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Abstract

Recently, there has been much effort in making
databases for molecular biology more accessible and
interoperable. However, information in text form, such
as MEDLINE records, remains a greatly underutilized
source of biological information. We have begun a re-
search effort aimed at automatically mapping infor-
mation from text sources into structured representa-
tions, such as knowledge bases. Our approach to this
task is to use machine-learning methods to induce rou-
tines for extracting facts from text. We describe two
learning methods that we have applied to this task
— a statistical text classification method, and a rela-
tional learning method — and our initial experiments
in learning such information-extraction routines. We
also present an approach to decreasing the cost of learn-
ing information-extraction routines by learning from
“weakly” labeled training data.

Introduction

The science of molecular biology has been greatly af-
fected by the proliferation of the Internet in recent
years. There are now hundreds of on-line databases
characterizing biological information such as sequences,
structures, molecular interactions and expression pat-
terns. Moreover, there are servers that perform such
tasks as identifying genes in DNA sequences (e.g.
GRAIL, Xu et al., 1996) and predicting protein sec-
ondary structures (e.g. PredictProtein, Rost, 1996).
And there are systems that integrate information from
various sources (e.g. The Genome Channel, Genome
Annotation Consortium, 1999), provide interoperabil-
ity among distributed databases (e.g. Entrez, National
Center for Biotechnology Information, 1999) and sup-
port knowledge-based reasoning (e.g. EcoCyc, Karp et
al., 1997). Another rich source of on-line information
is the scientific literature. The MEDLINE database,
for example, provides bibliographic information and ab-
stracts for more than nine million articles that have
been published in biomedical journals. A fundamental
limitation of MEDLINE and similar sources, however, is
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that the information they contain is not represented in
structured format, but instead in natural language text.
The goal of our research is to develop methods that can
inexpensively and accurately map information in scien-
tific text sources, such as MEDLINE, into a structured
representation, such as a knowledge base or a database.
Toward this end, we have developed novel methods for
automatically extracting key facts from scientific texts.

Current systems for accessing MEDLINE (e.g.
Pubmed, National Library of Medicine, 1999a) accept
keyword-based queries to text sources and return doc-
uments that are (hopefully) relevant to the query. Our
goal, in contrast, is to support the kinds of arbitrarily
complex queries that current database systems handle,
and to return actual answers rather than relevant doc-
uments. The system we are developing is motivated by
several different types of tasks that we believe would
greatly benefit from the ability to extracted structured
information from text:

e Database construction and updating. Our sys-
tem could be used to help construct and update
databases and knowledge bases by extracting fields
from text. For example, we are currently working
with a team that is developing a knowledge base
of protein localization patterns (Boland, Markey, &
Murphy 1996). We are using our system to assist in
developing an ontology of localization patterns and
to populate the database with text-extracted facts
describing the localization patterns of individual pro-
teins. In a similar vein, our system could be used to
update databases that track particular classes of mu-
tation studies (Lathrop et al. 1998), and to provide
automatic genome annotation for a system such as
The Genome Channel (Genome Annotation Consor-
tium 1999) or EcoCyc (Karp et al. 1997).

e Summarization. Another promising application of
our system is to provide structured summaries of
what is known about particular biological objects.
For example, we are working with scientists who are
studying the genetic basis of diseases by identifying
expressed sequence tags that are differentially ex-
pressed in tissues in various states. Frequently, these
scientists do time-consuming MEDLINE searches to



determine if some candidate gene product is likely to
be related to the disease of interest. When perform-
ing these searches, the scientists typically are trying
to answer such questions as: In what types of tissues,
cells and subcellular locations is the protein known
to be expressed? Is the protein known to be asso-
ciated with any diseases? Is the protein known to
interact with any pharmacological agents? We plan
to partially automate the task of extracting answers
to these questions from text.

e Discovery. An especially compelling application of
our system is its potential application to scientific
discovery. The articles in MEDLINE describe a vast
web of relationships among the genes, proteins, path-
ways, tissues and diseases of various systems and or-
ganisms of interest. Moreover, each article describes
only a small piece of this web. The work of Swan-
son et al. (Swanson & Smalheiser 1997) has demon-
strated that significant but previously unknown rela-
tionships among entities (e.g. magnesium and mi-
graine headaches) can be discovered by automati-
cally eliciting this information from the literature.
Swanson’s algorithm detects relationships among ob-
jects simply by considering the statistics of word co-
occurrences in article titles. We conjecture that such
relationships can be detected more accurately by our
method of analyzing sentences in the article’s ab-
stract or text. Moreover, whereas Swanson’s algo-
rithm posits only that some relation holds between a
pair of objects, our system is designed to state what
the specific relation is.

One conceivable approach to devising a system to
solve tasks such as these would be to perform full natu-
ral language understanding of the text. This undertak-
ing, however, is well beyond the capabilities of current
natural language systems. Our approach is to treat
the task as one of information extraction. Information
extraction (IE) involves a limited form of natural lan-
guage processing in which the system tries only to ex-
tract predefined classes of facts from the text. A key
aspect of our approach is that we use machine-learning
algorithms to induce our information extractors.

In the following section, we describe the information-
extraction task in more detail. We then describe a
statistical text-classification approach to learning in-
formation extractors, and present an empirical eval-
uation of this method. A key limitation of us-
ing machine-learning methods to induce information-
extraction methods is that the process of labeling train-
ing examples is expensive. The fourth section of the
paper presents an approach to learning information ex-
tractors that exploits existing databases to automati-
cally label training examples. The promise of this ap-
proach is that it can greatly reduce the cost of assem-
bling sets of labeled training data. We then present a
second approach to learning information extractors that
exploits more linguistic knowledge than our initial ap-
proach. Finally, we discuss related work, the contribu-

tions and limitations of our work, and some directions
we are pursuing in our current research.

The Information Extraction Task

The general information extraction task can be formu-
lated as follows:

Given: (i) a set of classes of interest and relations

among these classes, and (ii) a corpus of docu-

ments to be processed.

Do: extract from the documents instances of the

classes and relations that are described in the doc-

uments.
This limited form of natural language understanding
has been the focus of much research over the past
decade (Cowie & Lehnert 1996; Cardie 1997). Most
of the work in this community has involved hand-
coding extraction routines. However, in recent years
there have been several research efforts investigating
the application of machine learning methods to induc-
ing information extractors (Riloff 1996; Soderland 1996;
Califf 1998; Freitag 1998; Soderland 1999). Machine
learning methods offer a promising alternative to hand
coding IE routines because they can greatly reduce the
amount of time and effort required to develop such
methods.

In the applications we are addressing, we are primar-
ily interested in extracting instances of relations among
objects. In particular, we want to learn extractors for
the following:!

e subcellular-localization(Protein, Subcellular-Structure):
the instances of this relation represent proteins and
the subcellular structures in which they are found.

o cell-localization(Protein, Cell-Type): the cell types in
which a given protein is found.

e tissue-localization(Protein, Tissue): the tissue types in
which a given protein is found.

e associated-diseases(Protein, Disease): the diseases
with which a given protein is known to have some
association.

e drug-interactions(Protein, Pharmacologic-Agent): the
pharmacologic agents with which a given protein is
known to interact.

In our initial experiments we are focusing on the
subcellular-localization relation. As an example of the
IE task, Figure 1 shows several sentences and the in-
stances of the subcellular-localization relation that we
would like to extract from them.

Extraction via Text Classification

Our first approach to learning information extractors
uses a statistical text classification method. Without
loss of generality, assume that we are addressing the

"'We use the following notation to describe relations: con-
stants, such as the names of specific relations and the objects
they characterize, start with lowercase letters; the names of
variables begin with uppercase letters.



Immunoprecipitation of biotinylated type XIII collagen from
surface-labeled HT-1080 cells, subcellular fractionation, and im-

subcellular-localization(collagen,
plasma-membranes)

munofluorescence staining were used to demonstrate that type XIII
collagen molecules are indeed located in the plasma membranes of

these cells.

HSP47 is a collagen-binding stress protein and is thought to be
a collagen-specific molecular chaperone, which plays a pivotal role

subcellular-localization(collagen,
endoplasmic-reticulum)

during the biosynthesis and secretion of collagen molecules in the

endoplasmic reticulum.

Figure 1: An illustration of the IE task. On the left are sentences from MEDLINE abstracts. On the right are instances of
the subcellular-localization relation that we might extract from these sentences.

task of extracting instances of a binary relation, r(X,
Y). This approach assumes that for the variables of the
relation, X and Y, we are given semantic lexicons, L(X)
and L(Y), of the possible words that could be used
in instances of r. For example, the second constant
of each instance of the relation subcellular-localization,
described in the previous section, is in the semantic
class Subcellular-Structure. Our semantic lexicon for this
class consists of words like nucleus, mitochondrion?,
etc. Given such lexicons, the first step in this approach
is to identify the instances in a document that could
possibly express the relation. In the work reported
here, we make the assumption that these instances con-
sist of individual sentences. Thus, we can frame the
information-extraction task as one of sentence classifi-
cation. We extract a relation instance r(x, y) from the
sentence if (i) the sentence contains a word x € L(X)
and a word y € L(Y), and (ii) the sentence is classified
as a positive instance by a statistical model. Other-
wise, we consider the sentence to be a negative instance
and we do not extract anything from it. We can learn
the statistical model used for classification from labeled
positive and negative instances (i.e. sentences that de-
scribe instances of the relation, and sentences that do
not).

As stated above, we make the assumption that in-
stances consist of individual sentences. It would be pos-
sible, however, to define instances to be larger chunks
of text (e.g. paragraphs) or smaller ones (e.g. sen-
tence clauses) instead. One limitation of this approach
is that it forces us to assign only one class label to
each instance. Consider, for example, a sentence that
mentions multiple proteins and multiple subcellular lo-
cations. The sentence may specify that only some of
these proteins are found in only some of the locations.
However, we can only classify the sentence as being a
member of the positive class, in which case we extract
all protein/location pairs as instances of the target rela-
tion, or we classify the sentence as a negative instance,
in which case we extract no relation instances from the
sentence. This limitation provides an argument for set-

20ur lexicons also include adjectives and the plural forms
of nouns.

ting up the task so that instances are relatively small.

In order to learn models for classifying sentences, we
use a statistical text-classification method. Specifically,
we use a Naive Bayes classifier with a bag-of-words rep-
resentation (Mitchell 1997). This approach involves
representing each document (i.e. sentence) as a bag
of words. The key assumption made by the bag-of-
words representation is that the position of a word in a
document does not matter (e.g. encountering the word
protein at the beginning of a document is the same as
encountering it at the end).

Given a document d of n words (wi,ws,...,ws,),
Naive Bayes estimates the probability that the docu-
ment belongs to each possible class c¢; € C' as follows:

Pr(c;) Pr(dlc;) _ Pr(cj) [Tiey Pr(wile;)
Pr(d) Pr(d) '
(1)

In addition to the position-independence assump-
tion implicit in the bag-of-words representation, Naive
Bayes makes the assumption that the occurrence of a
given word in a document is independent of all other
words in the document. Clearly, this assumption does
not hold in real text documents. However, in practice,
Naive Bayes classifiers often perform quite well (Domin-
gos & Pazzani 1997; Lewis & Ringuette 1994).

The prior probability of the document, Pr(d) does
not need to be estimated directly. Instead we can get
the denominator by normalizing over all of the classes.
The conditional probability, Pr(w;|c;), of seeing word
w; given class c; is estimated from the training data.
In order to make these estimates robust with respect
to infrequently encountered words, we use Laplace es-
timates:

Pr(c;|d) =

N(U]i,Cj)+1 (2)
N(Cj) +T
where N (w;, ¢;) is the number of times word w; appears
in training set examples from class ¢;, N(c;) is the total
number of words in the training set for class ¢; and T
is the total number of unique words in the training set.
Before applying Naive Bayes to our documents, we
first preprocess them by stemming words. Stemming
refers to the process of heuristically reducing words to
their root form (Porter 1980). For example the words

Pr(wile;) =



localize, localized and localization would be stemmed to
the root local. The motivation for this step is to make
commonalities in related sentences more apparent to
the learner.

To evaluate our approach, we assembled a corpus of
abstracts from the MEDLINE database. This corpus,
consisting of 2,889 abstracts, was collected by querying
on the names of six proteins and then downloading the
first 500 articles returned for each query protein, dis-
carding entries that did not include an abstract. We
selected the six proteins for their diversity and for their
relevance to the research of one of our collaborators.
The six proteins/polypeptides are: serotonin (a neuro-
transmitter), secretin (a hormone), NMDA receptor (a
receptor), collagen (a structural protein), trypsinogen
(an enzyme), and calcium channel (an ion channel).

We created a labeled data set for our IE experiments
as follows. One of us (Kumlien), who is trained in
medicine and clinical chemistry, hand-annotated each
abstract in the corpus with instances of the target rela-
tion subcellular-localization. To determine if an abstract
should be annotated with a given instance, subcellular-
localization(x, y), the abstract had to clearly indicate
that protein x is found in location y. To aid in this
labeling process, we wrote software that searched the
abstracts for words from the location lexicon, and sug-
gested candidate instances based on search hits. This
labeling process resulted in a total of thirty-three in-
stances of the subcellular-localization relation. Individ-
ual instances were found in from one to thirty different
abstracts. For example, the fact that calcium channels
are found in the sarcoplasmic reticulum was indicated
in eight different abstracts.

The goal of the information-extraction task is
to correctly identify the instances of the tar-
get relation that are represented in the corpus,
without predicting spurious instances. Further-
more, although each instance of the target rela-
tion, such as subcellular-localization(calcium-channels,
sarcoplasmic-reticulum), may be represented multiple
times in the corpus, we consider the information-
extraction method to be correct as long it extracts this
instance from one of its occurrences. We estimate the
accuracy of our learned sentence classifiers using leave-
one-out cross validation. Thus, for every sentence in the
data set, we induce a classifier using the other sentences
as training data, and then treat the held-out sentence
as a test case. We compare our learned information ex-
tractors against a baseline method that we refer to as
the sentence co-occurrence predictor. This method pre-
dicts that a relation holds if a protein and a sub-cellular
location occur in the same sentence.

We consider using our learned Naive Bayes models in
two ways. In the first method, we use them as classi-
fiers: given an instance, the model either classifies it as
positive and returns an extracted relation instance, or
the model classifies it as negative and extracts nothing.
To use Naive Bayes for classification, we simply return
the most probable class. In the second method, the

model returns its estimated posterior probability that
the instance is positive. With this method, we do not
strictly accept or reject sentences.

For each method, we rank its predictions by a confi-
dence measure. For a given relation instance, r(x, y), we
first collect the set of sentences that would assert this
relation if classified into the positive class (i.e. those
sentences that contain both the term x and the term
y). For the sentence co-occurrence predictor, we rank a
predicted relation instance by the size of this set. When
we use the Naive Bayes models as classifiers, we rank a
predicted relation instance by the number of sentences
in this set that are classified as belonging to the pos-
itive class. In the second method, where we use the
probabilities produced by Naive Bayes, we estimate the
posterior probability that each sentence is in the posi-
tive class and combine the class probabilities using the
noisy or function (Pearl 1988):

N
confidence =1 — H [1 — Pr(c = pos |s)].
k

Here, Pr(c = pos |si) is the probability estimated by
Naive Bayes for the kth element of our set of sentences.
This combination function assumes that each sentence
in the set provides independent evidence for the truth
of the asserted relation.

Since we have a way to rank the predictions produced
by each of our methods, we can see how the accuracy of
their predictions vary with confidence. Figure 2 plots
precision versus recall for the three methods on the task
of extracting instances of the subcellular-localization re-
lation. Precision and recall are defined as follows:

.. # correct positive predictions
precision =

# positive predictions

# correct positive predictions
recall = —— .
# positive instances

Figure 2 illustrates several interesting results. The
most significant result is that both versions of the Naive
Bayes predictor generally achieve higher levels of pre-
cision than the sentence co-occurrence predictor. For
example, at 25% recall, the precision of the baseline
predictor is 44%, whereas for the Naive Bayes classifiers
it is 70%, and for the Naive Bayes models using noisy-
or combination it is 62%. This result indicates that the
learning algorithm has captured some of the statistical
regularities that arise in how authors describe the sub-
cellular localization of a protein. None of the methods is
able to achieve 100% recall since some positive relation
instances are not represented by individual sentences.
In the limit, the recall of the Naive Bayes classifiers is
not as high as it is for the baseline predictor because the
former incorrectly classifies as negative some sentences
representing positive instances. Since the Naive Bayes
models with noisy-or do not reject any sentences in this
way, their recall is the same as the baseline method.
Their precision is lower than the Naive Bayes classifier,
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Figure 2: Precision vs. recall for the co-occurrence predic-
tors and the Naive Bayes model.

however, indicating that even when Naive Bayes makes
accurate classifications, it often does not estimate prob-
abilities well (Domingos & Pazzani 1997). An inter-
esting possibility would be to combine these predictors
to get the high precision of the Naive Bayes classifiers
along with the high recall of the Naive Bayes models
using noisy-or. Provost and Fawcett (1998) have de-
veloped a method especially well suited to this type of
combination.

Exploiting Existing Databases for
Training Data

We have argued that machine learning offers a promis-
ing alternative to hand-coding information extrac-
tion routines because the hand-coding process has
proven to be so time-consuming. A limitation of the
machine-learning approach, however, is that providing
labeled training data to the learner is itself quite time-
consuming and tedious. In fact, labeling the corpus
used in the previous section required approximately 35
hours of an expert’s time. In this section, we present
an approach to learning information extractors that re-
lies on existing databases to provide something akin to
labeled training instances.

Our approach is motivated by the observation that,
for many IE tasks, there are existing information
sources (knowledge bases, databases, or even simple
lists or tables) that can be coupled with documents
to provide what we term “weakly” labeled training ex-
amples. We call this form of training data weakly la-
beled because each instance consists not of a precisely
marked document, but instead it consists of a fact to
be extracted along with a document that may assert
the fact. To make this concept more concrete, consider
the Yeast Protein Database (YPD) (Hodges, Payne, &
Garrels 1998), which includes a subcellular localization
field for many proteins. Moreover, in some cases the
entry for this field has a reference (and a hyperlink to

the PubMed entry for the reference) to the article that
established the subcellular localization fact. Thus, each
of these entries along with its reference could be used
as a weakly labeled instance for learning our subcellular-
localization information extractors.

In this section we evaluate the utility of learning
from weakly labeled training instances. From the
YPD Web site, we collected 1,213 instances of the
subcellular-localization relation that are asserted in the
YPD database, and from PubMed we collected the ab-
stracts from 924 articles that are pointed to by these
entries in YPD. For many of the relation instances, the
associated abstracts do not say anything about the sub-
cellular localization of the reference protein, and thus
they are not helpful to us. However, if we select the
relation instances for which an associated abstract con-
tains a sentence that mentions both the protein and a
subcellular location, then we wind up with 336 relation
instances described in 633 sentences. This data set con-
tains significantly more relation instances than the one
we obtained via hand-labeling, and it was acquired by
a completely automated process.

As in the previous section, we treat individual sen-
tences as instances to be processed by a Naive Bayes
text classifier. Moreover, we make the assumption that
every one of the 633 sentences mentioned above repre-
sents a positive training example for our text classifier.
In other words, we assume that if we know that relation
subcellular-localization(x, y) holds, then any sentence in
the abstract(s) associated with subcellular-localization(x,
y) that references both x and y is effectively stating that
x is located in y. Of course this assumption is not al-
ways valid in practice. We take the remaining sentences
in the YPD corpus as negative training examples.

The hypothesis that we consider in this section is that
it is possible to learn accurate information-extraction
routines using weakly labeled training data, such as
that we gathered from YPD. To test this hypothesis
we train a Naive Bayes model using the YPD data as
a training set, and then we evaluate it using our hand-
labeled corpus as a test set. We train our statistical
text classifier in the same manner as described in the
previous section.

Figure 3 shows the precision vs. recall curves for
this experiment. As a baseline, the figure also shows
the precision/recall curve for the sentence co-occurrence
predictor described in the previous section. Recall that
the co-occurrence predictor does not use a training set
in any way; it simply makes its predictions by noting
co-occurrence statistics in the test set. Therefore, it is
an appropriate baseline no matter what training set we
use.

From this figure we can see that the Naive Bayes
model learned from the YPD curve is comparable to
the curve for the models learned from the hand-labeled
data. Whereas the Naive Bayes classifiers from the pre-
vious section achieved 69% precision at 30% recall, the
Naive Bayes classifier trained on the YPD data reaches
77% precision at 30% recall. Moreover, the YPD model
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Figure 3: Precision vs. recall for the Naive Bayes model
trained on the YPD data set.

achieves better precision at comparable levels of recall
than the sentence co-occurrence classifier.

These two results support our hypothesis. It should
be emphasized that the result of this experiment was
not a foregone conclusion. Although the YPD data set
contains many more positive instances than our hand-
labeled data set, this data set represents a very different
distribution of text than our test set. The YPD data set
has a particular focus on the localization of yeast pro-
teins. The test set, in contrast does not concentrate on
protein localization and barely mentions yeast. We ar-
gue that the result of this experiment is very significant
result because it indicates that effective information-
extraction routines can be learned without an expensive
hand-coding or hand-labeling process.

One way to obtain insight into our learned text clas-
sifiers is to ask which words contribute most highly to
the quantity Pr(pos|d) (i.e. the predicted probability
that a document d belongs to the positive class). To
measure this, we calculate

log (M) (3)

Pr(w;|neg)

for each word w; in the vocabulary of the model learned
from the YPD data set. Figure 4 shows the twenty
stemmed words, excluding words that refer to specific
subcellular locations, that have the greatest value of
this log-odds ratio. The vocabulary for this learned
model includes more than 2500 stemmed words. As
the table illustrates, many of the highly weighted words
are intuitively natural predictors of sentences that de-
scribe subcellular-localization facts. The words in this
set include local, insid, immunofluoresc, immunoloc,
accumul, and microscopi. Some of the highly weighted
words, however, are not closely associated with the con-
cept of subcellular localization. Instead, their relatively
large weights simply reflect the fact that it is difficult to
reliably estimate such probabilities from limited train-
ing data.

stemmed word log (75:511"223 )
local 0.00571
pmr 0.00306
dpap 0.00259
insid 0.00209
indirect 0.00191
galactosidas 0.00190
immunofluoresc 0.00182
secretion 0.00181
mem 0.00157
mannosidas 0.00157
sla 0.00156
gdpase 0.00156
bafilomycin 0.00154
marker 0.00141
presequ 0.00125
immunoloc 0.00125
snc 0.00121
stain 0.00115
accumul 0.00114
microscopi 0.00112

Figure 4: The twenty stemmed words (aside from words
referring to specific subcellular locations) weighted most
highly by the YPD-trained text classifier. The weights rep-
resent the log-odds ratio of the words given the positive
class.

Extraction via Relational Learning

The primary limitation of the statistical classification
approach to IE presented in the preceding sections is
that it does not represent the linguistic structure of
the text being analyzed. In deciding whether a given
sentence encodes an instance of the target relation or
not, the statistical text classifiers consider only what
words occur in the sentence — not their relationships to
one another. Surely, the grammatical structure of the
sentence is important for our task, however.

To learn information extractors that are able to rep-
resent grammatical structure, we have begun exploring
an approach that involves parsing sentences, and learn-
ing relational rules in terms of these parses. Our ap-
proach uses a sentence analyzer called Sundance (Riloff
1998) that assigns part-of-speech tags to words, and
then builds a shallow parse tree that segments sentences
into clauses and noun, verb, or prepositional phrases.
Figure 5 shows the parse tree built by Sundance for one
sentence in our corpus. The numbers shown in brackets
next to the root and each phrase in the tree are iden-
tifiers that we can use to refer to a particular sentence
in the corpus or to a particular phrase in a sentence.

Given these parses, we learn information-extraction
rules using a relational learning algorithm that is sim-
ilar to FoIrr (Quinlan 1990). The appeal of using a
relational method for this task is that it can naturally
represent relationships among sentence constituents in



sentence [25]

prep phrase [0] noun phrase [2] verb phrase [3]  prep—phrase [4]

Aphrase 11 /\\ /\ /h\un—phrase [5]

By immunofluorescence microscopy the PRP20 protein was localized in the nucleus

Figure 5: A parse tree produced by Sundance for one sen-
tence in our YPD corpus.

learned rules, and it can represent an arbitrary amount
of context around the parts of the sentence to be ex-
tracted.

The objective of the learning algorithm is to learn a
definition for the predicate:
localization-sentence(Sentence-ID,Phrase-1D,Phrase-ID).
Each instance of this relation consists of (i) an iden-
tifier corresponding to the sentence represented by the
instance, (ii) an identifier representing the phrase in the
sentence that contains an entry in the protein lexicon,
and (iii) and identifier representing the phrase in the
sentence that contains an entry in the subcellular lo-
cation lexicon. Thus, the learning task is to recognize
pairs of phrases that correspond to positive instances
of the target relation. The models learned by the rela-
tional learner consist of logical rules constructed from
the following background relations:

e phrase-type(Phrase-ID, Phrase-Type): This relation al-
lows a particular phrase to be characterized as a noun
phrase, verb phrase, or prepositional phrase.

e next-phrase(Phrase-ID, Phrase-ID): This relation spec-
ifies the order of phrases in a sentence. Each instance
of the relation indicates the successor of one particu-
lar phrase.

e constituent-phrase(Phrase-ID, Phrase-ID): This rela-
tion indicates cases where one phrase is a constituent
of another phrase. For example, in Figure 5, the first
prepositional phrase in the sentence has a constituent
noun phrase.

e subject-verb(Phrase-ID, Phrase-ID),
verb-direct-object(Phrase-1D,Phrase-ID): These rela-
tions enable the learner to link subject noun phrases
to their corresponding verb phrases, and verb phrases
to their corresponding direct object phrases.

e same-clause(Phrase-ID, Phrase-ID): This relation links
phrases that occur in the same sentence clause.

Training and test examples are described by instances
of these relations. For example, Figure 6 shows the in-
stances of the background and target relations that rep-
resent the parse tree shown in Figure 5. The constants
used to represent the sentence and its phrases in Fig-
ure 6 correspond to the identifiers shown in brackets in
Figure 5.

phrase-0, prepositional-phrase).
phrase-1, noun-phrase).
phrase-2, noun-phrase).
phrase-3, verb-phrase).
phrase-4, prepositional-phrase).
phrase-5, noun-phrase).

phrase-type
phrase-type
phrase-type
phrase-type
phrase-type
phrase-type

plLig- 9 Pl N9y

next-phrase(phrase-0, phrase-2).
next-phrase(phrase-2, phrase-3).
next-phrase(phrase-3, phrase-4).

constituent-phrase(phrase-0, phrase-1).
constituent-phrase(phrase-4, phrase-5).

subject-verb(phrase-2, phrase-3).

localization-sentence(sentence-25, phrase-2, phrase-5).

Figure 6: Our relational representation of the parse shown
in Figure 5.

This set of background relations enables the learner
to characterize the relations among phrases in sen-
tences. Additionally, we also allow the learner to char-
acterize the words in sentences and phrases. One ap-
proach to doing this would be to include another back-
ground relation whose instances linked individual words
to the phrases and sentences in which they occur. We
have investigated this approach and found that the
learned rules often have low precision and/or recall be-
cause they are too dependent on the presence of par-
ticular words. The approach we use instead allows
the learning algorithm to use Naive Bayes classifiers to
characterize the words in sentences and phrases.

Figure 7 shows a rule learned by our relational
method. The rule is satisfied when all of the literals
to the right of the “:-” are satisfied. The first two lit-
erals specify that the rule is looking for sentences in
which the phrase referencing the subcellular location
follows the phrase referencing the protein, and there
is one phrase separating them. The next literal spec-
ifies that the sentence must satisfy (i.e. be classified
as positive by) a particular Naive Bayes classifier. The
fourth literal indicates that the phrase referencing the
protein must satisfy a Naive Bayes classifier. The two
final literals specify a similar condition for the phrase
referencing the subcellular location. The bottom part
of Figure 7 shows the stemmed words that are weighted
most highly by each of the naive Bayes classifiers.

Although the Naive Bayes predicates used in the rule
shown in Figure 7 appear to overlap somewhat, their
differences are noticeable. For example, whereas the
predicate that is applied to the Protein-Phrase highly
weights the words protein, gene and product, the pred-
icates that are applied to the Location-Phrase focus on
subcellular locations and prepositions such as in, to and
with.



localization-sentence(Sentence, Protein-Phrase, Location-Phrase) :-

next-phrase(Protein-Phrase, Phrase-1),
next-phrase(Phrase-1, Location-Phrase),

sentence-naive-bayes-1(Sentence),
phrase-naive-bayes-1(Protein-Phrase),

phrase-naive-bayes-2(Location-Phrase),
phrase-naive-bayes-3(Location-Phrase).

sentence-naive-bayes-1:
phrase-naive-bayes-1:
phrase-naive-bayes-2:
phrase-naive-bayes-3:

nucleu, mannosidas, bifunct, local, galactosidas, nuclei, immunofluoresc, . ..
protein, beta, galactosidas, gene, alpha, mannosidas, bifunct, product, ...
nucleu, nuclei, mitochondria, vacuol, plasma, insid, membran, atpas, ...
the, nucleu, in, mitochondria, membran, nuclei, to, vacuol, yeast, with, ...

Figure 7: Top: a rule learned by our relational method. This rule includes four Naive Bayes predicates. Bottom: the most
highly weighted words (using the log-odds ratio) in each of the Naive Bayes predicates.

Using a procedure similar to relational pathfinding
(Richards & Mooney 1992), our learning algorithm ini-
tializes each rule by trying to find the combination of
next-phrase, constituent-phrase, subject-verb, verb-direct-
object, and same-clause literals that link the phrases of
the most uncovered positive instances. After the rule
is initialized with these literals, the learning algorithm
uses a hill-climbing search to add additional literals.
The algorithm can either add a literal expressed using
one of the background relations, or it can invent a new
Naive Bayes classifier to characterize one of the phrases
in the sentence or the sentence itself. This method for
inventing Naive Bayes classifiers in the context of rela-
tional learning is described in detail elsewhere (Slattery
& Craven 1998).

To evaluate our relational IE approach, we learned a
set of rules using the YPD data set as a training set,
and tested the rules on the hand-labeled data set. Our
relational algorithm learned a total of 26 rules covering
the positive instances in the training set.

Figure 8 shows the precision vs. recall curve for the
learned relational rules. The confidence measure for a
given example is the estimated accuracy of the first rule
that the example satisfies. We estimate the accuracy of
each of our learned rules by calculating an m-estimate
(Cestnik 1990) of the rule’s accuracy over the training
examples. The m-estimate of a rule’s accuracy is de-
fined as follows:

Ne + Mp

m—estimate accuracy =
n—+m

where n. is the number of instances correctly classified
by the rule, n is the total number of instances classified
by the rule, p is a prior estimate of the rule’s accu-
racy, and m is a constant called the equivalent sample
stze which determines how heavily p is weighted rela-
tive to the observed data. In our experiments, we set
m = 5 and we set p to the proportion of instances
in the training set that belong to the target class. We
then use these m-estimates to sort the rules in order of
descending estimated accuracy.

100% o=t | | |
Yoo Sentence co-occurrence ——
| Naive Bayes classifier ——
80% | Relational classifier ~& |
5 oo A
@
[&]
Q
C 40% | |
20% | |

0% 20% 40% 60% 80% 100%
Recall

Figure 8: Precision vs. recall for the relational classifier
trained on the YPD data set.

For comparison, Figure 8 also shows the precision vs.
recall curves for the YPD-trained Naive Bayes classifier
discussed in the previous section, and for the sentence
co-occurrence baseline. As this figure illustrates, al-
though the recall of the relational rule set is rather low
(21%), the precision is quite high (92%). In fact, this
precision value is considerably higher than the precision
of the Naive Bayes classifier at the corresponding level
of recall. This result indicates the value of represent-
ing grammatical structure when learning information
extractors. We believe that the recall level of our re-
lational learner can be improved by tuning the set of
background relations it employs, and we are investigat-
ing this issue in our current research.

Related Work

Several other research groups have addressed the task
of information extraction from biomedical texts. Our
research differs considerably, however, in the type of
knowledge we are trying to extract and in our approach
to the problem.



A number of groups have developed systems for ex-
tracting keywords from text sources. Andrade and Va-
lencia (1997) describe a method for extracting keywords
characterizing functional characteristics of protein fam-
ilies. This approach identifies words that are used much
more frequently in the literature for a given family than
in the literature associated with other families. In sim-
ilar work, Ohta et al. (1997) extract keywords using an
information-theoretic measure to identify those words
that carry the most information about a given docu-
ment. Weeber and Vos (1998) have developed a sys-
tem for extracting information about adverse drug re-
actions from medical abstracts. Their system isolates
words that occur near the phrase “side effect” and then
uses statistical techniques to identify words that pos-
sibly describe adverse drug reactions. In all of these
research efforts, the information-extraction task is to
identify and extract informative words related to some
topic. In our work, on the other hand, we are focusing
on extracting instances of specific target relations.

Fukuda et al. (1998) consider the task of recognizing
protein names in biological articles. Their system uses
both orthographic and part-of-speech features to recog-
nize and extract protein names. Whereas the task we
are addressing is to extract relation instances, Fukuda
et al. are concerned with extracting instances of a class,
namely proteins.

The prior research most similar to ours is that of Leek
(1997). His work investigated using hidden Markov
models (HMMs) to extract facts from text fields in
the OMIM (On-Line Mendelian Inheritance in Man)
database. The task addressed by Leek, like our task,
involved extracting instances of a binary relation per-
taining to location. His location relation, however, re-
ferred to the positions of genes on chromosomes. The
principal difference between Leek’s approach and our
approach is that his HMMs involved a fair amount of
domain-specific human engineering.

Discussion and Conclusions

One may ask whether the learned classifiers we de-
scribed in this paper are accurate enough to be of use.
We argue that, for many tasks, they are. As discussed in
the Introduction, two of the motivating applications for
our work are (i) providing structured summaries of par-
ticular biological objects, and (ii) supporting discovery
by eliciting connections among biological objects. As
demonstrated by the work of Swanson et al. (Swanson
& Smalheiser 1997), even word co-occurrence predic-
tors can be quite useful for these tasks. Therefore, any
method that can provide a boost in predictive power
over these baselines is of practical value. For tasks
such as automatic genome annotation, where the pre-
dictions made by the information extractors would be
put directly into a database, the standard for accuracy
is higher. For this type of task, we believe that extrac-
tion routines like those described in this paper can be
of value either by (i) making only high-confidence pre-
dictions, thereby sacrificing recall for precision, or (ii)

operating in a semi-automated mode in which a person
reviews (some) of the predictions made by the informa-
tion extractors.

Perhaps the most significant contribution of our work
is the approach to using “weakly” labeled training data.
Most previous work in learning information extractors
has relied on training examples consisting of documents
precisely marked with the facts that should be extracted
along with their locations within the document. Our
approach involves (i) identifying existing databases that
contain instances of the target relation, (ii) associat-
ing these instances with documents so that they may
be used as training data, and (iii) dividing the docu-
ments into training instances and weakly labeling these
instances (e.g. by assuming that all sentences that men-
tion a protein and a subcellular location represent in-
stances of the subcellular-localization relation) We be-
lieve that this approach has great promise because it
vastly reduces the time and effort involved in assem-
bling training sets for inducing information extractors.
Currently, we are investigating modifying the learn-
ing process to take into account the nature of weakly
labeled training data. Specifically we are developing
objective functions that are biased towards covering
at least one sentence per positive instance instead of
equally weighting all sentences labeled as positive.

We have numerous other plans to extend the work
presented here. First, we are currently using our
learned information extractors to help populate a
protein-localization knowledge base being developed at
Carnegie Mellon University. Second, we plan to learn
information-extraction routines for all of the relations
mentioned in the Introduction. Third, we plan to inves-
tigate ways in which existing sources of domain knowl-
edge, such as the Unified Medical Language System
(National Library of Medicine 1999b), can be leveraged
to learn more accurate extraction routines. Fourth, we
plan to address the task of extracting instances that are
not represented by individual sentences. Fifth, we plan
to extend our relation-extraction methods so that they
can take into account factors that may qualify a fact,
such as its temporal or spatial scope.

In summary, we believe that the work presented
herein represents a significant step toward making tex-
tual sources of biological knowledge as accessible and
interoperable as structured databases.
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