
Reinforcement Learning

Mark Craven and David Page
Computer Sciences 760

Spring 2018

www.biostat.wisc.edu/~craven/cs760/

Some of the slides in these lectures have been adapted/borrowed from materials developed
by Tom Dietterich, Pedro Domingos, Tom Mitchell, David Page, and Jude Shavlik

Goals for the lecture
you should understand the following concepts

• the reinforcement learning task
• Markov decision process
• value functions
• value iteration
• Q functions
• Q learning
• exploration vs. exploitation tradeoff
• compact representations of Q functions

2

Reinforcement learning (RL)
Task of an agent embedded in an environment

repeat forever
1) sense world
2) reason
3) choose an action to perform
4) get feedback (usually reward = 0)
5) learn

the environment may be the physical world or an artificial one

3

• world
– 30 pieces, 24 locations

• actions
– roll dice, e.g. 2, 5
– move one piece 2
– move one piece 5

• rewards
– win, lose

• TD-Gammon 0.0
– trained against itself (300,000 games)
– as good as best previous BG computer program (also by Tesauro)

• TD-Gammon 2
– beat human champion

Example: RL Backgammon Player
[Tesauro, CACM 1995]

4

Reinforcement learning

agent

environment

state reward action

s0 s1 s2

a0 a1 a2

r0 r1 r2

• set of states S
• set of actions A
• at each time t, agent observes state

st∈ S then chooses action at∈ A
• then receives reward rt and changes

to state st+1

5

Reinforcement learning as a
Markov decision process (MDP)

agent

environment

state reward action

s0 s1 s2

a0 a1 a2

r0 r1 r2

• Markov assumption

• also assume reward is Markovian

 P st+1 | st , at , st−1, at−1, …() = P st+1 | st , at()

 P rt | st , at , st−1, at−1, …() = P rt | st , at()

Goal: learn a policy π : S → A for choosing actions that maximizes

 E rt + γ rt+1 + γ
2rt+2 +…"# $% where 0 ≤ γ <1

for every possible starting state s0
6

Reinforcement learning task
• Suppose we want to learn a control policy π : S → A that

maximizes from every state s∈ S

G

0
0

0

0

0

0

0

0

100

0

0

100

0

γ t

t=0

∞

∑ E rt[]

each arrow represents an action a and the associated
number represents deterministic reward r(s, a)

7

Value function for a policy

• given a policy π : S → A define

V π (s) = γ t

t=0

∞

∑ E rt[] assuming action sequence chosen
according to π starting at state s

• we want the optimal policy π* where

 π
* = argmaxπ V

π (s) for all s

we’ll denote the value function for this optimal policy as V*(s)

8

Value function for a policy π
• Suppose π is shown by red arrows, γ = 0.9

G

0
0

0

0

0

0

0

0

100

0

0

100

0

Vπ(s) values are shown in red

100

0

90

8172

63

9

Value function for an optimal policy π*

• Suppose π* is shown by red arrows, γ = 0.9

G

0
0

0

0

0

0

0

0

100

0

0

100

0

V*(s) values are shown in red

100

0

90

10090

81

10

Using a value function

If we knew r(st, a), P(st | st-1, at-1), and V*(s),
we could compute π*(s)

π *(st) = argmax
a∈A

r(st ,a)+ γ P(st+1
s∈S
∑ = s | st ,a)V

*(s)%

&
'

(

)
*

11

Value iteration for learning V*(s)

initialize V(s) arbitrarily
loop until policy good enough
{

loop for s∈ S
{

loop for a ∈ A
{

}

}
}

Q(s,a)← r(s,a)+ γ P(s ' | s,a)V (s ')
s '∈S
∑

V (s)←maxa Q(s,a)

12

Think of Q as a “quality”
estimate for “a from s”

Value iteration for learning V*(s)

• V(s) converges to V*(s)

• works even if we randomly traverse environment instead of
looping through each state and action methodically

– but we must visit each state infinitely often

• implication: we can do online learning as an agent roams
around its environment

• assumes we have a model of the world: i.e. know P(st | st-1, at-1)

• What if we don’t?

13

Q learning
define a new function, closely related to V*

V *(s) = E r(s, π *(s))"# $% + γ Es ' | s, π * (s)
V *(s ')"# $%

Q(s,a) = E r(s, a)[]+ γ Es ' | s, a V *(s ')"# $%

if agent knows Q(s, a), it can choose optimal action without
knowing P(s’ | s, a)

π *(s) = argmax
a

Q(s,a) V *(s) = max
a
Q(s,a)

and it can learn Q(s, a) without knowing P(s’ | s, a)

14

Q values

G

0
0

0

0

0

0

0
0

100

0

0

100

0

r(s, a) (immediate reward) values

G

100

0

90

10090

81
81

72
81

81

72

90

81

Q(s, a) values

G

100

0

90

10090

81

V*(s) values

15

Q learning for deterministic worlds

for each s, a initialize table entry
observe current state s
do forever

select an action a and execute it
receive immediate reward r
observe the new state s’
update table entry

s ← s’

Q̂(s,a)← 0

Q̂(s,a)← r + γ max
a '
Q̂(s ',a ')

16

Updating Q

10072

63
81

10090

63
81

Q̂(s1,aright)← r + γ max
a '
Q̂(s2,a ')

 ← 0 + 0.9max
a '

63, 81, 100{ }
 ← 90

aright

17

Q learning for nondeterministic worlds

for each s, a initialize table entry
observe current state s
do forever

select an action a and execute it
receive immediate reward r
observe the new state s’
update table entry

s ← s’

Q̂(s,a)← 0

Q̂n (s,a)← (1−α n)Q̂n−1(s,a)+α n r + γ max
a '
Q̂n−1(s ',a ')%

&
'
(

α n =

1
1+ visitsn (s,a)

where αn is a parameter dependent
on the number of visits to the given
(s, a) pair

18

Convergence of Q learning

• Q learning will converge to the correct Q function

– in the deterministic case

– in the nondeterministic case (using the update rule just
presented)

• in practice it is likely to take many, many iterations

19

Q’s vs. V’s

• Which action do we choose when we’re in a given state?
• V’s (model-based)

– need to have a ‘next state’ function to generate all possible
states

– choose next state with highest V value.
• Q’s (model-free)

– need only know which actions are legal
– generally choose next state with highest Q value.

V V

V

Q

Q

20

Exploration vs. Exploitation

• in order to learn about better alternatives, we shouldn’t always
follow the current policy (exploitation)

• sometimes, we should select random actions (exploration)

• one way to do this: select actions probabilistically according to:

where c > 0 is a constant that determines how strongly selection
favors actions with higher Q values

P(ai | s) = cQ̂(s, ai)

cQ̂(s, aj)

j
∑

21

Q learning with a table

As described so far, Q learning entails filling in a huge table

A table is a very
verbose way to
represent a function

s0 s1 s2 . . . sn

a1

a2

a3

.

.

.
ak

. . . Q(s2, a3)

.

.

.
actions

states

22

Q(s, a1)

Q(s, a2)

Q(s, ak)

Representing Q functions
more compactly

We can use some other function representation (e.g. a neural net)
to compactly encode a substitute for the big table

encoding of
the state (s)

or could have one net
for each possible action

each input unit encodes
a property of the state
(e.g., a sensor value)

23

Why use a compact Q function?

1. Full Q table may not fit in memory for realistic problems
2. Can generalize across states, thereby speeding up

convergence
i.e. one instance ‘fills’ many cells in the Q table

Notes
1. When generalizing across states, cannot use α=1
2. Convergence proofs only apply to Q tables
3. Some work on bounding errors caused by using compact

representations (e.g. Singh & Yee, Machine Learning 1994)

24

Given: 100 Boolean-valued features
10 possible actions

Size of Q table
10 × 2100 entries

Size of Q net (assume 100 hidden units)
100 × 100 + 100 × 10 = 11,000 weights

Q tables vs. Q nets

weights between
inputs and HU’s

weights between
HU’s and outputs

25

Representing Q functions
more compactly

• we can use other regression methods to represent Q functions
k-NN

regression trees

support vector regression

etc.

26

Q learning with function approximation

1. measure sensors, sense state s0

2. predict for each action a
3. select action a to take (with randomization to

ensure exploration)
4. apply action a in the real world
5. sense new state s1 and immediate reward r
6. calculate action a’ that maximizes
7. train with new instance

Q̂n (s0,a)

x = s0

y = (1−α)Q̂(s0,a)+α r + γ max
a '
Q̂(s1,a ')$

%
&
'

Q̂n (s1,a ')

27

Calculate Q-value
you would have
put into Q-table,
and use it as the
training label

