
Appears in Proceedings of the 17th International Joint Conference on Artificial Intelligence (IJCAI-2001).

Refining the Structure of a Stochastic Context–Free Grammar

Joseph Bockhorst
���

joebock@cs.wisc.edu

�
Department of Computer Sciences

University of Wisconsin

Madison, Wisconsin 53706

Mark Craven
���

craven@biostat.wisc.edu

�
Department of Biostatistics & Medical Informatics

University of Wisconsin

Madison, Wisconsin 53706

Abstract

We present a machine learning algorithm for refin-
ing the structure of a stochastic context–free gram-
mar (SCFG). This algorithm consists of a heuristic
for identifying structural errors and an operator for
fixing them. The heuristic identifies nonterminals
in the model SCFG that appear to be performing
the function of two or more nonterminals in the tar-
get SCFG, and the operator attempts to rectify this
problem by introducing a new nonterminal. Struc-
tural refinement is important because most com-
mon SCFG learning methods set the probability pa-
rameters while leaving the structure of the grammar
fixed. Thus, any structural errors introduced prior
to training will persist. We present experiments that
show our approach is able to significantly improve
the accuracy of an SCFG designed to model an im-
portant class of RNA sequences called terminators.

1 Introduction
Stochastic context–free grammars (SCFGs) have long been
used in the NLP community (where the are more commonly
known as probabilistic context–free grammars) and recently
have been applied to biological sequence analysis tasks, in
particular RNA analysis. One typical learning problem is to
create an SCFG from a set of unparsed training sequences that
will accurately recognize previously unseen sequences in the
class being modeled. The first step of this two step process
is to create the underlying context–free grammar, which we
refer to as the structure of the model. The second step, the as-
signment of the probability parameters, is usually performed
through an application of an expectation maximization (EM)
algorithm called the inside–outside algorithm [Lari & Young,
1990]. One of the limitations of this approach is that if the
structure is incomplete or in error, there may be no assign-
ment of probabilities that would result in an accurate model.
This is the problem we address in this paper. We introduce a
refinement step that can identify and fix a class of structural
errors that occur when a nonterminal in the model grammar is
performing the function of more than one nonterminal in the
target. The particular location refined at each step is deter-
mined “diagnostically” by analyzing the interaction between
the model and a training set. This method may be contrasted

S F

Xb/? b/?

a/? a/?
(a) (b)

S

X

 F

a/0.5

b/0.5
b/0.1

a/0.1

b/0.9

a/0.9

Y

Figure 1: An example where an incorrect structure prevents the
learning of an accurate model. (a) A target grammar to be learned.
(b) The structure used to model sequences generated by the grammar
shown in (a). State S is the begin state and F the end state. Arcs are
labeled with the character emitted and the probability of taking that
arc. The question marks in (b) represent the probability parameters
to be learned. Because state X is overloaded in the learned model,
it will be unable to correctly model the probabilities of the second
character in the sequence.

to the standard state-space search methodology of applying
the best of several competing operations as determined by a
heuristic function applied to the successor states. This refine-
ment step can be iterated with the inside–outside algorithm
to refine both the structure of the model and the probability
parameters. Through experiments with an SCFG designed
to model a family of RNA sequences called terminators we
show how this method may be used to learn more accurate
models than inside–outside alone.

To see the impact a structural error can have, consider try-
ing to learn the simple stochastic regular grammar shown in
figure 1(a). Imagine that we have many sequences generated
by this grammar for training and the structure we choose is
shown in figure 1(b). Given enough training data, the maxi-
mum likelihood estimate of each state transition probability is
0.5. The probability of each length-two sequence under this
model is therefore 0.25 resulting in a rather inaccurate model.
The problem with this structure is that state � in the model is
overloaded; it is performing the function of both state � and�

in the target. With the approach presented herein, errors
such as this can potentially be corrected.

2 Problem Domain
The application of SCFGs we consider here is that of mod-
eling of a class of RNA sequences called terminators. RNA



sequences are strings from the alphabet � a,c,g,u � correspond-
ing to the four different types of bases in the nucleotides of
RNA molecules. The bases a and u are complementary to one
another, as are c and g, because they are able to easily form
base pairs by becoming chemically bonded1.

The three dimensional shape that an RNA sequence as-
sumes to a large degree determines its function, and the shape
itself is strongly influenced by which particular bases are
paired. For example, an element of RNA structure called a
stem is formed when a number of adjacent bases pair with a
complementary set of bases later in the sequence. If the in-
tervening bases are unpaired, the resulting structure is called
a stem–loop. Figure 2(a) shows an RNA sequence that could
assume a stem–loop, and 2(b) shows the stem–loop it forms.
The consequence of this is that families of RNA sequences of
similar function will share a pattern of dependency between
bases in the sequence that are likely to be paired.

Terminators are RNA sequences which signal when to stop
the process of transcription, one of the key steps in the ex-
pression of a gene to form a protein.

3 Stochastic Context Free Grammars
The structure of an SCFG � is a context–free grammar and is
defined by a set of nonterminals � , a set of terminal symbols�

, a start nonterminal ����� and a set of rewrite rules, or
productions, of the form 	�
��� , ����������������� � ��� . That
is, the right hand side of a production consists of any com-
bination of terminal and nonterminal symbols other the start
nonterminal. When we refer to 	�
 ’s productions, we mean
the productions with 	�
 on the left hand side. Nonterminals
and terminals are denoted by upper and lower case letters re-
spectively. A grammar can be made into an SCFG by asso-
ciating with each nonterminal 	�
 a probability distribution,�! , over 	 
 ’s productions.

SCFGs have proven important in RNA analysis tasks be-
cause the defining characteristics of RNA families manifest
themselves in sequences through long range dependencies be-
tween bases. Such dependencies are troublesome to repre-
sent with regular grammars but can be naturally represented
by context-free grammars. Figure 2(c) shows an SCFG for
a specific set of stem–loops and Figure 2(d) shows the parse
tree for an example sequence under this grammar.

There are three fundamental computational tasks relating
SCFGs and sequences.

1. Compute "$#%�'&�(*) �+� , the probability of a sequence given
a full model.

2. Find the most probable parse tree for a sequence.

3. Given �-, and a set of sequences .0/1�2&43657&98�5;:<:=:<57&�>�� ,
set the probabilities to maximize the likelihood? >(=@!3 "$#A�B&�(C) �+� .

Briefly, the first and second problems are efficiently solv-
able with dynamic programming algorithms similar to the
forward and Viterbi algorithms, but there is no known effi-
cient global solution for the third problem. The most common

1Base pairs can be formed between non-complementary bases
but this is less common.

L
X
X
X
X
X
S X

c X g
g X c

L

a X u

a c u c

u X a

S

X

X

X

L

u  c  a  c  a  c  u  c  g  u  g  a

(a)

(d) (c)

(b)ucacacucguga

c
a
c g

g
u

a
c

c
u

a

u

(0.2)

(0.3)
(0.1)

(1.0)

(0.1)
(1.0)

(0.3)

Figure 2: (a) A simple RNA sequence that will form a stem-loop
structure. (b) The stem loop structure; paired bases are connected
by dashes. (c) An SCFG model of sequences that form stem–loops.
Probabilities are listed to the right of their associated production. (d)
The parse tree for the sequence in (a) using the grammar in (c).

heuristic is the inside–outside [Lari & Young, 1990] method
which, like other EM algorithms, converges to a local maxi-
mum.

The inside algorithm, used to solve task 1 above, is a dy-
namic programming algorithm that fills a three dimensional
matrix D . If run on the sequence &E( , the elements of the
matrix, DF�=GH5CIE57JA� , contain the sum of the probabilities of all
parse trees of the subsequence &E(K :<: &�(L rooted at 	�
 . So, if the
length of & ( is M and 	 3 /N� , then DF�POH5QMR5;O2�S/�"$#A�B& ( ) �+� .

The partner of the inside algorithm, the outside algorithm
calculates a similar dynamic programming matrix T . An ele-
ment TU�<GH5VIE5QJ%� is the sum of the probabilities of all parse trees
of the complete sequence &E( rooted at the start nonterminal,
excluding all parse subtrees of &E(Q:=: & K rooted at 	�
 .

From D and T the expected number of times each nonter-
minal is used in the derivation of a sequence can be deter-
mined. The sum of these counts over all sequences in a train-
ing set are used by the inside–outside algorithm to iteratively
re-estimate the production probabilities. In the next section
we will show how D and T play a role in identifying over-
loaded nonterminals.

4 Grammar Refinement Approach
When the structure of a hypothesis grammar ��W is different
from the structure of the target grammar XU� , its accuracy may
suffer. We would like to be able to identify and fix gram-
mars in this situation using only a set of training sequences.
In this section, we present a grammar refinement operator
and a heuristic to do this. The operator is able to fix cer-
tain structural errors in �-W that occur when a nonterminal in
the hypothesis is performing the function of more than one
nonterminal of X�� . We refer to such a nonterminal in ��W as
overloaded. The heuristic identifies overloaded nonterminals
by locating data dependencies that are not represented by the
structure of �+W .

Before we delve into the details of the grammar refine-
ment algorithm, it is helpful to consider the ways in which
a hypothesis grammar may differ from the target grammar.
Figure 3 gives a taxonomy of possible errors in a hypothe-
sis grammar. The right branch out of the root contains all



Incorrect
Structure

Incorrect SCFG

Incorrect
Probabilities

Missing Missing

Overloaded
Nonterminal

Production Nonterminal

Other Missing
Nonterminal
Error

Figure 3: Possible inaccuracies of a hypothesis SCFG with respect
to a target grammar ���

Table 1: The EXPAND operator. The operator creates a new non-
terminal to take the place of nonterminal � on the right hand side
of production �
EXPAND( � , � ) /* � is on the RHS of production � */

1. Create new nonterminal ���
2. Replace � with � � in �
3. For each production ���
	 , create ������	
4. Initialize probabilities for new productions

SCFGs that have a correct structure; that is, there is some
assignment of probabilities that results in a grammar equiv-
alent to XS� . Most learning algorithms for SCFGs, including
inside–outside are aimed at this situation.

The left branch contains two categories of incorrectly
structured grammars: those whose structures can be made
correct by adding only productions and those that require ad-
ditional nonterminals as well. Among the kinds of errors that
can occur from missing nonterminals, the class we address
occurs when a nonterminal in the hypothesis is overloaded
because it is trying to perform the function of two or more
nonterminals in the target. For example, the nonterminal �
in the SCFG of Figure 2(c) would be overloaded if the dis-
tribution of the first base pair in the family of sequences be-
ing modeled was different from the rest. Next, we present a
grammar refinement algorithm to identify and fix overloaded
nonterminals.

The grammar refinement problem starts with set a se-
quences . which we can think of as generated by an un-
known target SCFG X � , an initial hypothesis grammar, and
a goal of discovering a model ’close’ to XU� . We navigate
the space of grammar structures through the application of a
grammar modification operator, applied at each step to a part
of the current grammar chosen by a heuristic.

4.1 Refinement Operator
Our current grammar refinement procedure has a single op-
erator, EXPAND, shown in Table 1, which is applied to what
we call a context. We define a context to be a production
and a nonterminal on the right hand side of that production.
We denote a context either by the pair �'" 5V	 � where 	 is
a nonterminal on the right hand side of production " or by 
�� where r indexes into the productions in which nontermi-

X

S

...

X

u  ...                ... a

Figure 4: A partial parse tree where the nonterminal � is used in
the two different contexts ( ����� , � ) and ( ��� a � u, � ).

Table 2: The structure of the SCFG formed following an application
of EXPAND( ����� , � ) to the grammar in Figure 2(c). The new
nonterminal X’ replaces X in the production of the context being
expanded, ����� . Productions created by EXPAND are shown in
boldface.

S � X’
X � a X u X’ � a X u
X � c X g X’ � c X g
X � g X c X’ � g X c
X � a X u X’ � u X a
X � L X’ � L
L � a c u c

nal 	�
 appears on the right hand side. Every nonterminal
node in a parse tree defines a context. For example, the non-
terminal � in the parse tree fragment of Figure 4 is in the
context ( � � � , � ) the first time it appears and ( � � a �
u, � ) the second. When applied to �'" 5V	 � , EXPAND creates
a new nonterminal 	�� , replaces 	 with 	�� in " and creates
a production with 	�� on the left hand side from each of 	 ’s
productions. Table 2 shows the structure that is formed after
applying EXPAND( � � � 5�� ) to the SCFG of Figure 2(c).
We explain how to set the probabilities of the new productions
below.

4.2 Refinement Heuristics

The heuristic we use to guide the search expands a single con-
text at each step. It chooses to expand the nonterminal that is
used most differently in that context compared to its expected
usage based on its probability distribution. Let �  �� be the
vector of expected usage counts of the productions of 	 
 in
context  
�� (i.e., on the right hand side of the production in-
dicated by # ) for the training sequences and let � 
���� be an
element of this vector that refers to the expected number of
times that the  "! W production with 	�
 on the left hand side is
used in context  
�� . EXPAND(  
�� ) sets the probability distri-
bution of the nonterminal it creates to the one defined by �  �� .
Given a measurement of difference between the data distribu-
tion � 
�� and 	-
 ’s probability distribution �  we define our
heuristic to choose to expand the context that maximizes this
difference. We have investigated two difference measures,
one based on the Kullback–Leibler (KL) divergence and the
other based on the # 8 statistic.

The KL divergence, also called relative entropy, between
two probability distributions � and $ with the same discrete



Table 3: Example of values used in computing the heuristics for the
context ( � � � , � ) from the SCFG in Figure 2(c). The columns
indicate: (1) the productions of � , (2) the observed number of times
it is used in the context, (3) the observed probability distribution in
the context, (4) the expected usage counts if the context’s distribu-
tion were the same as the distribution over all contexts, (5) the dis-
tribution over all contexts.

Context ( ��� � , � ) All
Production “Observed” Expected

Counts Pr Counts Pr
�  �� �  �� �  �� �  

� � a � u 5.0 0.10 10.0 0.2
� � c � g 26.5 0.53 15.0 0.3
� � g � c 10.0 0.20 15.0 0.3
� � u � a 3.5 0.07 5.0 0.1
� � M 5.0 0.10 5.0 0.1
Sum 50.0 1.00 50.0 1.0

domain is defined as
� M � � 5 $4�U/ �

(
� (  ���� 8

� (	 ( :
Consider the example in Table 3. Column (3) in this ta-
ble shows �! �� for the productions of � in the context
( � � � , � ). We can use KL divergence to compare this
distribution to �  , shown in column (5), which is the prob-
ability distribution for the productions of � over all of � ’s
contexts. Using this measure, we select the nonterminal 	 

in context # that maximizes� MR� �  �� 5 �! � �

�
� 
�� �

where �  �� is the probability distribution defined by �  �� , and
the sum calculates the expected total number of times 	 
 is
in  
�� . By one interpretation, this measure selects the context
that would waste the most bits in transmitting a message for
each production applied in that context if the encoding used
is the optimal encoding defined by �  instead of �  �� .

The second heuristic we consider, the # 8 statistic, is com-
monly used to determine if the hypothesis that a data sam-
ple was drawn according to some distribution can be re-
jected. Using the vector of expected usage counts of nonter-
minal 	 
 in context  
�� , �  �� , as the “observed” counts and�� �� / �  �
 �� � � 
�� � � for the expected counts,

# 8
�� /
�
�
�Q��� 
������ � 
���� � 8�� � 
���� :

Our method selects for expansion the context  
�� which max-
imizes # 8
�� . Returning to the example in Table 3, we can
use # 8 to assess the significance of differences between col-
umn (2), the observed counts for the productions applied in
the given context, and column (4) the expected observations
given the probabilities in column (5).

To apply either of these heuristics, we must first calculate
the counts � 
���� . These can be calculated from the inside
and outside matrices D and T in a similar way as the usage
counts of productions and nonterminals are calculated in the

Table 4: The structure of our terminator grammar. Nonterminals
are capitalized and the terminals are a, c, g and u. The notation
X � Y � Z is shorthand for the two productions X � Y and X
� Z. Productions containing ��� and �� are shorthand for the family
of 16 productions where ��� and � � can be any of the four terminals.
Productions containing � �� and � �� have a similar interpretation except
that � �� and � �� can also be null allowing for unpaired bases in the
interior of the stem.

START � PREFIX STEM BOT1 SUFFIX
PREFIX � B B B B B B B B
STEM BOT1 � � � STEM BOT2 � �
STEM BOT2 � �V�� STEM MID �Q�� )��Q�� STEM TOP2 �Q��
STEM MID � �V�� STEM MID �Q�� )��Q�� STEM TOP2 �Q��
STEM TOP2 � � �� STEM TOP1 � ��
STEM TOP1 � � � LOOP � �
LOOP � B B LOOP MID
LOOP MID � B LOOP MID ) B B
SUFFIX � B B B B B B B B
B � a ) c ) g ) u

inside–outside algorithm. For example, the expected number
of times that the production 	�� � c 	�� g is used in the con-
text �'	 
 ���%	�� � 5V	�� � in the derivation of the sequence &E(
is

"$#%� 	 
 �!�%	�� �E�7"$#A�'	�� �  	����A� � K
�
L#"%$

K L

where

$
K L / TU�<GH5VIE5QJ%�7D �<G'&)(A5CI � (A5+* �

and " is an indicator variable that is 1 if &E(K /,��57&�(K+- 3 / 5Q&9(L�. 3 /#� and &�(L //� , and 0 otherwise. Also, the counts
are smoothed by adding 1 to each � 
�� � .

5 Experiments
We have constructed an SCFG model of terminator sequences
by incorporating known features of terminators identified in
the terminator literature. The structure of the terminator
grammar we start with, shown in Table 4, models the eight
bases before and eight bases after the stem–loop and the
stem–loop itself. The recursive nature of STEM MID and
LOOP MID’s productions enables variable length stems and
loops to be represented. An unpaired base in the interior of
the stem, a bulge, can also be represented.

Positive examples consist of the sequences of 142 known
or proposed terminators of E. coli. Each of these sequences is
50 base pairs long with the 021 ! W base aligned to the assumed
termination point. We have 125 negative sequences, also of
length 50, which were collected from the regions following
genes that are presumed to not contain terminators.

We performed a five fold cross validation experiment using
the KL and #!8 heuristic as well as a control where the context
to EXPAND at each step is randomly chosen. The following
steps were repeated.

1. Extract
�

, the most probable subsequence of each posi-
tive sequence in the training set given the current model.



20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

T
ru

e 
P

os
iti

ve
 R

at
e

False Positive Rate

Chi square
KL Divergence

Random
Original Grammar

Figure 5: ROC curves of original grammar and the refined gram-
mars after 25 additional nonterminals have been added using the �

�
,

KL divergence and random heuristics. Note that the order of the
models in the key reflects the order of the curves.

2. Fit the probability parameters by running inside–outside
to convergence on

�
.

3. EXPAND the context chosen by the heuristic.

The first step is needed because the positive sequences con-
tain more bases than what is being modeled by the grammar.
The probabilities in the stem were initialized with a prefer-
ence for complementary base pairs; elsewhere, a uniform dis-
tribution was used.

For each test sequence, we determine the probability of
its most probable subsequence as given by each model. To
compare various methods, we rank our test-set predictions by
these probability values and then construct ROC curves. We
get a single ROC curve for each approach by pooling predic-
tions across test-sets.

Figure 5 shows the ROC curves that result from the origi-
nal grammar, and from running our grammar refinement algo-
rithm for 25 iterations using the # 8 , KL, and random heuris-
tics. The random curve is the average over 35 random runs.
The curves in this figure show that our heuristics provide bet-
ter predictive accuracy than both the original grammar and
our control of randomly selecting the context to expand at
each step. These results support our hypothesis that directed
changes to the structure of the grammar can result in more
accurate learned models.

To consider how the predictive accuracy of the grammars
changes as a function of the number of refinement iterations,
we construct ROC curves after each iteration and then calcu-
late the area under each curve. Figure 6 plots the area under
these curves versus the number of nonterminals added for the
three heuristics considered in Figure 5. The * -axis for this
figure starts at 0.5 which is the expected area under the curve
for a model that guessed randomly (such a model would re-
sult in an ROC “line” defined by: TP rate = FP rate). The
results in this figure show that steady improvement is seen
through about the 15th additional nonterminal using the KL
heuristic and through about the 20th using #S8 . Our approach
does not appear to overfit the training data, at least through

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25

A
re

a 
un

de
r 

R
O

C
 c

ur
ve

Additional nonterminals

Chi square
KL Divergence

Random

Figure 6: Plot of the area under the ROC curves for three heuristics:
�

�
, KL Divergence, and random. The error bars on the random plot

denote the 95% confidence interval. Note that the � -axis starts at 0.5
which corresponds to the expected area under the curve for random
predictions.

the 25 iterations for which we have run it.
One possible reason that the # 8 heuristic results in more

accurate models than the KL heuristic is the following. We
know that our calculations of KL Divergence are biased
because they are calculated with finite samples [Herzel &
Grosse, 1997], but that this bias is not uniform across the non-
terminals and contexts we are comparing because the sample
sizes differ. Therefore, one avenue for future research is to
investigate measures that correct for the finite-sample bias of
our KL Divergence calculation.

We have examined the sequence of contexts expanded for
both the #!8 and the KL Divergence heuristics, and noticed
that several of the early refinements adjust a part of the gram-
mar that describes the first few positions following the stem.
There is known preference for t bases in this part of termi-
nators, but our initial grammar did not encode it. This result
suggests that our method can compensate for a known inad-
equacy in the initial grammar. However, we note that the al-
gorithm makes additional modifications to other parts of the
initial grammar that represent our best effort at encoding rel-
evant domain knowledge.

One of the limitations of this algorithm as presented is the
one-way nature of the search. That is, there is no way to make
the grammar more general. If the initial grammar encodes the
most general knowledge of the domain expert, this limitation
may not be problematic initially. However, as EXPAND cre-
ates more nonterminals, it is likely that the grammar would
become overly specific in places. The most obvious way of
addressing this problem is by introducing a generalization op-
erator. For example, a MERGE operator could be used to
combine two nonterminals with the same RHS domain if their
probability distributions are sufficiently similar. Note how-
ever, as mentioned by Stolcke (1994), that this operator will
not introduce any new embedding structure into the grammar.
This may not be a problem if such structure is present in the
initial grammar.



6 Related Work
The approach we present here is related to the grammar in-
duction algorithms of Stolcke (1994) and Chen (1996). These
works both address the induction of SCFGs from text corpora
for use as language models. Both methods incorporate a prior
probability distribution over model structures and perform a
search through posterior model probability space where Stol-
cke proceeds specific to general and Chen general to specific.
One of the key differences between these algorithms and ours
is that each of these addresses tabula rasa grammar induction
while ours begins with a grammar structure created from prior
knowledge. Another key difference is the way in which steps
in the search space are selected. The methods of both Stol-
cke and Chen evaluate a candidate operator application by
doing one-step lookahead. Since it can be expensive to cal-
culate the posterior probability of the data given the changed
model, heuristics are used to estimate this value. The opera-
tor application that results in the greatest estimated posterior
probability is accepted. Our approach, on the other hand, is
more “diagnostic.” Instead of doing one-step lookahead, our
heuristics try to directly identify places in which the gram-
mar structure is inadequate. This approach may somewhat
insulate our method from the overfitting pitfalls of likelihood
driven searches. A third difference is that Stolcke and Chen
use a richer set of operators than we do. As suggested in the
previous section, however, we believe that our diagnostic ap-
proach can be generalized to work with other operators.

A different view of our approach is as an instance of a the-
ory refinement algorithm [Pazzani & Kibler, 1992; Ourston
& Mooney, 1994; Towell & Shavlik, 1994]. In theory refine-
ment, the goal is to improve the accuracy of an incomplete or
incorrect domain theory, from a set of labeled training exam-
ples. The primary difference between our work and previous
work in theory refinement is the representation used by our
learned models. Whereas previous theory-refinement meth-
ods have focused on logic-based and neural network repre-
sentations, our learned models are represented using stochas-
tic context free grammars.

The task we address is also similar to the problem of learn-
ing the structure of Bayesian networks [Heckerman, Geiger,
& Chickering, 1995; Chickering, 1996], where the statistical
properties of a training set are used to guide the modifications
of the network structure. Again, the principal difference be-
tween our approach and this body of work is the difference in
the representation language.

There has also been related work in learning SCFGs for
RNA modeling tasks [Eddy & Durbin, 1994; Sakakibara et
al., 1994]. These iterative methods both update grammar
structure using information gathered from the most probable
parse of each of the training sequences at each step. Although
we intend to compare our refinement algorithm to both of
these approaches in future work, we consider our work to be
complementary to these methods because it could be run on
every one of their iterations.

7 Conclusion
We have considered the problem of refining the structure of a
deficient SCFG using a set of training sequences. We intro-

duced a grammar refinement operator, EXPAND, for repair-
ing a type of SCFG structural error resulting from an over-
loaded nonterminal as well as a pair of heuristics, based on
KL divergence and #!8 , for locating them. Preliminary results
indicate that our method is able to improve the accuracy of
an SCFG designed to model terminators by correcting known
structural errors as well making modifications to parts of the
grammar with no known deficiencies.

Acknowledgments
This research was supported in part by NSF CAREER award
IIS-0093016 and NIH Grant 1R01 LM07050-01. Thanks to
Soumya Ray for helpful comments on an earlier version of
this paper.

References
[Chen, 1996] Chen, S. 1996. Building Probabilistic Models

for Natural Language. Ph.D. Dissertation, Harvard Uni-
versity.

[Chickering, 1996] Chickering, D. M. 1996. Learning equiv-
alence classes of Bayesian-network structure. In Proceed-
ings of the Twelfth International Conference on Uncer-
tainty in Artificial Intelligence. San Francisco, CA: Mor-
gan Kaufmann.

[Eddy & Durbin, 1994] Eddy, S. R., and Durbin, R. 1994.
RNA sequence analysis using covariance models. Nucleic
Acids Research 22:2079–2088.

[Heckerman, Geiger, & Chickering, 1995] Heckerman, D.;
Geiger, D.; and Chickering, D. M. 1995. Learning
Bayesian networks. Machine Learning 20:197–243.

[Herzel & Grosse, 1997] Herzel, H., and Grosse, I. 1997.
Correlations in DNA sequences: The role of protein cod-
ing segments. Physical Review E 55(1).

[Lari & Young, 1990] Lari, K., and Young, S. J. 1990. The
estimation of stochastic context-free grammars using the
inside-outside algorithm. Computer Speech and Language
4:35–56.

[Ourston & Mooney, 1994] Ourston, D., and Mooney, R.
1994. Theory refinement combining analytical and em-
pirical methods. Artificial Intelligence 66(2):273–309.

[Pazzani & Kibler, 1992] Pazzani, M., and Kibler, D. 1992.
The utility of knowledge in inductive learning. Machine
Learning 9(1):57–94.

[Sakakibara et al., 1994] Sakakibara, Y.; Brown, M.;
Hughey, R.; Mian, I. S.; Sjölander, K.; Underwood,
R. C.; and Haussler, D. 1994. Stochastic context-free
grammars for tRNA modeling. Nucleic Acids Research
22:5112–5120.

[Stolcke, 1994] Stolcke, A. 1994. Bayesian Learning of
Probabilistic Language Models. Ph.D. Dissertation, Uni-
versity of California, Berkeley.

[Towell & Shavlik, 1994] Towell, G., and Shavlik, J. 1994.
Knowledge-based artificial neural networks. Artificial In-
telligence 70(1,2):119–165.


