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Goals for the lecture

you should understand the following concepts

the reinforcement learning task

Markov decision process

value functions

value iteration

Q functions

Q learning

exploration vs. exploitation tradeoff
compact representations of Q functions



Reinforcement learning (RL)

Task of an agent embedded in an environment

repeat forever
1) sense world
2) reason
3) choose an action to perform
4) get feedback (usually reward = 0)
5) learn

the environment may be the physical world or an artificial one




Example: RL Backgammon Player
[Tesauro, CACM 1995]
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— roll dice, e.g. 2, 5
— move one piece 2 iJ
p_ &34; 5 6 78 9 10 1112 black pieCeS

— move one piece 5 move clockwise
rewards

— win, lose

TD-Gammon 0.0

— trained against itself (300,000 games)
— as good as best previous BG computer program (also by Tesauro)
TD-Gammon 2

— beat human champion



Reinforcement learning

set of states S
set of actions A

at each time ¢, agent observes state

s, € S then chooses action a, € A

then receives reward r, and changes

to state s,,

agent

state/ /‘reward \ action

environment




Reinforcement learning as a
Markov decision process (MDP)

 Markov assumption

P(s

agent

state/ / reward \ action

ls,,a,s,_,,a,_, ...)=P(St+1 ls,, at)

r+1

 also assume reward is Markovian
environment

P(rt ls,,a,s,_,a,_, ...)=P(rt ls,, at)

Goal: learn a policy it : § - A for choosing actions that maximizes

E[1;+y1;+1+y2;;+2+...] where 0 <y <1

for every possible starting state s,



Reinforcement learning task

* Suppose we want to learn a control policy t: § - A that
maximizes EVIE[I’] from every state s € S
t=0
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each arrow represents an action ¢ and the associated
number represents deterministic reward r(s, a)



Value function for a policy

« given a policy m: S > A define

TooN o assuming action sequence chosen
Vi) = 2)/ E[rf] according to m starting at state s

« we want the optimal policy & where

" =argmax_V7(s) foralls

we’ll denote the value function for this optimal policy as V'(s)



Value function for a policy m
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Value function for an optimal policy mt*

« Suppose nt* is shown by red arrows, y =0.9
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V*(s) values are shown in red
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Using a value function

If we knew r(s,, a), P(s, | s, ;,a, ), and V*(s),
we could compute *(s)

J'E*(St) = argmax | r(s,,a)+Yy E P(s,,, =sls, a)V (s)
aeA s&ES
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Value iteration for learning V*(s)

initialize V(s) arbitrarily
loop until policy good enough

{

loop fors € S
{ Think of Q as a “quality”

loop W estimate for “a from s”
{

O(s,a)<r(s,a)+Yy E P(s'ls,a)V(s")
} s'&S
V(s) <= max_,Q(s,a)
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Value iteration for learning V*(s)

V(s) converges to V*(s)

works even if we randomly traverse environment instead of
looping through each state and action methodically

— but we must visit each state infinitely often

implication: we can do online learning as an agent roams
around its environment

assumes we have a model of the world: i.e. know P(s, s, ;,a, ;)

What if we don’t?
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O learning

define a new function, closely related to V*
Vis)=E [r(s, J'E*(S))] tYE [V*(s')]
O(s,a)= E[r(s, ) |+VE,.,, , [V (s)]

if agent knows Q(s, a), it can choose optimal action without
knowing P(s’ | s, a)

7 (s)=argmaxQ(s,a) V' (s)=maxQ(s,a)

and it can learn Q(s, a) without knowing P(s’ | s, a)
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O values
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O learning for deterministic worlds

for each s, a initialize table entry O(s,a) <0
observe current state s
do forever
select an action a and execute it
receive immediate reward r
observe the new state s’
update table entry

O(s,a) < r+y maxQ(s',a")

s & s’
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Updating O
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O learning for nondeterministic worlds

for each s, a initialize table entry O(s,a) <0
observe current state s
do forever
select an action a and execute it
receive immediate reward r
observe the new state s’
update table entry

Qn(s,a) —(1- an)Qn_l(s,a) +a, [r +y quQn_l(s',a')]
s& s’ ’

where a,, is a parameter dependent 1
on the number of visits to the given | &,
(s, a) pair

T 1+ visits (s,a)
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Convergence of Q learning

O learning will converge to the correct O function
— in the deterministic case

— in the nondeterministic case (using the update rule just
presented)

in practice it is likely to take many, many iterations
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V
Q’svs.V’s 7]
V

Which action do we choose when we’re in a given state?
V’s (model-based)

— need to have a ‘next state’ function to generate all possible
states

— choose next state with highest V value.
Q’s (model-free)
— need only know which actions are legal
— generally choose next state with highest QO value.
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Exploration vs. Exploitation

in order to learn about better alternatives, we shouldn’t always
follow the current policy (exploitation)

sometimes, we should select random actions (exploration)

one way to do this: select actions probabilistically according to:

where ¢ >0 is a constant that determines how strongly selection
favors actions with higher Q values

21



O learning with a table

As described so far, Q learning entails filling in a huge table

states
So S; S, S, N
aj
a, : ,
_ Atable is a very
actions a; |... Q(s,, az)

verbose way to
represent a function
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Representing O functions
more compactly

We can use some other function representation (e.g. a neural net)
to compactly encode a substitute for the big table

encoding of )
the state (s)

each input unit encodes or could have one net
a property of the state for each possible action
(e.g., a sensor value)
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Why use a compact Q function?

Full O table may not fit in memory for realistic problems

2. Can generalize across states, thereby speeding up
convergence
I.e. one instance ‘fills’ many cells in the Q table

Notes

1. When generalizing across states, cannot use a=1

2. Convergence proofs only apply to Q tables

3. Some work on bounding errors caused by using compact

representations (e.g. Singh & Yee, Machine Learning 1994)
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O tables vs. O nets

Given: 100 Boolean-valued features
10 possible actions

Size of O table
10 x 2199 entries

Size of O net (assume 100 hidden units)
100 x 100 + 100 x 10 = 11,000 weights

~—

weights between  weights between
inputs and HU's HU’s and outputs
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Representing O functions
more compactly

« we can use other regression methods to represent Q functions

k-NN
regression trees
support vector regression

etc.
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O learning with function approximation

W N

N o ok

measure sensors, sense state s,
predict Q (s,,a) for each action a

select action a to take (with randomization to
ensure exploration)

apply action « in the real world

sense new state s, and immediate reward r
calculate action a’ that maximizes Qn (s,,a')
train with new instance

X =5, Calculate Q-value

B n A , you would have
y=(=a)Qsy,a)+ e |r+y maxO(sia)| )t into Q-table

and use it as the
training label
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