,, at)

r+1

 also assume reward is Markovian
environment

P(rt ls,,a,s,_,a,_, ...)=P(rt ls,, at)

Goal: learn a policy it : § - A for choosing actions that maximizes

E[1;+y1;+1+y2;;+2+...] where 0 <y <1

for every possible starting state s,

Reinforcement learning task

* Suppose we want to learn a control policy t: § - A that
maximizes EVIE[I’] from every state s € S
t=0

0
0 100 (7
—t > — >

G

e_
0
1o 11° 1
ol} ol 1 100
0 0
— ——
<« .
0 0

each arrow represents an action ¢ and the associated
number represents deterministic reward r(s, a)

Value function for a policy

« given a policy m: S > A define

TooN o assuming action sequence chosen
Vi) = 2)/ E[rf] according to m starting at state s

« we want the optimal policy & where

" =argmax_V7(s) foralls

we’ll denote the value function for this optimal policy as V'(s)

Value function for a policy m

* Suppose mis shown by red arrows, y =0.9

72 81 100 0
ol G(;
0

“To
1o 11° 1
ol ol 1 100
0 0
—— >
e <
63 0 90 0 100

V7(s) values are shown in red

Value function for an optimal policy mt*

« Suppose nt* is shown by red arrows, y =0.9

90 100100 [)°
o, >
b e G
0 0
110 11° 1
ol} ol 1 100
0 0
—t >
<t <
81 0 90 0 100

V*(s) values are shown in red

10

Using a value function

If we knew r(s,, a), P(s, | s, ;,a,), and V*(s),
we could compute *(s)

J'E*(St) = argmax | r(s,,a)+Yy E P(s,,, =sls, a)V (s)
aeA s&ES

11

Value iteration for learning V*(s)

initialize V(s) arbitrarily
loop until policy good enough

{

loop fors € S
{ Think of Q as a “quality”

loop W estimate for “a from s”
{

O(s,a)<r(s,a)+Yy E P(s'ls,a)V(s")
} s'&S
V(s) <= max_,Q(s,a)

12

Value iteration for learning V*(s)

V(s) converges to V*(s)

works even if we randomly traverse environment instead of
looping through each state and action methodically

— but we must visit each state infinitely often

implication: we can do online learning as an agent roams
around its environment

assumes we have a model of the world: i.e. know P(s, s, ;,a, ;)

What if we don’t?

13

O learning

define a new function, closely related to V*
Vis)=E [r(s, J'E*(S))] tYE [V*(s')]
O(s,a)= E[r(s,) |+VE,.,, , [V (s)]

if agent knows Q(s, a), it can choose optimal action without
knowing P(s’ | s, a)

7 (s)=argmaxQ(s,a) V' (s)=maxQ(s,a)

and it can learn Q(s, a) without knowing P(s’ | s, a)

14

O values

——

QO

i)

>
0

| 100

% _[j 100 _| D
= G
0
M M A
Iy Iy |
—1> —1>
81 <1 90 €T 100

r(s, a) (immediate reward) values

90 100 (>
b g T G
81 0
ALT72 A 81 A
81 |V 90 |V | 100
81 90
b g b g
72 81

Q(s, a) values

V*(s) values

15

O learning for deterministic worlds

for each s, a initialize table entry O(s,a) <0
observe current state s
do forever
select an action a and execute it
receive immediate reward r
observe the new state s’
update table entry

O(s,a) < r+y maxQ(s',a")

s & s’

16

Updating O

v

100

|81

Q(Sl ’aright) s—r+)/ maE}XQ(SZ ’a')

—

aright

ks

< 0+0.9max{63, 81, 100}

<90

17

O learning for nondeterministic worlds

for each s, a initialize table entry O(s,a) <0
observe current state s
do forever
select an action a and execute it
receive immediate reward r
observe the new state s’
update table entry

Qn(s,a) —(1- an)Qn_l(s,a) +a, [r +y quQn_l(s',a')]
s& s’ ’

where a,, is a parameter dependent 1
on the number of visits to the given | &,
(s, a) pair

T 1+ visits (s,a)

18

Convergence of Q learning

O learning will converge to the correct O function
— in the deterministic case

— in the nondeterministic case (using the update rule just
presented)

in practice it is likely to take many, many iterations

19

V
Q’svs.V’s 7]
V

Which action do we choose when we’re in a given state?
V’s (model-based)

— need to have a ‘next state’ function to generate all possible
states

— choose next state with highest V value.
Q’s (model-free)
— need only know which actions are legal
— generally choose next state with highest QO value.

20

Exploration vs. Exploitation

in order to learn about better alternatives, we shouldn’t always
follow the current policy (exploitation)

sometimes, we should select random actions (exploration)

one way to do this: select actions probabilistically according to:

where ¢ >0 is a constant that determines how strongly selection
favors actions with higher Q values

21

O learning with a table

As described so far, Q learning entails filling in a huge table

states
So S; S, S, N
aj
a, : ,
_ Atable is a very
actions a; |... Q(s,, az)

verbose way to
represent a function

22

Representing O functions
more compactly

We can use some other function representation (e.g. a neural net)
to compactly encode a substitute for the big table

encoding of)
the state (s)

each input unit encodes or could have one net
a property of the state for each possible action
(e.g., a sensor value)

23

Why use a compact Q function?

Full O table may not fit in memory for realistic problems

2. Can generalize across states, thereby speeding up
convergence
I.e. one instance ‘fills’ many cells in the Q table

Notes

1. When generalizing across states, cannot use a=1

2. Convergence proofs only apply to Q tables

3. Some work on bounding errors caused by using compact

representations (e.g. Singh & Yee, Machine Learning 1994)

24

O tables vs. O nets

Given: 100 Boolean-valued features
10 possible actions

Size of O table
10 x 2199 entries

Size of O net (assume 100 hidden units)
100 x 100 + 100 x 10 = 11,000 weights

~—

weights between weights between
inputs and HU's HU’s and outputs

25

Representing O functions
more compactly

« we can use other regression methods to represent Q functions

k-NN
regression trees
support vector regression

etc.

26

O learning with function approximation

W N

N o ok

measure sensors, sense state s,
predict Q (s,,a) for each action a

select action a to take (with randomization to
ensure exploration)

apply action « in the real world

sense new state s, and immediate reward r
calculate action a’ that maximizes Qn (s,,a')
train with new instance

X =5, Calculate Q-value

B n A , you would have
y=(=a)Qsy,a)+ e |r+y maxO(sia)|)t into Q-table

and use it as the
training label

27

