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ABSTRACT

The emergence of increasingly complex models and large, rich feature representa-
tions in machine learning promises new opportunities by enabling more accurate
modeling of phenomena of interest, but also presents substantial challenges. The
very complexity that often contributes to the accuracy of such models makes them
‘black-boxes’ that are hard for humans to interpret. In many application domains,
such as healthcare, interpretability is a key requirement for the deployment and
acceptance of such models.

In this dissertation, we advance the state of the art for interpretability in machine
learning by proposing novel approaches that leverage abstractions over the features
to better interpret black-box models. We develop these approaches through their
application to black-box models that we have trained to address specific tasks of
interest.

In particular, we consider the task of modeling asthma exacerbations, a prevalent
acute respiratory condition, using electronic health records (EHRs). We develop an
algorithm to phenotype asthma exacerbations from EHRs. Using the phenotyped
exacerbations, we explore a variety of representations and modeling approaches
for the task of predicting future exacerbations, and develop an approach to identi-
fying subpopulations of asthma patients sharing distinct temporal and seasonal
exacerbation patterns.

We develop methods that use hierarchical and temporal feature abstractions to
interpret black-box models while meeting key interpretability desiderata. We use a
model-agnostic, permutation-based approach that characterizes models across the
distribution of instances. By leveraging feature hierarchies, we interpret models
at multiple resolutions in terms of their important features, feature groups, and
interactions. For models over temporal or sequential representations, we develop
an approach that identifies the importance of salient features with respect to their
temporal ordering as well as localized windows of influence. Our approach is
statistically grounded using a hypothesis testing and false discovery rate control
methodology. We apply these methods to learned models in challenging biomedical
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domains, including a model that we have trained to predict asthma exacerbations.
Additionally, we provide software packages that include efficient, distributed
implementations of our methods, and tools to readily visualize the explanations

generated by them.



1 INTRODUCTION

1.1 The Need for Model Interpretability

Advances in machine learning, supported by advances in computing, reflect a trend
towards increasing model complexity. This has led to a proliferation of models
that learn rich representations over large, complex parameter spaces, most readily
evident in the advent of deep learning. Such models have increasingly been applied
in domains with a high degree of social impact, such as healthcare, but this very
complexity makes them black-boxes whose decision-making is hard to explain, a
critical deficit in many such domains. There are several principal reasons why it
might be important to interpret or explain the decision-making of black-box models:

e Trust: Trust in the accuracy of a model’s predictions and its underlying
rationales is a key requirement for its deployment and acceptance in many

domains, for end users as well as other stakeholders.

e Legal and ethical imperatives: A ‘right to an explanation” to be given to
individuals affected by algorithmic decisions may be ethically and legally
required, such as by laws like the Equal Credit Opportunity Act (ECOA) or
the General Data Protection Regulation (GDPR).

e Scientific discovery: Interpreting black-box models may enable new insights
into a problem domain by uncovering previously unrecognized salient fea-
tures and associations that the models have learned, and generating hypothe-
ses that may be tested to establish causal relationships.

e Model development: Explanations may aid in improving the predictive
performance of models by detecting and avoiding overfitting, diagnosing
and removing bias and discrimination in models’ decisions, gaining insight
into differences among input representations, and identifying weaknesses in

changing or adversarial environments.



Complex models may be hard for humans to interpret for several reasons: (i)
they may capture relationships between the features and the outputs that are highly
non-monotonic and/or non-linear, (ii) their outputs may depend on decisions
made by large numbers of computational units, as in the case of large decision trees,
neural networks, or ensemble methods, and (iii) they may be trained over complex
data consisting of large, structured feature spaces, such as in visual, genetic or
clinical domains.

Methods that interpret models seek to unravel this complexity in various ways
in order to make it easier for humans to understand models” decisions. In the
context of supervised learning, these approaches may be broadly classified as (i)
methods that design models to be transparent, i.e., inherently more interpretable
than complex models by some measure, and (ii) methods that generate post-hoc
explanations, i.e., explanations of the behavior of learned black-box models.

1.2 Methods for Interpreting Black-box Models

The increasing complexity and social impact of algorithms have led to a concomitant
rise in post-hoc methods to interpret black-box models. There are two chief ways in
which a model may be considered a black-box: (i) from a mechanistic perspective,
where the internal workings of the model may be partially or completely hidden
from the user, so that the user may only have access to the model’s output for a
given input, and (ii) from the perspective of human understanding, where, despite
complete information about the model, such as its architecture, parameters and
computations, the model’s complexity may make it hard to interpret. Model-specific
explanation methods rely on knowledge of the internal workings of the model and
may only be used to interpret the latter kind of black-box models. Model-agnostic
methods make few assumptions about the model and may be used to interpret
both kinds of black-box models.

Figures 1.1 and 1.2 show two other broad characterizations of explanation meth-
ods. Explanations are commonly generated using one of two methodologies: (i)
model translation, where an explanatory model is trained to approximate the predic-
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Figure 1.1: Illustration of methodologies used to explain a black-box model f(x),
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ing (a) local explanations, identifying feature importance scores for the model’s
prediction for a given instance i , and (b) global explanations, identifying feature
importance scores characterizing the model across the distribution of instances X'.



tions of the black-box model, while being easier to interpret (Figure 1.1a), and
(ii) model inspection, where the black-box model is examined directly in order to
identify its properties, such as feature importance scores that quantify the influence
of each feature on the model’s behavior (Figure 1.1b). The locality of an explana-
tion describes whether it (i) explains the model’s predictions for specific instances
using local explanations (Figure 1.2a), or (ii) characterizes the model over the entire
distribution of instances using global explanations (Figure 1.2b).

Explanations or interpretations yielded by different methods vary widely in
their forms, use cases, limitations, and computational costs. Common forms of
explanations include (i) visualizations of model behavior, such as saliency maps,
(ii) decision sets, rules, or trees that translate the model’s decision-making into
small, easily comprehensible descriptions, and (iii) importance scores summarizing
the effect of different features on the model’s predictions.

The degree to which an explanation is comprehensible and aids model inter-
pretability may be influenced by a number of factors, including the nature of the
black-box model as well as the form of the explanation. For instance, for linear
models, importance scores can precisely capture the magnitude and direction of
the causal influence of each feature on the model’s predictions, while no such
relationship necessarily holds for non-linear models. Explanations having lower
syntactic complexity by virtue of smaller, more concise descriptions are also more
simulatable, making it easier for humans to mentally represent the model and simu-
late its behavior. In the presence of large, complex feature spaces, explanations may
be more comprehensible when expressed at the right level of granularity using a
description language leveraging feature groups and other abstractions.

While there is general consensus on the importance of interpretability in machine
learning, the subject of what constitutes a ‘good” explanation and how it may be
measured continues to be actively discussed (Barocas et al. 2020; Doshi-Velez and
Kim 2017; Miller 2018). It is widely recognized that approaches must be cognizant
of how the model is used and interpreted, and that they should include the needs
of the stakeholders in this process (Gleicher 2016; Kumar et al. 2020; Preece et al.
2018). Although interpretability eludes clear definitions and solutions outside of



specific settings, it is nevertheless possible to identify key desiderata that are widely

applicable across explanations and explanation methods:

1.3

Comprehensibility: The extent to which the explanation aids human under-
standing. Comprehensibility is the main goal of model interpretability, yet it
is hard to formally define and objectively measure.

Fidelity: The extent to which the explanation accurately captures the rea-
soning of the black-box model. In the case of model translation, this may be
measured based on how closely the predictions of the explanatory model
match those of the black-box model.

Accuracy: In the case of model translation, the performance of the explana-
tory model on test data. Together with fidelity, it reflects the ability of the
explanatory model to serve as a substitute for the black-box model.

Stability: The stability of a local explanation, capturing the intent that small
perturbations of the input should have small effects on the explanation. Lack
of stability may make the explanation vulnerable to adversarial manipulations

and erode trust.

Model Agnosticism: The ability of the explanation method to function with
little or no knowledge of the internal workings of the black-box model, allow-

ing more general and retrospective applicability and avoiding obsolescence.

Our Approach

In this work, we attempt to address shortcomings in existing work on model inter-

pretability while satisfying key interpretability desiderata. We propose a model-

agnostic method that leverages feature hierarchies to provide global explanations of

learned models in terms of their important feature groups in addition to important

base features, i.e., features that are input to the model, facilitating the explanation

of models at multiple resolutions. We also propose Temporal Importance Model

Explanation (TIME), a model-agnostic, global explanation method that advances



the state of the art in the explanation of models over temporal or sequential repre-
sentations.

Whereas most work on model interpretability has focused on local explanations,
we focus on global explanations because they are important for clinical and many
scientific domains. In clinical domains, it is important to provide an overall descrip-
tion of what a model does before it is deployed, not just be able to explain individual
predictions after deployment. Moreover, global explanations offer the possibility
of identifying previously unrecognized risk or protective factors, and important
windows of exposure for a given condition. While local explanations may be used
to justify specific decisions, global explanations are often advantageous for model
diagnostics, feature engineering, bias detection, trust, and discovery (Doshi-Velez
and Kim 2017; Ibrahim et al. 2019).

Our approach interprets black-box models using explanation vocabularies based
on hierarchical and temporal abstractions over the features. Leveraging these
abstractions can provide more comprehensible descriptions of the model than using
base features (in case of a tabular representation) or timesteps (in case of a temporal
representation) by providing more concise explanations as well as by interpreting
models at multiple resolutions. In particular, they can enable better explanations
of models over large feature spaces, where base features may be numerous and
may have low individual significance, making it harder to detect and to interpret
them. Feature abstractions can also produce more faithful explanations of black-box
models by grouping together correlated features and more accurately assessing their
importance. Finally, they can significantly increase the computational efficiency of
computing explanations by pruning the space of features and feature groups to be
examined.

We consider a feature to be important if the model’s performance degrades
on average when the feature is perturbed via permutation. We assess feature
importance by (i) examining the model loss, rather than the model output, in order
to capture how the perturbation affects the accuracy of the model’s predictions, and
(ii) by performing hypothesis testing to test the statistical significance of this effect.
We provide a direct, statistically grounded approach towards global explanations,



as opposed to generating global explanations by heuristically aggregating local
explanations, an approach that is commonly used by existing methods. Thus, our
approach also avoids issues resulting from a lack of stability of local explanations.
We use a novel application of hierarchical false discovery rate (FDR) control to
perform multiple test correction for statistical tests of base features, feature groups,
and temporal properties of the features.

Permutations serve a twofold purpose in our approach: (i) to compute im-
portance scores for features, and (ii) (in case of TIME) to test the significance
of features using permutation tests, a widely-used, non-parametric statistical sig-
nificance test. While several methods have employed permutation-based feature
importance scores, and some methods have used hypothesis testing based on per-
mutation tests to examine feature importance, combining the two approaches is
a novel aspect of our work. Moreover, the generality of permutations allows our
approach to be model-agnostic.

Our interest in interpreting black-box models is motivated in part by applications
of machine learning in biomedical domains. In particular, we are interested in risk
prediction models using electronic health record (EHR) data. We focus on modeling
asthma exacerbations, a prevalent acute respiratory condition, using EHRs. We
develop an approach to phenotyping asthma exacerbations from EHRs and explore
a variety of feature representations and models for the task of predicting future
exacerbations. In order to examine differences between modeling approaches and
to identify potential risk factors for exacerbations that the models may have learned,
we develop an approach to interpret complex models that is well-suited to large,
structured feature spaces, such as those characterized by EHR data. We use our
approach to examine a long short-term memory (LSTM) model used to predict
asthma exacerbations, as well as a random forest model used to identify viral
genotype-to-phenotype associations. We build on this work to develop TIME, an
approach to interpret black-box models over temporal or sequential representations,
and use it examine an LSTM model used to predict in-hospital mortality from

intensive care unit (ICU) data.



1.4 Thesis Statement and Contributions

The central thesis of this work is that by leveraging an explanation vocabulary
comprising hierarchical and temporal abstractions over the features in conjunc-
tion with a permutation-based approach for feature importance and statistical
testing, we can interpret learned black-box models while meeting key inter-
pretability desiderata.

The major contributions of this dissertation are the following;:

1. Modeling asthma exacerbations from electronic health records:

We address the task of modeling asthma exacerbations using EHRs. The moti-
vation for this analysis is to improve patient care by anticipating exacerbations,
and to identify potentially unrecognized risk factors for exacerbations that
may be indicated in EHR variables. We develop an algorithm for phenotyping
asthma excarbations from EHRs and use this to identify exacerbations in our
patient cohort. Using the phenotyped exacerbations, we consider the task of
predicting exacerbations from a patient’s clinical history as represented in
their EHR. For this task, we perform a comparison over a variety of feature
representations, including fixed-length as well as distributed representations,
and a variety of modeling approaches, including logistic regression, random
forests, and long short-term memory networks. We are able to learn models
that predict exacerbations with a moderately high degree of accuracy. We
also consider the task of inferring temporal exacerbation phenotypes from
EHRs using a mixture of semi-Markov models. We show that our approach is
able to identify subpopulations of asthma patients sharing distinct temporal

and seasonal patterns in their exacerbation susceptibility.
2. Understanding learned models by identifying important features at the
right resolution:

We propose a model-agnostic global explanation method that leverages fea-

ture hierarchies to interpret learned black-box models in terms of their im-



portant features. Our approach (i) tests feature groups, in addition to base
features, and tries to determine the level of resolution at which important
features can be determined, (ii) uses hypothesis testing to rigorously assess
the effect of each feature on the model’s loss, (iii) employs a hierarchical
approach to control the false discovery rate when testing feature groups and
base features for importance, and (iv) uses hypothesis testing to identify
important interactions among features and feature groups. We evaluate our
approach using synthetic data where the ground-truth importance of features
and feature groups is known, as well as by analyzing complex models in two
challenging biomedical applications: a random forest model trained to learn
viral genotype-phenotype associations, and an LSTM model for predicting

asthma exacerbations.

. Feature importance explanations for temporal black-box models:

Existing methods to explain black-box models are often specific to architec-
tures and data where the features do not have a time-varying component.
We propose TIME, a method to explain models that are inherently temporal
in nature. Our approach (i) uses a model-agnostic permutation-based ap-
proach to analyze global feature importance, (ii) identifies the importance of
salient features with respect to their temporal ordering as well as localized
windows of influence, and (iii) uses hypothesis testing to provide statistical
rigor. We evaluate our approach using synthetic data where the ground-truth
importance of features and their temporal properties are known, as well as
by analyzing an LSTM model trained to predict in-hospital mortality from
ICU data. We perform comparisons against a number of baseline explanation
methods. We show that our approach significantly outperforms other meth-
ods on synthetic data and performs competitively with the best methods on

real data, while generating more interpretable explanations.
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1.5 Thesis Organization

This thesis is organized as follows. Chapter 2 reviews existing work related to model
interpretability and predictive modeling using electronic health records. Chapter 3
describes our work on modeling asthma exacerbations from EHRs, including the
use of models that may be treated as black-boxes. Then, we shift our discussion
to approaches for interpreting black-box models. Chapter 4 presents a method
to interpret black-box models at multiple resolutions using feature hierarchies.
Chapter 5 presents TIME, a method used to interpret models over temporal or
sequential representations. Finally, Chapter 6 summarizes our contributions and
discusses directions for future research.
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2 RELATED WORK

In this chapter, we discuss work related to different aspects of this dissertation.
In Section 2.1, we review the literature on interpretability in machine learning.
We present an overview of the problem and examine it from two perspectives: (i)
designing models that inherently easier to interpret, and (ii) designing methods that
interpret learned black-box models. We then discuss our approach to interpreting
models and how it relates to existing work. In Section 2.2, we review the literature
on predictive modeling using electronic health records, focusing on two tasks in
particular: (i) representation learning for EHRs, and (ii) outcome prediction.

2.1 Interpretability in Machine Learning

The subject of explanation has a rich history in philosophy, psychology and cog-
nitive science, and its study in the context of artificial intelligence (AI) can be
traced back to expert systems (Miller 2018; Simon 1992). Research on explanation
in machine learning has burgeoned in recent years, driven by the development
and adoption of increasingly accurate and complex models. Various terms have
been used to address the subject in the literature, including interpretability (Lip-
ton 2016), explainability (Fong and Vedaldi 2017), comprehensibility (Gleicher 2016),
understanding (Koh and Liang 2017), intelligibility (Weld and Bansal 2018), and
explainable artificial intelligence (Gunning 2017). In this work, we interchangeably
use the terms ‘interpretability” and ‘explainability’, as well as the terms ‘explana-
tion” and ‘interpretation’. In general, we use ‘interpretability” when referring to the
subject of study and ‘explanation” when referring to its methods and outputs.

A clear formulation of what it means to be interpretable is not generally agreed
upon, and most explanation methods focus on a narrow set of well-defined prob-
lems. Some authors attempt to overview interpretability in machine learning and
organize its different facets. Lipton (2016) provides a taxonomy of interpretability

desiderata and methods for supervised learning models, and argues for the need to
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improve the problem formulation for interpretability. Gleicher (2016) expands the
scope for considering interpretability beyond the modeling process, and examines
the need for interpretability, the stage at which it might be important, and the
stakeholders, as well as how explanations might be constructed and evaluated.
Doshi-Velez and Kim (2017) posit that the need for explanations arises due to an
incompleteness in the formalization of modeling tasks. They propose a taxonomy
of approaches to evaluate interpretability and hypothesize a data-driven approach
to discover “factors’ of interpretability. Miller (2018) reviews findings on human
explanation from the social sciences and argues for the need to incorporate these
ideas into approaches to interpret models. Selbst and Barocas (2018) examine the
problem of interpretability in machine learning from the perspective of human
intuition and its shortcomings from a sociolegal standpoint. Barredo Arrieta et al.
(2020) present an overview of the field and discuss opportunities and challenges for
integrating it into a more general concept of ‘responsible Al'. Other overviews and
surveys of the field have been conducted by Adadi and Berrada (2018), Guidotti
etal. (2018), Mohseni et al. (2018), Montavon et al. (2018), and Mueller et al. (2019).

We organize the literature on model interpretability by extending taxonomies
proposed by other authors (Barredo Arrieta et al. 2020; Gleicher 2016; Guidotti et al.
2018; Lipton 2016). First, we consider models that are transparent, i.e., inherently
more interpretable than other, black-box models. We then discuss methods to
generate post-hoc explanations of learned black-box models. We identify distinct
attributes that characterize these methods and explore each attribute in greater
detail. We conclude the section by comparing our work to existing approaches to
interpret models.

2.1.1 Transparent Models

In the context of model interpretability, transparency represents an inherent property
of the model that allows for comprehensible descriptions of its decision-making
processes. Models may be considered transparent in various ways (Lipton 2016):

o Simulatability: The degree to which humans are able to mentally represent the
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entire model at once, including its input data, parameters and computations,
in a ‘reasonable” amount of time. By this measure, models comprising smaller
representations and fewer computations may be considered more transparent
than other models. For instance, sparse linear models may be considered
more simulatable than dense ones, and decision trees that are shallow or have
few nodes may be considered more simulatable than those that are deep or

have many nodes.

e Decomposability: The property that individual parts of the model, including its
inputs, parameters, and computations, are easily interpretable. For example,
decision trees with node splits that are individually interpretable, as well as
generalized additive models (GAMs) (Lou et al. 2012) may be considered
decomposable.

o Algorithmic transparency: Transparency associated with the model’s learning
algorithm. For instance, optimization over convex loss surfaces associated
with linear model training may be considered more transparent than opti-
mization over highly non-convex loss surfaces associated with neural network
training.

Conversely, complexity or opacity signifies a lack of transparency about the
model’s decision-making processes. Model complexity may result from several
causes, including (i) non-monotonic or non-linear relationships between the fea-
tures and the outputs, (ii) decision-making based on a large numbers of computa-
tional units, and (iii) data complexity resulting from the use of large, structured
feature spaces.

Complex models are often considered black-boxes due to the difficulty in readily
interpreting them, despite access to their mechanisms and learned parameters.
Additionally, models may be treated as black-boxes when their internal workings
are withheld in order to maintain trade secrets or competitive advantages (Burrell
2016).

Figure 2.1 characterizes learned models as transparent or black-box models
based on the degree to which they are inherent interpretable (by some measure).
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Figure 2.1: Characterization of learned models as transparent or black-box, depend-
ing on the degree to which they are inherently interpretable. Transparent models
may be further categorized into models that are inherently transparent and models
that are generally regarded as complex but are rendered more transparent by means
of specific constraints.

Among the models that may be treated as transparent, we examine two kinds of
models: (i) those that are generally considered inherently transparent, and (ii)
those that are nominally complex, but have specific constraints imposed on them

so as to render them interpretable in some way.

Inherently transparent models. Simpler models such as association rules, deci-
sion trees, and linear models are often associated with higher transparency and
lower predictive performance compared to more complex models such as neu-
ral networks and random forests (Caruana et al. 2015). Huysmans et al. (2011)
perform an empirical comparison of decision table, tree and rule-based models
and conclude that decision tables are the most comprehensible to inexperienced
users in their setting. Freitas (2014) reviews issues with the interpretability of
different kinds of inherently transparent models and examines the drawbacks of

using representation size alone to evaluate their interpretability.
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Constraint-induced transparency. The imposition of constraints in the training
process, such as by means of regularization, may be used to induce transparency in
models that may otherwise be regarded as complex. Freitas (2014) proposes the use
of semantically-derived monotonocity constraints to improve the comprehensibility
of classification models. Ho et al. (2014) use sparsity and non-negativity constraints
to extract interpretable phenotypes from EHRs using tensor factorization. Choi et al.
(2016b) use non-negativity constraints to learn more interpretable embeddings of
medical concepts. Alvarez-Melis and Jaakkola (2018b) use a regularization scheme
to train locally linear neural networks, thereby generating more interpretable local
explanations. Other examples of such approaches include Faruqui et al. (2015),
Lee et al. (2019a), Lei et al. (2016), Plumb et al. (2020), Ross et al. (2017), Wu et al.
(2017), and Yang et al. (2020).

2.1.2 Black-box Models

Transparent models have traditionally been deployed in domains where inter-
pretability is deemed critical, such as healthcare (Rajkomar et al. 2018), but this
often comes at the cost of predictive performance as compared to more complex
models. The increasing adoption of high-performing complex models in such
domains necessitates the development of post-hoc explanation methods that can
interpret learned models.

2.1.2.1 Methods for Post-hoc Explanation of Black-box Models

Figure 2.2 identifies distinct attributes characterizing post-hoc explanation meth-
ods, including (i) methodology, i.e., whether the explanation is derived by training
a transparent explanatory model to approximate the black-box model, or by in-
specting the black-box directly, (ii) locality, i.e., whether the method explains the
prediction for a specific instance, or characterizes the model over the entire distri-
bution of instances, (iii) model specificity, i.e., whether the method addresses a
specific model architecture, or if it is model-agnostic, (iv) form of explanation, such

as visualization or feature importance, and (v) other attributes, namely, the expla-
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Figure 2.2: Characterization of post-hoc explanation methods for black-box models
based on distinct attributes, including (i) methodology, (ii) locality, (iii) model
specificity, (iv) form of explanation, and (v) other attributes. Solid lines indicate
is-a relationships and dotted lines indicate aspect-of relationships.



17

nation vocabulary, stability, whether the model targets model outputs or losses,
whether the method is perturbation or gradient-based, and whether the method
addresses models with tabular or temporal representations.

Methodology. Explanation methods may be broadly classified based on whether
they perform model translation, i.e, generate explanations by first training an
explanatory model that approximates a black-box model, or model inspection, i.e.,
examine the behavior of a black-box model directly.

Model translation: Model translation trains an explanatory model that is designed
to be transparent in order to approximate the predictions of a black-box model,
and then uses the explanatory model to generate explanations for the black-box
model. It is also referred to as model reprojection (Gleicher 2016) and is related to
knowledge distillation (Hinton et al. 2015) and mimic learning (Ba and Caruana 2014).
Many explanation methods rely on a model translation approach, including local
(Lundberg and Lee 2017; Ribeiro et al. 2016), global (Craven and Shavlik 1996;
Faruqui et al. 2015; Hara and Hayashi 2016), model-specific (Faruqui et al. 2015;
Hara and Hayashi 2016) and model-agnostic (Craven and Shavlik 1996; Lundberg
and Lee 2017; Ribeiro et al. 2016; Ribeiro et al. 2018) methods.

Model inspection: Model inspection refers to examining the behavior of a black-
box model directly without first training an explanatory model to approximate
the black-box model. This may be done in a variety of ways, such as by means of
visualization or feature importance scores (Section 2.1.2.1). Methods that perform
model translation may also perform model inspection on the explanatory model
rather than the black-box model when the explanatory model is also complex, e.g.,
Schwab and Karlen (2019).

Locality. Explanation methods may be classified as local or global depending on
whether they explain a black-box model’s predictions on individual instances or its
behavior across the entire distribution of instances, respectively.

Local explanations: Also referred to as prediction interpretability (Alvarez-Melis
and Jaakkola 2017), outcome explanations (Guidotti et al. 2018) or instance explana-
tions (Mohseni et al. 2018), local explanations seek to explain the model’s predic-
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tions for specific instances or local regions in the neighborhood of specific instances
(Alvarez-Melis and Jaakkola 2017; Fong and Vedaldi 2017; Koh and Liang 2017; Lei
et al. 2016; Lundberg and Lee 2017; Ribeiro et al. 2016; Ribeiro et al. 2018).

Global explanations: Also referred to as model interpretability (Alvarez-Melis and
Jaakkola 2017) or model explanations (Guidotti et al. 2018), global explanations pro-
vide an overall description of a learned model and characterize its predictions
over the entire distribution of instances (Bau et al. 2017; Craven and Shavlik 1996;
Hara and Hayashi 2016; Henelius et al. 2014; Karpathy et al. 2015). Some meth-
ods are designed for local explanations but may also be used to generate global
explanations by aggregating local ones (Lundberg and Lee 2017; Ribeiro et al.
2016; Ribeiro et al. 2018), while other methods are designed specifically for global
explanations (Breiman 2001; Craven and Shavlik 1996; Ibrahim et al. 2019).

Model specificity. Some explanation methods are specific to certain model archi-
tectures, while others are model-agnostic and may be used with many types of
models.

Model-specific: Many explanation methods focus on specific models or model
classes, such as random forests (Breiman 2001; Hara and Hayashi 2016; Louppe
et al. 2013), word vectors (Faruqui et al. 2015), convolutional neural networks (Ma-
hendran and Vedaldi 2014; Simonyan et al. 2013; Zhang et al. 2018) or recurrent
neural networks (Karpathy et al. 2015; Lei et al. 2016).

Model-agnostic: Some methods make few assumptions about the learned models,
treating them as black-boxes (Alvarez-Melis and Jaakkola 2017; Craven and Shavlik
1996; Datta et al. 2016; Fong and Vedaldi 2017; Henelius et al. 2014; Lundberg and
Lee 2017; Ribeiro et al. 2016). Model-agnostic methods do not usually require
access to the internal workings of model and thus may be used to explain a wide

variety of models.

Form of Explanation. Different forms of explanations may be generated by inter-
preting black-box models, depending on the explained model and the explanation

method. We discuss some common forms here.
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Visualization: Visualization techniques developed to interpret black-box models
include neural interpretation diagrams (Olden and Jackson 2002), partial depen-
dence plots (Friedman 2001; Friedman and Popescu 2008), t-SNE (Maaten and
Hinton 2008), and saliency maps (Shrikumar et al. 2017; Simonyan et al. 2013;
Sundararajan et al. 2017). Visualization as a means of interpreting specific model
types is also common (Bau et al. 2018; Karpathy et al. 2015).

Decision sets, rules, and trees: Explanation methods for black-box models, in
particular model translation methods, commonly generate explanations in the form
of decision sets (Carter et al. 2018; Lakkaraju et al. 2019), rules (Craven and Shavlik
1994; Pastor and Baralis 2019; Ribeiro et al. 2018), and trees (Breiman and Shang
1996; Craven and Shavlik 1996; Frosst and Hinton 2017), due to their ability to
transparency.

Feature importance: Many explanation methods return scores or rankings for
important features, both for local explanations (Lundberg and Lee 2017; Ribeiro
et al. 2016; Shrikumar et al. 2017; étrumbelj and Kononenko 2014) and for global
explanations (Breiman 2001; Datta et al. 2016; Fisher et al. 2019; Gregorutti et al.
2017; Zeiler and Fergus 2014).

Example-based: Some methods use salient examples as explanations, analogous
to case-based reasoning in humans. These may be used for both local (Caruana
et al. 1999; Jeyakumar et al. 2020) and global (Ribeiro et al. 2016) explanations.

Other attributes. Other attributes used to characterize an explanation method
include the explanation vocabulary, the stability of the method, whether it targets
model outputs or model losses, whether it uses perturbations or gradients to ex-
amine the model, and whether it is designed to interpret models using tabular or
temporal representations.

Vocabulary: Some methods attempt to expand the explanation vocabulary be-
yond the base features in order to generate more comprehensible explanations. Dif-
ferent terms have been used to describe the components of such an expanded vocab-
ulary, including interpretable components (Ribeiro et al. 2016 ), cognitive chunks (Doshi-
Velez and Kim 2017), and interpretable atoms (Alvarez-Melis and Jaakkola 2018b).
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Bauetal. (2017) measure the interpretability of internal representations by mapping
hidden-variable responses to known human-labeled concepts. Fong and Vedaldi
(2017) explain the predictions of image classification models in terms of most
relevant image perturbations. Kim et al. (2018) explain black-box model predic-
tions in terms of a vector of concept activations, where a subset of human-annotated
examples embody each concept. Alvarez-Melis and Jaakkola (2018b) develop neu-
ral network models trained to predict and explain jointly, with explanations in
terms of interpretable basis concepts learned by autoencoding the original features,
while regularizing via sparsity and similarity to concept prototypes. Zhou et al.
(2018) decompose neural activations of an input image into pretrained semantically
interpretable components.

Stability: The stability of a local explanation method refers to the degree to which
the explanation changes, given small perturbations to the instance being explained.
Lack of stability may make the explanation vulnerable to adversarial manipulations,
and while some explanation methods are designed to be stable (Alvarez-Melis and
Jaakkola 2018b), many widely used explanation methods are not (Alvarez-Melis
and Jaakkola 2018a; Dombrowski et al. 2019; Ghorbani et al. 2017).

Model outputs vs. model losses: Explanation methods typically target either the
output predictions or the corresponding loss values of the black-box model. Model
outputs may be used to identify all features that the model is sensitive to, including
features without any predictive value, i.e., features subject to overfitting. Examples
of such methods include feature occlusion (Zeiler and Fergus 2014), LIME (Ribeiro
et al. 2016) and SHAP (Lundberg and Lee 2017). Model losses incorporate target
labels in addition to model outputs, making it possible for explanations to identify
features that are both relevant to the model and to the task being modeled, which
may be potentially useful for feature selection and gaining insight into the target
domain. Examples include methods developed by Breiman (2001), Covert et al.
(2020b), Gregorutti et al. (2017), and Schwab and Karlen (2019).

Perturbation vs. gradient-based: Many explanation methods can be categorized
as either perturbation-based, i.e., methods that perturb the value of a feature or
group of features (Lundberg and Lee 2017; Ribeiro et al. 2016; Zeiler and Fergus
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2014), or gradient-based, i.e., methods that use gradient information available for
differentiable models (Simonyan et al. 2013; Sundararajan et al. 2017). Gradient-
based methods may also be viewed as performing infinitesimal perturbations as
they calculate gradients (Covert et al. 2020a). We discuss perturbation-based
methods in greater detail in Section 2.1.2.2.

Temporality: Most existing explanation methods are designed for tabular, as
opposed to temporal, representations. Ismail et al. (2020) demonstrate the in-
accuracy of commonly used model-agnostic and gradient-based methods when
used to explain temporal models. Some approaches have focused on interpreting
recurrent neural networks (Ismail et al. 2019; Karpathy et al. 2015; Suresh et al.
2017) and attention-based models (Choi et al. 2016c; Zhang et al. 2019), while
others have explored constraint-based transparency for temporal models using
tree regularization (Wu et al. 2017) and game-theoretic characterizations (Lee et al.
2018). However, these approaches require specific model architectures, limiting
their applicability. Recent work has begun to address model-agnostic explanation
for temporal models. Tonekaboni et al. (2020) propose FIT, a method to assign
importance scores for sequence-sequence models, and Bento et al. (2020) propose
TimeSHAP, an extension of SHAP (Lundberg and Lee 2017) to temporal models,
but these approaches focus on local rather than global explanations.

2.1.2.2 Perturbation-based methods

Perturbation-based methods generate explanations in terms of important features
by perturbing features using operations such as occlusion, noise addition, or sub-
stitution. Such perturbations can be interpreted as a form of feature ‘removal’ that
unifies many explanation methods (Covert et al. 2020a). We discuss some impor-
tant categories of perturbation-based methods, including those that are closely
related to our work.

Reference-value-based methods. Reference-value-based methods perturb fea-

tures by replacing their values with reference values. These may be zero val-
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ues (Schwab and Karlen 2019; Zeiler and Fergus 2014), default values (Ribeiro
et al. 2016), or values sampled from a uniform distribution (Suresh et al. 2017).

Shapley-value-based methods. Shapley-value-based methods use Shapley values,
a solution concept in cooperative game theory that satisfies a number of desir-
able properties, to attain feature attributions for black-box models. These may
also be viewed as perturbation-based methods, where the perturbations vary ac-
cording to the method variant (Covert et al. 2020a), such as marginalizing with
conditional (Covert et al. 2020b; Lundberg and Lee 2017) or marginalizing with
uniform (Strumbelj and Kononenko 2014) distributions. Shapley-value-based expla-
nations are axiomatically justified, but are computationally intractable to compute
exactly and may be difficult for users to interpret (Kumar et al. 2020).

Permutation-based methods. Permutation-based methods rely on permutations
of features to ascertain feature importance. Breiman (2001) first proposed using
permutations to identify important features in random forests, and many variants
of feature importance using permutations have since been studied (Altmann et al.
2010; Fisher et al. 2019; Gregorutti et al. 2015; Ojala and Garriga 2010; Strobl et al.
2008). The simplicity and generality of permutations makes them attractive as a
tool for model-agnostic explanation.

Hypothesis Testing: Hypothesis testing may be used in conjunction with permu-
tations to test the statistical significance of feature importance. In particular, several
approaches (Burns et al. 2020; Golland et al. 2005; Ojala and Garriga 2010) rely on
permutation tests (Good 2013), a type of widely used non-parametric statistical
test, to identify feature importance using hypothesis testing.

2.1.3 Comparison to Our Work

In Chapter 4, we present a method to explain learned models in terms of their
important base features, feature groups, and interactions by leveraging feature
hierarchies. In Chapter 5, we propose TIME, a method to explain models having
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temporal or sequential representations in terms of their important features and
temporal properties.

Our methodology is based on model inspection rather than model translation.
We use a model-agnostic, perturbation-based approach to generate global, fea-
ture importance-based explanations of learned models. Our approach identifies
important features that have predictive value by targeting model losses. We use
hypothesis testing and hierarchical FDR control to test the statistical significance
of important features. We expand the explanation vocabulary using hierarchical
and temporal feature abstractions in order to generate explanations that are more
comprehensible, faithful, efficient to compute, and well-suited for models over
large feature spaces. Our approach avoids issues of stability that might affect local
explanations when they are aggregated to generate global explanations.

In Chapter 4, we examine perturbations using both reference-value-based meth-
ods and permutation-based methods in order to explain tabular models using
feature hierarchies. We use the Wilcoxon signed-rank test for hypothesis testing. In
Chapter 5, we build on this approach to generate explanations of temporal mod-
els. We restrict ourselves to perturbations based on permutations, but develop
permutation-based feature importance scores further and use a hypothesis test-
ing methodology based on permutation tests in order to make fewer assumptions
about the learned models. While permutation-based feature importance scores and
hypothesis testing to examine feature importance have separately been explored by
existing works, combining the two approaches is a novel aspect of our work.

2.2 Predictive Modeling using Electronic Health

Records

Electronic health record adoption in the US has increased dramatically in the last
decade (Adler-Milstein et al. 2015; Charles et al. 2013), accompanied by a rise in
research aimed at using large-scale EHR data for a variety of health analytic tasks
(Goldstein et al. 2017; Hripcsak and Albers 2013; Shickel et al. 2017; Xiao et al. 2018).
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EHR data do not directly represent patients” health, but rather their interactions
with the healthcare system, and are rich but challenging data to work with, due to
issues of data heterogeneity, completeness, accuracy, complexity and bias (Hripcsak
and Albers 2013; Shickel et al. 2017). Early research on risk prediction models using
EHRs has generally focused on traditional generalized linear models, using only
a small and selective subset of available features, and data from a single center
(Goldstein et al. 2017). Simpler and more transparent models are most commonly
deployed in clinical practice (Rajkomar et al. 2018), in part due to the importance
of explainable decision-making in the healthcare domain (Ghassemi et al. 2018).

Recent work in EHRs has seen a proliferation of deep learning approaches,
following their success in advancing the state-of-the-art in a number of machine
learning tasks (LeCun et al. 2015). Shickel et al. (2017) and Xiao et al. (2018)
provide surveys of works applying deep learning methods across a broad range of
EHR-related tasks. We focus on two tasks in particular: (i) representation learning
and (ii) outcome prediction.

Representation learning. EHRs are typically populated with time-series of en-
counters that include coded data such as diagnoses, procedures and medications, in
addition to free text in clinical notes. Traditional fixed-length vector representations
for these codes are highly sparse and high-dimensional, making them challenging
to work with (Miotto et al. 2016). Recent works have employed unsupervised deep
learning approaches to learn latent vector embeddings, for both medical concepts
and patients, that capture such relationships and support downstream analytic
tasks. These include modified Restricted Boltzmann Machines (Tran et al. 2015),
skip-gram models (Choi et al. 2015; Choi et al. 2016b; Choi et al. 2016d; Choi et al.
2016e; De Vine et al. 2014) and stacked autoencoders (Miotto et al. 2016; Suk and
Shen 2013).

Outcome prediction. Animportant class of applications using EHRs is predicting
various outcomes of interest, such as in-hospital mortality, discharge diagnoses, and

disease onset within a certain time interval in the future. Several approaches have
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been used to build predictive models of future events using longitudinal EHR data.
The irregularly sampled nature of EHRs and variability in patient record density
makes EHRs challenging to model (Xiao et al. 2018). Some of the earlier approaches
use even-sized temporal windows over densely sampled ICU data for multilabel
classification, using multilayer perceptrons in Che et al. (2015) and long short-
term memory (LSTM) models in Lipton et al. (2015). Later methods deal directly
with irregularly sampled data. Recurrent neural networks have frequently been
used, following their success in modeling sequential predictions tasks in natural
language processing (Sutskever et al. 2014). These include LSTMs (Esteban et al.
2016; Lipton et al. 2016; Pham et al. 2016; Rajkomar et al. 2018), and gated recurrent
units (GRUs) (Che et al. 2016; Che et al. 2017; Choi et al. 2016a; Choi et al. 2015).
Other approaches include neural attention models (Choi et al. 2016¢; Rajkomar
et al. 2018) and convolutional neural networks (Cheng et al. 2016; Nguyen et al.
2016; Razavian and Sontag 2015). While most of these approaches work with the
structured data in the EHR (such as coded diagnoses, medications, procedures),
some methods have also been used to process unstructured data such as clinical
notes (Jagannatha and Yu 2016; Rajkomar et al. 2018).

Several approaches employ skip-gram embedding methods to learn event vector
representations before passing them to a learning model (Choi et al. 2015; Choi et al.
2016b; Choi et al. 2016d; Pham et al. 2016). DeepCare (Pham et al. 2016) derives
separate vectors for embedding diagnosis codes and interventions (procedure and
medication codes combined). One of the models we train to predict asthma exacer-
bations uses Med2Vec (Choi et al. 2016b) to obtain separate vector representations
for coded diagnoses, problem diagnoses and interventions, and concatenates these
together along with event vectors for other temporal variables, before passing them
to an LSTM.

Although deep learning methods have been used to generate increasingly ac-
curate predictions, they are often considered opaque in their inner workings and
hard to interpret (Lipton 2016). This lack of interpretability is particularly prob-
lematic in the clinical domain (Lipton et al. 2015; Miotto et al. 2016; Suk and Shen
2013), and several authors have proposed approaches to address these concerns.
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Following the categories outlined by Shickel et al. (2017), these approaches include:
(i) examining the types of inputs that maximize activations in the model’s hidden
units (Che et al. 2015; Cheng et al. 2016; Choi et al. 2016b; Nguyen et al. 2017),
(ii) constrained representation learning (Choi et al. 2016b; Tran et al. 2015), (iii)
t-SNE for visualization (Nguyen et al. 2017; Tran et al. 2015), (iv) model translation
(Che et al. 2017), and (v) attribution via neural attention models (Choi et al. 2016¢;
Rajkomar et al. 2018).
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3 MODELING ASTHMA EXACERBATIONS

FROM ELECTRONIC HEALTH RECORDS

Asthma is a prevalent chronic respiratory condition, and acute exacerbations rep-
resent a significant fraction of the economic and health-related costs associated
with asthma. In this chapter, we describe a novel study that is focused on modeling
asthma exacerbations from data contained in patients” electronic health records
(EHRs). This work makes the following contributions: (i) we develop an algorithm
for phenotyping asthma exacerbations from EHRs, (ii) we determine that models
learned via supervised learning approaches can predict asthma exacerbations in the
near future (AUROC ~ 0.77), and (iii) we develop an approach, based on mixtures
of semi-Markov models, that is able to identify subpopulations of asthma patients
sharing distinct temporal and seasonal patterns in their exacerbation susceptibility.

This work was performed in collaboration with Alexander Cobian, Madeline
Abbott, Yuriy Sverchkov, Lawrence Hanrahan, Theresa Guilbert, and Mark Craven,
and was published in the proceedings of the AMIA Joint Summits on Translational
Science (Cobian et al. 2020).

3.1 Introduction

Asthma is a chronic condition that affects about 300 million people worldwide (To
et al. 2012) including about 8% of the U.S. population (Winer et al. 2012). Asthma
exacerbations, which frequently require acute care, can be life-threatening events
and account for a significant fraction of the asthma disease burden (Dougherty
and Fahy 2009). Well-characterized triggers of exacerbations in asthmatic patients
include respiratory viruses, allergens, environmental pollutants, occupational expo-
sures, and medications such as aspirin and other non-steroidal anti-inflammatory
drugs (Wark and Gibson 2006). Additionally, having had a prior exacerbation is a
significant risk factor for recurrent exacerbations (Dougherty and Fahy 2009).
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In this study, we address two questions that are pertinent to understanding and
managing exacerbations. First, we consider to what extent exacerbations can be
predicted given a patient’s clinical history as represented in their electronic health
record. Prior studies on predicting asthma exacerbations have employed small
sets of manually selected features, and have been devised and evaluated using
smaller patient populations (in the context of clinical trials in some cases) (Bateman
et al. 2015; Hoch et al. 2017; Loymans et al. 2018). In contrast, we are interested in
determining how effectively exacerbation risk models can be learned from EHR
data in a setting in which we are agnostic about which features are useful predictors.
To address this question, we first devise a phenotyping algorithm for exacerbations
and apply it to electronic health records for a cohort of 28,101 asthma patients. We
then use supervised learning methods to train models to predict exacerbations in
advance, given prior entries in a patient’s EHR. The motivation for this analysis is to
(i) improve patient care by anticipating exacerbations, and (ii) identify potentially
unrecognized risk factors that may be indicated in EHR features.

The second question we address is to consider whether distinct temporal exac-
erbation phenotypes can be elicited from EHR data. The facts that patients have
varying exacerbation triggers and that some patients are more prone to exacer-
bations indicate that there are diverse asthma phenotypes. We address the task
of identifying temporal/seasonal phenotypes by clustering patients according to
the temporal patterns of their exacerbations. The motivation for deriving such
temporal/seasonal phenotypes is severalfold: (i) to characterize seasonal exacerba-
tion frequency at a local scale, (ii) to be able to better detect associations between
environmental factors and exacerbations by analyzing subpopulations that have
similar temporal/seasonal exacerbation profiles, and (iii) to improve our exacer-
bation risk-assessment models by conditioning on a patient’s temporal/seasonal

exacerbation phenotype.
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3.2 Cohort

The patient data used in this study is sourced from a clinical data warehouse for
the University of Wisconsin Health system. The data we use consists of electronic
health records for 28,101 asthma patients. The information we extract from the
EHRs comprises demographic features and time-stamped events. The demographic
features include age, sex, race, and ethnicity (Hispanic or non-Hispanic). The time-
stamped events include problem list diagnoses and other diagnoses (both encoded
using ICD-9), procedures (with associated CPT-4 codes), medications (with each
drug represented in a three-tiered hierarchy), primary complaints and departments
associated with clinical encounters, readings of six vital signs (systolic and diastolic
blood pressure, temperature, pulse, respiration, and oxygen saturation, all encoded
in terms of being high, low or normal), and asthma control test (ACT) scores,
encoded in terms of being well-controlled (> 20), somewhat controlled (16 < score
<19), or poorly controlled (< 15).

Patients were selected for inclusion in our study if they had one or more ICD-9
codes of 493.xx (asthma) anywhere in their problem diagnosis list, or two or more
such codes anywhere among other coded diagnoses. EHR data for all of these
patients was available between January 1, 2007 and December 31, 2011. This study
was reviewed and approved by the University of Wisconsin Health Sciences IRB as
protocol M-2009-1273.

3.3 Methods

In this section, we describe approaches to three tasks that we have addressed: (i)
phenotyping asthma exacerbations from EHRs, which is a necessary precursor for
the other two tasks, (ii) predicting a near-term asthma exacerbation given a patient’s
clinical history as represented in the EHR, and (iii) identifying subpopulations of

asthma patients who have similar temporal/seasonal patterns in their exacerbations.



30

3.3.1 Phenotyping Asthma Exacerbations

For the purpose of clinical studies, an exacerbation is typically defined in terms
of an urgent visit to a health care provider for asthma symptoms coupled with a
need for treatment with oral corticosteroids. Based on these criteria and accepted
operational definitions (Bousquet 2000; Busse et al. 2012; Reddel et al. 2009), we
implemented a phenotyping algorithm for recognizing exacerbations from events
recorded in an EHR.

Our approach phenotypes an exacerbation when three components are observed
in close temporal proximity: (i) a qualifying clinical encounter, (ii) a co-occurring
respiratory diagnosis, and (iii) a prescription for, or administration of, oral corticos-
teroids. We define an exacerbation as beginning if a patient’s EHR includes one of
several types of clinical encounters, co-occurring with a respiratory diagnosis code
recorded on the same date, and followed within seven days by a prescription of oral
corticosteroids. Any further prescriptions of oral corticosteroids within five days of
the last prescription are considered extensions of the same exacerbation. The full
interval of the exacerbation begins with the co-occurring encounter and respiratory
diagnosis and ends five days after the last oral corticosteroid prescription. This
approach is illustrated in Figure 3.1.

A qualifying clinical encounter is detected by meeting one of the following
conditions: (i) an encounter with type Hospital Encounter, Office Visit, Telephone,
Orders Only, or of the generic type Appointment when additionally associated with a
visit type of Office Visit, (ii) a recorded encounter associated with an inpatient or
urgent care department, or (iii) a charge associated with a CPT code in the range
99221-99223 (initial hospital care), 99231-99233 (subsequent hospital care), 99251-99255
(inpatient consultation), or 99281-99285 (emergency department visit). The associated
respiratory diagnosis codes that can indicate the start of an exacerbation are ICD-9
493.x (asthma), 46[0-6].x (acute respiratory infections), 48[ 0-6].x (pneumonia), 490.x
(bronchitis nos), 491.x (chronic bronchitis), 519.x (other diseases of respiratory system),

or 786.x (symptoms involving respiratory system and other chest symptoms).
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Figure 3.1: An illustration of the exacerbation phenotyping task. The figure shows
three example patient timelines and the resulting exacerbation event that is recog-
nized in each. Short, vertical black lines on the timeline represent days. Vertical red,
blue and green lines represent events recorded in the EHR. The duration of a phe-
notyped exacerbation is represented by the extent of the corresponding horizontal
black line over the timeline.
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3.3.2 Predicting Asthma Exacerbations

Given our phenotyping algorithm to identify exacerbations in electronic health
records, we can use supervised learning methods to train models that try to predict
these exacerbations in advance. There are various ways in which this task can be
framed. Here we approach the problem as a classification task: given a patient’s
history up to a given decision date, we want our model to predict whether the
patient will experience an exacerbation within the next 90 days or not. The event
window of 90 days was selected because follow-up visits for asthma tend to be 3-6
months based on guideline recommendations. In this section, we describe three
approaches we use to learn classification models for this task.

We investigate a number of feature representations for this task. One approach
is to represent static and time-stamped event features together using a fixed-length
vector representation, comprising a summary of the event features concatenated
with the static features. Alternatively, we represent event features by formulating a

sequence of vectors for each patient, with each vector representing the events at a
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given time-stamp. This sequence, together with a fixed-length vector representing
the static features, forms a representation that preserves the patient’s temporal
history instead of summarizing it.

The first learning method we apply is logistic regression with L; and L, regu-
larization (Hoerl and Kennard 1970; Tibshirani 1996). Here we use a fixed-length
vector representation comprising binary features to represent the occurrence of
each event feature in each of two different temporal windows: (i) over the last six
months, and (ii) over the entire observation period, prior to the decision date. We
perform internal cross-validation to tune the strength of the regularization.

A second learning method we apply to this task is random forests (Breiman
2001). We test two different fixed-length vector representations here: with event
features summarized based on (i) their occurrence in different temporal windows
(as for logistic regression), and (ii) recency. In the latter case, for each event
type (e.g. for each possible diagnosis), we include a numeric feature whose value
represents the number of days since the last occurrence of the event. For example, a
single feature in this representation indicates how long it has been since the patient
has had an ICD-9 code in the 020.xx range. For the case in which a patient has not
had the event recorded within the period covered by our data set, we set the feature
value to co. Note that for random forests, the scale of each feature is not important,
and thus values of oo are not problematic since it is the relative ordering of feature
values that matters. We tune the maximum tree depth as well as the number of
sampled features per split using internal cross-validation.

A third learning method we apply is a Long Short-Term Memory (LSTM) neural
network (Hochreiter and Schmidhuber 1997). In contrast to the logistic regression
and the random forest, where the features summarize the patient’s temporal history,
the LSTM network is able to directly process the sequence of events in the history.
However, some event types, namely problem diagnoses, other diagnoses, and inter-
ventions (procedures and medications), comprise large vocabularies (our cohort
includes observations of 4,398 problem diagnoses, 6,533 other diagnoses, and 8,745
interventions) of which only a small subset is recorded at each encounter. Instead
of working directly with the resulting sparse, high-dimensional vectors, we first
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map these event types to an embedded space, resulting in dense, lower-dimensional
vectors that are then used to form the event sequence for the LSTM. To learn the
weights for the embedding layer, we use Med2Vec (Choi et al. 2016b), a method
that obtains distributed representations of medical concepts, while capturing the
context represented by the ordering of EHR visits as well as the co-occurence of
codes within an EHR visit. Separate embeddings of size 200 are generated for prob-
lem diagnoses, other diagnoses, and interventions. These are then concatenated,
along with the other event features, to produce the event representation at each
time-stamp in the record. The ordered sequence of events forms the input sequence
for the LSTM. We use an LSTM cell state of size 100 and a sigmoid output layer.
The static demographic features feed directly into the output layer. For the loss
function, we use binary cross-entropy with L, regularization. Figure 3.2 shows the
LSTM network architecture.

3.3.3 Identifying Subpopulations of Asthma Patients

To address the second task of identifying subpopulations of patients who share
common temporal/seasonal patterns in their exacerbations, we develop a clustering
approach based on a mixture of semi-Markov models. The motivation for this
approach is to identify groups of patients who have commonality in the (i) durations
of their exacerbations, (ii) durations of periods in which their asthma is controlled,
and (iii) seasonal dependence of their exacerbations.

As illustrated in Figure 3.3a, the data that is input to this approach consists
of a state sequence for each patient along with a duration for each state. We can
think of each patient as transitioning between two states, exacerbated and controlled,
or perhaps remaining in the controlled state throughout the observation period.
Since we cannot detect an exacerbation that starts before the observation period,
we assume that all patients are in the controlled state at the beginning of their
sequence. Moreover, because these sequences are both left- and right-censored (i.e.,
we observe the state sequence only for the period from January 1, 2007 to December
31, 2011), we divide the general controlled state into three separate states: first-



34

Output
(Xn41 e Xm) — la — Y
4 yer
Demographics Exacerbation
in the next
90 days

Diagnoses Intervention
embedding | | embedding

Diagnoses Intervention
embedding | | embedding

|

(1,1 - Xpe,1 Xk+1,1 - X1, X141,1 = Xn,1) (X1,¢ o Xt Xe+1,t = XLt X141,t - Xne)
Diagnoses  Interventions Exacerbation Diagnoses  Interventions Exacerbation
at time 1 at time 1 status, vitals at time ¢ at time ¢ status, vitals
and ACT scores and ACT scores
at time 1 at time ¢

Figure 3.2: The LSTM network for predicting exacerbations. Time-stamped event
features z; . ..z, are represented by formulating a sequence of vectors, with each
vector representing the events at a given time-stamp ;... x,;. Diagnoses and
interventions are embedded into dense, lower-dimensional vectors. The static
demographic features z,,.; ... z,, feed directly into the output layer of the network.

controlled, internal-controlled, and last-controlled. Since we assume that all patients
are in a controlled state at the beginning of a sequence, all sequences begin with a
first-controlled state. An internal-controlled state represents the period between two
exacerbated states during which a patient’s asthma is controlled. Only patients who
are recorded as having at least two exacerbated states during the study period have
internal-controlled states. Finally, patients who have had at least one exacerbated
state will also have a last-controlled state. With this partitioning of the controlled
states, we can separately estimate the durations of sojourns in the internal-controlled
state, thereby avoiding the bias that would be imposed in estimating controlled
state durations by also including the censored durations of the first-controlled and
last-controlled states.

Each state has an associated duration (with days as the units), and thus we can
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Figure 3.3: Modeling exacerbation state sequences using a semi-Markov model.
(a) Example state sequences for three patients. (b) A semi-Markov model for
characterizing asthma exacerbations. Nodes represent states and edges represent
allowable transitions. Aside from the silent start and end states, each state has a
duration distribution.

represent patient p’s exacerbation history as follows:

s(p)z(sgp),...,ss-f’b d(p)z(dgp),...,dgg)
where s represents the state sequence for patient p, d® represents the corre-
sponding duration sequence, s?’ ) represents the ith state in patient p’s history, d§p )
represents the duration of this ith state, and L, represents the length of the his-
tory in terms of the number of state visits. A semi-Markov model (Rabiner 1989)



36

represents the probability of a patient’s history as:

P (S(p)7d(p)) =P (Sgp) \ start) - P (dﬁp) | Sgp)) '

LP
il (2 12)-2 (0 147)]

=2

P (end | s(Lp;))

where each P (sﬁp A sl(-’i )1) term represents a state-transition probability, and each

P (dl(p V| s )> term represents the probability of staying in state s\ for the dura-

tion dl(p ). Because we assume that all sequences begin in the first-controlled state,
P (first-controlled | start) = 1. Likewise, P (end | last-controlled) = 1. Figure 3.3b
depicts the states and transitions for such a model.

In order to capture the effect of seasonal determinants of exacerbations, we
can extend the above model to use inhomogenous duration distributions for the
controlled states. Specifically, our approach uses distinct duration distributions for
the controlled states conditioned on the month in which the patient entered the
controlled state. In this way, the timing of a patient’s transition to the exacerbated
state can depend on the time of year. To implement this inhomogeneity, we extend

the represention of patient p’s exacerbation history to indicate the month mgp )in
(p)

which each state s;"’ is entered:
s®) = (') 5Py d® = (dgp),...,dﬁ)> m® = (mgp),...,m%’:).

We then condition on the month sequence when determining the probability of
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the states and durations:

P (s?,a® | m®) = p (Sgp) | start) . p (dgp) | 8?)) _

Ly
I1 [P <3§p> | s§€)1> P (dgm | Sgp)7m§p)>] -

=2
P <end | sg’)) .

Note that, in this formulation, the duration of the sojourn in the first state
does not depend on the month since all the sequences begin on the same date.
Additionally, for P (dgp ) | last-controlled, m\” )> and P (d?’ ) | exacerbated, m\” )) in our
(p

models, there is no dependence on m;, ). We make this choice for the last-controlled
state because the durations in this state are censored and hence not informative.
Although it would be reasonable to have the duration distribution for the exacerbated
state depend on the month, we posit that there is not a strong dependence here and
choose not to incorporate it into our representation.

To represent duration distributions, we use histograms at the time granularity
of days. The duration for all states is capped at 1,826 days (five years) which is the
length of the patient histories. All controlled states have a minimum duration of
one day and the exacerbated state has a minimum duration of five days (since our
exacerbation phenotyping procedure specifies this as the minimum duration). To
contend with the sparsity of our data when estimating durations, we use Gaussian
kernel density estimation (with bandwidth = 0.3) followed by discretization to
days to smooth the histograms.

In order to cluster patients into distinct subpopulations, we construct a mixure
of semi-Markov models as shown in Figure 3.4. Each component of the mixture
incorporates the set of states shown in Figure 3.3b, aside from there being a common
start state. Thus, for example, instead of having one first-controlled state, there is
one per component. The transition probabilities from the start state represent
prior probabilities of mixture components (i.e., mixture weights). By allowing the

parameters in the component semi-Markov models to vary from one component to
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Figure 3.4: A mixture of semi-Markov models for characterizing asthma exacerba-
tions. The mixture components are shown enclosed in gray boxes.

another, we can learn state transitions and duration distributions that characterize
different subpopulations.

We learn the parameters for the mixture of semi-Markov models using an
Expectation Maximization approach. To initialize the duration parameters for each
state, we randomly select from the training set 10 events corresponding to the given
state (and month when applicable) and use these events to estimate the associated
duration distribution. The transitions going out of each state are initialized to a
uniform distribution. To mitigate the effect of local optima in the EM procedure,
the parameter estimation process is restarted 10 times, each time re-initializing the
model with a different randomly selected subset of events from the training data.
For a given number of components &, we then select the model that maximizes the

likelihood of the training-set data.

3.4 Results

In this section, we describe the results from phenotyping asthma exacerbations
from EHRs, predicting near-term exacerbations, and identifying subpopulations of

asthma patients who have similar exacerbation patterns.
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Figure 3.5: Plot of exacerbation frequency by time of year in our cohort. The y-axis
represents the percentage of patients in our cohort who are in the midst of an
exacerbation event on a given day of the year.

3.4.1 Phenotyping Asthma Exacerbations

We apply our asthma exacerbation phenotyping algorithm to the electronic health
records for 28,101 asthma patients. The algorithm identifies a total of 14,447 exacer-
bations in these records. Figure 3.5 shows how the frequency of exacerbations varies
by time of year in our patient cohort. Several notable features are present in this
plot, including a spring peak corresponding to pollen-triggered exacerbations, an
early fall peak corresponding to the increase in respiratory virus illness as children

return to school, and a smaller peak centered on the holiday travel season.

3.4.2 Predicting Asthma Exacerbations

We evaluate our supervised learning approach for predicting asthma exacerbations
using 10-fold cross-validation. In the present study, we consider one decision
date per patient. For a patient in the training set, we train on data in the patient’s
EHR that precedes the decision date and determine the class label for the patient
according to whether they experienced an exacerbation within 90 days after the
decision date or not. For a patient in the test set, the learned model is given data in
the patient’s EHR that precedes the decision date and then predicts whether the
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Figure 3.6: ROC curves for asthma exacerbation prediction, comparing (a)
L,-regularized logistic regression models, with and without the inclusion of
large-vocabulary EHR categories (diagnoses and interventions), and (b) the
best-performing logistic regression model (L; regularization and a temporal
window-based representation), random forests (temporal window-based and last
occurrence-based representations), and LSTM (sequence-based representation).
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patient will have an exacerbation within the next 90 days.

To ensure that our models are seasonally independent, we choose decision dates
such that they are uniformly distributed throughout the days of the year, and we
have at least 90 days on record after the decision date for each patient. Moreover,
we left-censor the patient histories as needed to ensure that we have observation
periods of the same length for every patient.

Figure 3.6a shows the receiver operating characteristic (ROC) curves for logistic
regression models learned using L, regularization over a fixed-length represen-
tation based on the occurrence of event features in two temporal windows: (i)
spanning the last six months, and (ii) spanning the entire observation period prior
to the decision date. We show results with and without the inclusion of the large-
vocabulary features in the EHR, namely the problem diagnoses, other diagnoses
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and interventions (medications and procedures). In this way, we can evaluate the
predictive value gained from the inclusion of these richer but more complex EHR
features for the purpose of predicting asthma exacerbations. We also train and
evaluate L,-regularized logistic regression models but omit their results as they
yield lower area under the ROC curve (AUROC) values than the L,-regularized
models.

The results shown in Figure 3.6a suggest that, given an asthma patient’s past elec-
tronic health record, we are able to predict whether they will have an exacerbation
in the near future with some degree of accuracy. The inclusion of large-vocabulary
features yields a small but significant boost in AUROC, indicating the value of these
richer but more complex features in predicting exacerbations.

Figure 3.6b shows ROC curves comparing multiple classifiers and representa-
tions used to predict asthma exacerbations, namely: (i) the best-performing logistic
regression model, using L, regularization and a temporal window-based represen-
tation, (ii) random forest models using temporal-window and last occurrence-based
representations, and (iii) the LSTM model using a sequence-based representation.
Notably, logistic regression outperforms the more complex models given the same
representation (random forest) as well as other representations (random forests,
LSTM).

In order to gain insight into which EHR features are most valuable in predicting
asthma exacerbations, we analyze the best-performing L; logistic regression model
by ranking its coefficients in decreasing order of magnitude, and list the top-25
associated features in Table 3.1. These results suggest that while exacerbations
in the last six months are the single greatest predictor for exacerbations in the
near future, a diverse set of features are useful as predictors. Perhaps surprisingly,
the majority of the most important features correspond to events observed at any
point in the patient’s past observation period, as opposed to more recent events
observed in the last six months. While small-vocabulary features such as previous
exacerbations, ACT scores, vitals and demographics provide significant predictive
value (as indicated in Figure 3.6a), the large-vocabulary features (diagnoses and
interventions) dominate the list of most important predictors upon their inclusion.
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Table 3.1: Top-25 features of the best-performing L;-regularized logistic regression
model, ranked in decreasing order of coefficient magnitude.

Coefficient Window Category Feature
0.90 6 Months Exacerbations Asthma exacerbation
048 Ever Prescription meds ~ Corticosteroids
041 Ever Diagnoses V58.65: Long-term (current) use of steroids
0.35 Ever Exacerbations Asthma exacerbation
0.29 Ever Procedures Periodic preventive medication, infant
-0.27 Ever Problem diagnoses  493.90: Unspecified asthma
-0.22  Ever Diagnoses 493.81: Exercise-induced bronchospasm
-0.22  Ever Problem diagnoses  493.00: Extrinsic asthma, unspecified
0.21 Ever Procedures Hospital discharge day management <30 min
-0.21 Ever Diagnoses 493.90: Unspecified asthma
-0.18 N/A Demographics Race: White
0.18 Ever Administered meds Anticholinergics
-0.17 Ever Procedures Office outpatient visit <5 min
0.17 6 Months Procedures Office outpatient visit <15 min
0.17 Ever Procedures Breathing capacity test
-0.16 Ever Diagnoses V03.89: Other specified vaccination
0.15 6 Months Charges IV infusion therapy/prophylaxis
0.15 6 Months Diagnoses 493.90: Unspecified asthma
-0.14 Ever Procedures Urinalysis
0.13 Ever Prescription meds  Penicillin Combinations
-0.13 Ever Procedures Office outpatient visit <15 min
0.12 Ever Procedures Residual lung capacity
0.12 Ever Diagnoses 493.92: Unspecified asthma with acute exbn
0.12 Ever Charges HB-visit units 46+ minutes room usage
0.12 N/A Demographics Age: 55-60 Years

Notably, some asthma diagnosis codes are negatively associated with future exacer-

bations. A possible explanation is that these codes tend to be associated with less

acute cases of asthma.

3.4.3 Identifying Subpopulations of Asthma Patients

For the second task considered, we evaluate our approach to clustering patients

using a mixture of semi-Markov models. We partition the patients such that 80% of

them are in a training set, and the remaining 20% are in a test set. For each specified
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Figure 3.7: Log-likelihood of the test set data as the number of components, k, is
varied.

number of mixture components, k, we learn a model using data from patients in
the training set. We then evaluate the model by determining the likelihood of the
test-set patients under that model. To mitigate the effect of local optima in the EM
procedure, we use 10 multiple random restarts for a given value of k and then select
the model that maximizes the likelihood of the training-set data.

Figure 3.7 shows the resulting test-set log-likelihoods for values of k ranging
from 1 (a single semi-Markov model) to 35. We can draw several conclusions from
these results. First, the models with multiple components explain the test-set data
better than the individual semi-Markov model. Second, the log-likelihood keeps
increasing as we add components to model until about 20, and it then levels off.
Even with 35 components, however, we do not see evidence of overfitting.

To gain insight from the models, we inspect the learned parameters. Figure 3.8
shows selected duration distributions from a learned mixture of semi-Markov
models when the number of components k& = 5. Each row represents a component.
The first column shows the duration distribution for the exacerbated state, and
subsequent columns show duration distributions for the internal-controlled state

conditioned on entering the state in the months of January, April, July or October.
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Figure 3.8: Selected duration distributions from the mixture of semi-Markov mod-
els. Each row shows a selection of the learned state duration distributions for a
mixture component in a 5-component model. The first column shows the duration
distribution for the exacerbated state. Subsequent columns show duration distribu-
tions for the internal-controlled state, conditioned on entering the state in January,
April, July or October.

Recall that the internal-controlled state has a separate duration distribution for each
month of the year; we show the distributions for only four months due to space
limitations. Table 3.2 shows the transition probabilites for each component in the
mixture.

The distributions shown in Figure 3.8 and Table 3.2 illustrate several notable

differences among the components. Component A mostly represents patients who
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Table 3.2: Transition probabilities for the 5-component mixture of semi-Markov
models.

Transition Probabilities

Component
first-controlled to exacerbated exacerbated to internal-controlled
A 0.7509 0.7317
B 0.9965 0.2150
C 0.9981 0.5894
D 0.9985 0.5237
E 0.0003 0.4996

struggle to keep their asthma under control. Within this component, the duration
distribution for the exacerbated state has a long tail, and the probability of transi-
tioning to the internal-controlled state is relatively high indicating that many patients
in this component have experienced multiple exacerbations during the observation
period. However, this component also seems to represent the patients who did not
experience any exacerbations during the observation period. This is indicated by
the relatively low transition probability (0.7509) from the first-controlled state to
the exacerbation state. The patients who do not take this transition remain in the
first-controlled state for the entirety of the observation period. Component B repre-
sents patients who have infrequent exacerbations. This is indicated by the relatively
low probabability of transitioning from the exacerbated state to internal-controlled
state, meaning that most of these patients had only one exacerbation during the
observation period. Components C and D are similar to one another except that
patients in the former generally have somewhat more prolonged exacerbations and
shorter sojourns in the internal-controlled state. Component E represents patients
who rarely, if ever, experience exacerbations. The probability of transitioning to the
exacerbated state is near zero and the duration distributions are very close to their
initialized values.

The internal-controlled duration distributions show heterogeneity across the
months, generally being more peaked in the proximity of fall. However, with
the 5-component model, we do not see components with pronounced specificity
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for seasonal exacerbation patterns (e.g., we do not see a component that obviously
corresponds to fall exacerbators). We see such clusters in some of the models with
more components.

These results demonstrate that our mixture of semi-Markov models approach is
able to identify subpopulations of patients who exhibit meaningful differences in

the temporal patterns of their exacerbations.

3.5 Discussion

We have presented approaches and empirical results that address two key tasks in
modeling asthma exacerbations from electronic health records. First, we considered
to what extent exacerbations can be predicted given a patient’s clinical history as
represented in their electronic health record. Our results indicate that learned
models are able to predict exacerbations with a moderately high degree of accuracy
(AUROC = 0.77) when given such information. The ability to predict asthma
exacerbations is important to identify the patients that require more aggressive
treatment plans and closer medical followup to improve patient outcomes. Second,
we considered whether distinct temporal exacerbation phenotypes can be elicited
from EHR data. Our approach to this task, which is based on a mixture of semi-
Markov models, is able to identify subpopulations of asthma patients sharing

distinct temporal and seasonal patterns in their exacerbation susceptibility.
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4 UNDERSTANDING LEARNED MODELS BY
IDENTIFYING IMPORTANT FEATURES AT THE

RIGHT RESOLUTION

In many application domains, it is important to characterize how complex learned
models make their decisions across the distribution of instances. One way to do this
is to identify the features and interactions among them that contribute to a model’s
predictive accuracy. In this chapter, we present a model-agnostic approach to this
task that makes the following specific contributions. Our approach (i) tests feature
groups, in addition to base features, and tries to determine the level of resolution
at which important features can be determined, (ii) uses hypothesis testing to
rigorously assess the effect of each feature on the model’s loss, (iii) employs a
hierarchical approach to control the false discovery rate when testing feature groups
and individual base features for importance, and (iv) uses hypothesis testing to
identify important interactions among features and feature groups. We evaluate our
approach by analyzing random forest and LSTM neural network models learned in
two challenging biomedical applications.

This work was performed in collaboration with Kyubin Lee and Mark Craven
and was published in the proceedings of the 33rd AAAI Conference on Artificial
Intelligence (Lee et al. 2019b). The code for running the algorithm and generating
experimental results is available at https://github.com/Craven-Biostat-Lab/

mihifepe and as Python package ‘mihifepe’ on PyPL

4,1 Introduction

In many application domains, it is important to be able to inspect, probe, and
understand models learned by machine learning systems. It may be the case that

the machine learning approaches that provide the best predictive performance in a


https://github.com/Craven-Biostat-Lab/mihifepe
https://github.com/Craven-Biostat-Lab/mihifepe
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given domain learn models that are highly challenging to inspect and understand.
For this reason, a number of approaches have been developed for gaining insight
into complex learned models such as random forests and deep neural networks.

Methods for gaining comprehensible descriptions of learned models may broadly
be categorized based on (i) explanation locality, (ii) model specificity and (iii) ex-
planation targets, among other characterizations (as discussed in Section 2.1.2.1).
Existing methods largely focus on explanations in terms of base features, i.e., fea-
tures that are input to the models. However, in many domains, particularly with
large feature spaces, base features may not represent the right level of resolution
at which to interpret models. The multiplicity of base features may lead to expla-
nations that are less concise and hence less interpretable. Moreover, the effects of
individual base features on the model may be small or statistically insignificant.

Some methods attempt to expand the expanation vocabulary beyond the base
features. This includes the use of latent representations (Bau et al. 2017), derived
representations (Alvarez-Melis and Jaakkola 2018b; Kim et al. 2018; Zhou et al.
2018), and image regions (Fong and Vedaldi 2017; Ribeiro et al. 2016). However,
these methods largely focus on explanations that are local, that are specific to
certain model architectures and/or to the visual domain, and that target the model’s
sensitivity to all features (via model outputs) rather than to features relevant to the
modeling task (via model losses).

In this chapter, we present a model-agnostic approach that explains models
globally and at multiple resolutions by leveraging feature hierarchies to expand
the explanation vocabulary. Our approach explains models in terms of important
features, groups of features, and interactions among them. The prior research
that is most closely related to ours includes methods that aim to provide model
interpretability by identifying important features through perturbations of input
(Breiman 2001; Li et al. 2016; Zeiler and Fergus 2014).

The specific contributions of our approach are the following. First, it is well-
suited to tasks with large, structured feature spaces, where the base features might
not provide the best level of resolution for characterizing what is important to the

learned models. Our approach tests feature groups, in addition to base features, and
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tries to determine the level of resolution at which we can determine the important
features. Second, we go beyond just ranking features according to their importance,
and instead use hypothesis testing to assess the effect of each feature on the model’s
loss. Given the potentially large number of hypothesis tests that must be performed,
we use a hierarchical approach to control the false discovery rate when testing
feature groups and base features for importance. Third, we propose a method
based on hypothesis testing to identify important interactions among base features
and feature groups.

We evaluate our approach by analyzing random forest and LSTM neural network
models learned in two application domains: identifying viral genotype-to-disease-
phenotype associations, and predicting asthma exacerbations from electronic health
records. Additionally, we validate our approach using synthetic data sets where

we know which features and feature groups are relevant.

4,2 Methods

In this section, we describe the key elements of our model-agnostic approach for
characterizing learned models.

4.2.1 Identifying Important Features via Perturbation

Algorithm 1 outlines a general approach to identifying important features in a
learned model. It measures how the output of the model, or its loss, varies when
individual features in a given set of instances are perturbed in some way. Breiman
(2001) proposes an approach based on this idea as a way to characterize learned
random forest models. In Breiman’s method, the perturbation is performed by
permuting the values of the given feature across a set of instances. However, the
approach canbe generalized to other perturbations, such as replacing their values by
zero values (Li et al. 2016; Zeiler and Fergus 2014), other constant values (Fong and
Vedaldi 2017; Ribeiro et al. 2016), or values sampled from a noise distribution (Fong
and Vedaldi 2017; Suresh et al. 2017).
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Algorithm 1: General approach to identifying important features via per-

turbation
input : learned model f, feature set F, test set
X = {(x0, D) (xD y00)}

output: set {(j,v,) |j € F} summarizing the effect v; on loss £ when
perturbing each feature j

foreach feature j € F do

foreach instance (x,y™) € X do
foreach perturbationp =1,... P do
(4p)
J

let X" represent x(V) with feature j perturbed in some way

calculate perturbed model output f (igi’p )) for the p™"

perturbation
com loss £[y® (0 15 (i) = (i-p)
pareloss 2[4,/ (x) | to 5 35 £[4. / (&
p=1

calculate summary statistic v; characterizing the effect of perturbing
feature j on L

A key extension of this idea in our approach is that it uses hypothesis testing to
determine whether a given feature has a generally consistent effect on the model’s
loss across the distribution of instances. We do this using held-aside test instances so
that our importance assessment measures whether a feature truly impacts a model’s
predictive accuracy. In the results presented here, we use the Wilcoxon matched-
pairs signed-rank test to assess the null hypothesis that the median difference
between pairs:

p
r [ym, £ (x®) } _ % 3 [yu), f (g§P>) } (4.1)
p=1
is zero. Here ig.i’p ) is defined as x(") with feature ; perturbed on the p' permutation.
For perturbations that do not involve randomness, such as erasure, P = 1 and igi’l)
denotes the single perturbation that can be done to feature j.

We use the Wilcoxon test instead of a paired ¢-test due to significant non-
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normality in the changes to loss introduced by feature perturbations. Here, we
use the one-tailed version of the test, corresponding to the null hypothesis that the
median difference is greater than zero, in order to focus on features that provide
predictive value to the model. Alternatively, we could use a two-tailed test to also
detect features whose perturbation decreases loss, thereby indicating overfitting.

4.2.2 Considering Feature Groups

The approach described in Algorithm 1 is typically applied to the set of features
that are used as input to the model, which we refer to as base features. We argue that,
in many domains, characterizing the importance of base features may not be the
right level of resolution for gaining a thorough understanding of a learned model.
In some domains, there may be a large number of features that are important to
the model, and it may be difficult to discern which high-level factors are most
important for the model’s predictions unless groupings of related features are
considered. For example, models that perform risk assessment from electronic
health records often have thousands of base features representing distinct diagnoses.
Our understanding of such a model is likely to be aided by analyzing the importance
of groups of related diagnoses, or even the entire set of diagnoses, in addition to very
specific ones. Moreover, it might be the case that few, if any, individual base features
show a statistically significant change to the model’s loss when perturbed, or the
effect sizes of these changes to the loss are small. In such cases, we can potentially
detect statistical significance and larger effect sizes by considering groups of related
features.

In contrast to assessing feature importance only at the level of base features, our
approach also assesses the importance of feature groups. We assume that we are
given a hierarchy in which internal nodes represent groups of features, and leaf
nodes represent base features. We can then apply Algorithm 1 to both base features
and feature groups in order to determine which are important.

In some application domains, such as risk assessment from EHRs, there are

standard ontologies which can be used to define the hierarchy of feature groups.
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For example, the International Classification of Diseases (ICD) and the Clinical
Classifications Software (CCS) both define hierarchies of semantically related
groups of diagnoses and procedures. In a risk-assessment application, the base
features might represent the occurrence of specific recorded diagnoses in a given
patient’s EHR, such as reflux esophagitis (ICD-9 code 530.11) or acute esophagitis (ICD-
9 530.12). We could test the importance of such features by erasing all occurrences
of the given diagnosis from patients” records and measuring the resulting loss.
Moreover, we might test the importance of the feature groups esophagitis (ICD-9
530.1), which has five children diagnoses including the two listed above, or diseases
of the esophagus (ICD-9 530), which has 28 descendant diagnoses. To test a feature
group, we could erase all recorded diagnoses that are encompassed by the group.

In other application domains, the feature groups might be derived from data.
For example, in our viral genotype-to-phenotype task, we calculate feature groups
using a hierarchical clustering method. Our base features are haplotype blocks, which
are variable-sized regions of the genome that have been inherited as a unit from
one of two parental virus strains. Our feature groups consist of sets of neighboring
haplotype blocks (i.e., larger regions of the viral genome).

In a natural language domain, we might define feature groups on the basis
of syntactic or semantic categories. For example, if the base features are binary
indicators of the presence of specific words and dependency-parse paths, we might
define feature groups for syntactic categories such as relative clauses, and test the
importance of such a feature with a perturbation that simulates the “erasure” of all
relative clauses from instances, thereby setting to zero word and dependency-path
features that were derived these clauses.

In an image classification domain, the base features might correspond to pixels
and we might define feature groups to represent superpixels or objects as feature
groups. Perturbations could involve replacing a region with a constant value,
injecting noise, or blurring (Fong and Vedaldi 2017).

In contrast to approaches for hierarchical feature selection (Wan and Freitas
2018), the hierarchies used by our approach do not necessarily represent is-a or

generalization-specialization relationships. Each internal node needs only to group
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features that are related in some meaningful way (e.g., neighboring regions of a
genome). Moreover, our approach is not focused on feature selection per se, but
instead on characterizing which feature groups are important in a given learned

model.

4.2.3 Controlling the False Discovery Rate

Given a hierarchy over the features, we can compute the effect of perturbing each
base feature and each feature group using Algorithm 1 across a given set of in-
stances. We treat each node in the hierarchy as representing the null hypothesis
that perturbing the corresponding feature group does not have a significant effect
on the loss function, in the sense that the median of the differences computed
using Formula (4.1) is zero. A hypothesis is rejected if this median difference is
statistically significantly different from zero, and a hypothesis is tested only if its
parent hypothesis has been rejected.

However, there is a notable multiple-comparisons problem due to the poten-
tially large number of hypotheses tested. For instance, there are 8,740 hypotheses
to be tested (counting both base features and feature groups) in the asthma exac-
erbation prediction task that we address. Moreover, when adjusting for multiple
comparisons, we need to take into account the hierarchical organization of the
hypotheses being tested. We address this issue by using the hierarchical false dis-
covery rate (FDR) control methodology developed by Yekutieli (2008), as described
in Algorithm 2.

This algorithm uses a recursive procedure to consider a hierarchical set of
hypotheses, which in our case consist of feature groups to be tested. If the null
hypothesis is rejected for a given node in the hierarchy (i.e., we determine that a
feature group is important), then the children of that node are tested using the
Benjamini-Hochberg procedure (Benjamini and Hochberg 1995) to control false
discoveries. Otherwise, the descendants of the given node are not tested. The
algorithm returns a subtree representing the set of feature groups and base features
for which the null hypothesis was rejected.
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Algorithm 2: Using hierarchical FDR control to identify important features

input : Tree T of hypotheses to be tested along with their associated
p-values, significance level ¢

output: A subtree S of T corresponding to hypotheses rejected while
controlling FDR at significance level ¢

function HierarchicalFDR (node):
// node has already been rejected
rejectedSet = { node }
if node is not leaf then
let P1y < ... < Py, be the set of ordered p-values of node.children
// Apply Benjamini-Hochberg procedure to children
letr = max{z' . P(Z-) < ZXTq}
if r > 0 then
rejectedChildren = set of r hypotheses corresponding to
L P(l) <... SP(T)
foreach child € rejectedChildren do
| rejectedSet = rejectedSet U HierarchicalFDR (child)

| return rejectedSet

begin
if T.root.pvalue > q then
| S = empty tree
else
| S =HierarchicalFDR (T.root)
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Using this algorithm, we can identify the set of feature groups and base features
that have a significant effect on a model’s loss, while controlling the rate of false
discoveries in this set. Of particular interest is the set of outer nodes: those nodes
for which we reject the null hypotheses (i.e., determine that they are important)
and that have no children for which we reject the null hypotheses. These nodes
represent the highest level of resolution at which we can determine the importance
of features and feature groups.

The key assumptions made by this approach, which are reasonable in our
context, are that (i) if a given feature significantly affects the loss when perturbed, a
group of features containing this feature will also significantly affect the loss when
perturbed, (ii) the p-values for siblings are independently distributed, and (iii)
p-values for true null hypotheses are uniformly distributed in [0,1].

4.2.4 Identifying Important Interactions

In addition to identifying individual base features and feature groups that are
important, we would also like to identify interactions among them that a given
model has determined as important. Here we consider cases in which the model
outputs a scalar value. For this analysis, we do not treat a given model completely
as a black box, but instead assume that we know the transfer function that produces
the model’s outputs. Let g(x()) denote the function that maps x(¥) to the value that
is input to the transfer function i(-), and f (x®) = (g(x”)) indicate the output
of the model. For example, h(-) might be a logistic activation function in a neural
network for a binary classification task, in which case g(-) would represent the part
of the network that maps from x(*) to the net input of the logistic function. Or in
a random forest trained for a regression task, h(-) would represent the identity
function, and ¢(-) would represent the average of the values predicted by the
individual trees in the forest.

Our notion of an interaction among features is based on the concept of additivity.

We define an interaction between feature j and feature k£ to mean that changes in
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g(-) when we perturb both features are non-additive (for some instances):
b)) o (5) o] £ o () -ots] 2

where 5&5’2 . denotes instance x(*) with feature j and feature k perturbed jointly.

To identify interactions that are important, we use hypothesis testing to assess
whether a candidate interaction exhibits non-additivity. We can do this by consider-
ing the median difference between pairs formed by the two sides of the inequality
above. In the results presented here, we use the Wilcoxon matched-pairs signed-
rank test to assess the null hypothesis that the median difference between the pairs
is zero. This approach to testing interactions can be applied to base features, feature
groups, and mixtures thereof.

Alternatively, we can consider whether a candidate interaction exhibits non-
additivity which has a generally consistent effect on the model’s loss across the

distribution of instances. We can do this by assessing the difference between pairs:
£y (9&0))] = £[v0n (9(x9) + ag(E) + Ag(x(") )| (4.3)

where Ag (5&;’)) is defined as [g (fcgl)) - g(x(i))} (i.e., the change in g(x(®) that re-
sults from perturbing feature j). However, the null distribution may not be as
straightforward to work with in this case because, depending on the loss function,
the difference in variances of the inner terms on each side may lead to the loss terms

having different means.

4.3 Results

In this section, we evaluate our approach by (i) assessing its ability to detect
important features and interactions while controlling FDR on synthetic data sets,
and (ii) applying it in two biomedical domains in which it is essential to understand

learned models.
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4.3.1 Evaluation on Synthetic Data Sets

To verify that our approach is able to identify important features and interactions
while controlling the false discovery rate, we first evaluate it using data sets for
which we know the relevant features. In this setting, we formulate a ground-truth

function of the form:

Y = Z aj:cg»i) + Zozjk:v;i)m,(f) (4.4)
JERL (J,k)ERL
ik

where R, and R; represent the subset of relevant linear and interaction terms
respectively, and «; and «;;, are corresponding coefficients that determine how
feature j and interaction (j, k) contribute to the output. Note that a feature is
considered important if belongs to R, or is a component of an interaction that
belongs to R, or both. We represent a “learned” model using a function that

approximates the ground-truth function:

FD) =Y el + > a4 40 (4.5)
jeR, (j.k)ER s
por

where 1) ~ N(0,0?) represents the deviation of the model’s output from the
ground-truth function for some instance 7 in the feature space. This formulation is
intended to simulate the situation in which a learned model provides a fairly accu-
rate representation of the underlying target function, but incorporates irrelevant
features and other deviations which have a small impact on the model’s outputs.
We generate synthetic data sets by drawing feature vectors from a given distribu-
tion, and then using Equation 4.5 to determine f(x() for each x(¥), and similarly for
each perturbation of x(¥). Here we present results in which our instance spaces have
500 binary features, and each underlying ground truth function has 50 important
features and 50 important interactions selected from among these, with coefficients
a; ~U(0,1) Vj € Rpand aj, ~ U(0,1) V(j,k) € R;. The feature vectors are
constructed by sampling each feature from an independent Bernoulli distribution.
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Table 4.1: Average power and FDR for features and interactions on synthetic data
sets as the number of instances M in the test set is increased.

Features Interactions
Power FDR Power FDR

32 0722 0.019 0.046 0.132

64 0.800 0.024 0.370 0.014
128 0.850 0.026 0.543 0.030
256 0.895 0.029 0.682 0.035
512 0919 0.036 0.777 0.040
1024 0936 0.035 0.840 0.039
2048 0948 0.029 0.877 0.048
4096 0960 0.029 0913 0.045
8192 0967 0.033 0.935 0.046
16384 0.975 0.032 0.949 0.039

M

We define feature groups by creating a balanced binary hierarchy with features
randomly assigned to leaf nodes and feature groups represented by internal nodes.
A feature group is considered important if it contains at least one important feature
in its subtree. We perform perturbations by erasure (i.e., set the feature to zero in
all instances) and use Equation 4.1 to perform hypothesis testing, followed by the
hierarchical FDR procedure (Algorithm 2) with ¢ = 0.05.

To analyze interactions, we use the base features identified as important in the
preceding analysis to construct a set of potential interactions to test. This allows
us to prune the large search space of all possible interactions, albeit at the cost of
decreased power. We then use Equation 4.2 to perform hypothesis testing of these
interactions, and use the Benjamini-Hochberg procedure to control FDR among
this set.

Table 4.1 shows the results of applying our method as the number of instances
in the “test set” is varied. The results in the table represent averages over 100
randomly generated models and datasets. For each test-set size, we report both the
average power of the method (i.e., the fraction of relevant features and interactions

that are identified as important) and the average false discovery rate (i.e., the
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Table 4.2: Average power and FDR for features and interactions on synthetic data
sets as the noise coefficient o is increased.

Features Interactions
Power FDR Power FDR

0.00 0.999 0.000 0.991 0.000
0.01 0983 0.034 0966 0.000
0.02 0982 0.034 0966 0.048
0.04 0980 0.034 0964 0.047
0.08 0974 0.034 0958 0.048
0.16 0964 0.034 0920 0.049
032 0938 0.034 0.866 0.048
0.64 0.887 0.033 0.766 0.049
0.128 0.770 0.033 0.564 0.050

fraction of putatively important features and interactions that are irrelevant). The
middle columns show average power and FDR for determining important features
and feature groups, and the rightmost columns show average power and FDR
for determining important interactions. Table 4.2 shows the effect of varying the
coefficient o for sampling the noise values (%) for each learned model (Equation 4.5).
Here, the number of instances is fixed at 10,000. The results in Tables 4.1 and 4.2
indicate, not surprisingly, that the average power of our method to detect relevant
features and interactions increases with larger test sets, and decreases with larger
values of . Importantly, for all conditions, the average FDR is controlled at the 0.05
level.

The analyses of both features and interactions show similar trends. However,
the average power for discovering important interactions trails the average power
for discovering important features for any given test set size/noise level. This is
because we only test an interaction if its constituent features have already been
identified as important during the preceding feature analysis.
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4.3.2 Real Application Domains and Models

The first real domain we consider is focused on identifying the genetic components
of Herpes simplex virus type 1 (HSV-1) that are responsible for various dimensions
of eye disease. Here we analyze random forest (RF) models that have learned map-
pings from variations in viral genotypes to three different eye disease phenotypes
(Kolb et al. 2016). Each instance corresponds to a genetically distinct strain of the
virus, and there are 65 recombinant strains generated by mixed infection of two
parental strains. We represent each genotype as a vector of 547 features, where
each feature corresponds to a haplotype block which is variable-sized regions of the
genome that has been inherited as a unit from one of the two parental virus strains.
The value of each binary feature indicates from which parental strain the haplotype
block was inherited. The phenotypes (blepharitis, stromal keratitis, and neovas-
cularization) for each instance are numeric scores indicating the disease severity
resulting from infection in mice by a given strain. We choose to analyze learned RF
regression models since they show statistically significant predictive accuracy for all
three phenotypes and they demonstrate better cross-validated predictive accuracy
than penalized linear regression models (Lasso and Ridge) for two of the three
phenotypes, as well as other models that we train for this task. The cross-validated
R? values for the blepharitis, stromal keratitis, and neovascularization models are
0.45, 0.56, and 0.48, respectively. Each learned RF model comprises 1,000 trees.

The second application domain we address is predicting asthma exacerbations
from electronic health records. The cohort, task and model trained for the task are
extensively described in Chapter 3, but pertinent details are reproduced here for
completeness.

The data set consists of information derived from EHRs for a cohort of 28,101
asthma patients from the University of Wisconsin Health System over a five-year
period. The information extracted from the EHRs includes demographic features
and time-stamped events corresponding to encounters with the healthcare system.
These events include problem-list and other coded diagnoses, procedures, med-

ications, vitals, asthma control scores, and prior exacerbations. We also include
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features representing the time since the last event, represented at multiple scales.

We train an LSTM model (Hochreiter and Schmidhuber 1997) to predict whether
a patient would experience an exacerbation within the next 90 days or not, given
their clinical history as represented in the EHR. We select a cell state of size 100 and
a sigmoid output layer. The coded diagnoses, problem diagnoses, and interventions
(procedures and medications) all comprise large vocabularies (6,533 for coded
diagnoses, 4,398 for problem diagnoses, and 8,745 for interventions) of which only
a small subset is recorded at each encounter. Therefore, we first map event vectors
for each of these sets to an embedded space using Med2Vec (Choi et al. 2016b),
resulting in shorter, dense fixed-length vectors. Separate embeddings of size 200
are generated for each of these sets, which are then concatenated, along with the
other temporal features, to produce the event representation at each timestamp in
the record. The ordered sequence of events forms the input sequence for the LSTM.
The static demographic features are provided as input to the output sigmoid layer.
We use 10-fold cross-validation to assess the predictive accuracy of the LSTM and
obtain an area under the ROC curve (AUROC) of 0.757.

4.3.3 Feature Groups and Perturbations

For the HSV-1 application, our feature hierarchy represents neighboring regions
of the viral genome. We compute the hierarchy using a constrained hierarchical
clustering method applied to the base features, which represent haplotype blocks.
This clustering method uses Hamming distance to compare columns (features) in
our data matrix, and a complete linkage function, such that every pair of features
in a given cluster is within a specified bit difference of each other. The agglomer-
ative clustering operator groups features that are correlated (i.e., exhibit similar
inheritance patterns) across the viral strains. Since we want our hierarchy to group
neighboring haplotype blocks that are correlated, we constrain the clustering method
such that hierarchy adheres to the linear ordering of the haplotype blocks with
the HSV-1 genome. Thus, the merging step during clustering can be applied only
to features or feature groups that are adjacent to each other in the genome. The
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resulting hierarchy consists of 547 leaf nodes (base features) and 546 internal nodes
(feature groups).

The perturbations we use to interrogate models in this domain are based on
permutations. For a given feature or feature group, we randomly permute and
reassign the values for the feature or feature group in the data matrix. When doing
such permutations for feature groups, the values in the group for each instance are
treated as a unit, being permuted and reassigned together. We do this perturbation
500 times for each feature or feature group when assessing its importance.

We consider two hierarchies over features for the asthma exacerbation prediction
task. We construct a top-level hierarchy representing broad categories of EHR-
elicited features (diagnoses, demographics, etc.). The second hierarchy we use
is the standard ICD-9 hierarchy of diagnoses. In this application, we use erasure
perturbations which involve zeroing out features or feature groups of interest. For
event-based features, the erasure operation we use removes all occurrences of the
feature from a patient’s history. For features that are encoded in an embedded
representation, the erasure operation is applied to the patient’s history and then
the embedding of the associated events is recomputed while retaining the same
embedding model.

4.3.4 Identifying Important Features

In this section, we examine which features and feature groups we identify as being
important to the learned models in both application domains, while controlling the
false discovery rate at the 0.05 level (i.e., ¢ = 0.05). Table 4.3 summarizes the results
of our feature importance analysis of learned models for four tasks across both
domains. The first row in the table indicates the number of base features and feature
groups that are assessed for each model. The second row indicates the number
of base features and feature groups that have an unadjusted p-value < 0.05 after
performing hypothesis testing as described in Section 4.2. The third row shows the
number of features that we ascertain to be important after performing hierarchical

FDR control. The last two rows indicate, among the nodes surviving FDR control,



63

Table 4.3: Summary of hypothesis testing results for feature importance analysis in
both application domains.

Nodes HSV-1 Genotype-phenotype Association Asthma Exacerbation
Blepharitis Stromal Keratitis Neovascularization ICD-9

Total nodes (base features + feature groups) 1,093 1,093 1,093 8,740

Nodes with unadjusted p < 0.05 242 148 111 3,480

Nodes rejected at g level < 0.05 107 110 80 3,179

Outer nodes 40 36 24 2,120

Feature groups among outer nodes 6 3 3 159

the total number of outer nodes and the number of outer nodes that correspond to
feature groups. Recall that outer nodes refer to nodes at the highest resolution at
which we can detect important features, i.e., nodes that survive FDR control but
have no children that do.

Figure 4.1 provides a visual depiction of these results for the blepharitis pheno-
type model. Among the 1,093 base features and feature groups that are tested, we
determine that 107 are important when controlling the FDR at ¢ = 0.05. Moreover,
the set of 40 outer nodes represents the highest level of resolution at which we can
say that a viral genomic region is important to the phenotype. In the case of the
blepharitis phenotype, six outer nodes are feature groups, representing genomic
regions that are associated with the phenotype but for which we cannot localize
precisely which base features are important. Figure 4.2 shows features identified as
important for all three disease phenotypes, mapped to the genomic coordinates
of the virus. Using our feature importance analysis of learned RF models, we are
able to significantly narrow down the genetic determinants of disease from a large
number of candidate regions. Several of these regions validate what is previously
known about HSV-1 pathogenicity, and others indicate novel disease determinants
(Kolb et al. 2016). Moreover, the results suggest a high degree of underlying causal-
ity among the three disease phenotypes, given the fact that there is substantial
overlap among the regions identified as important.

Figure 4.3a shows the results of the feature importance analysis of the asthma
exacerbation prediction model for feature groups at the highest level of the feature
hierarchy. These results suggest that the most informative feature groups are
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Figure 4.1: Feature importance analysis of the random forest model for blepharitis.
Ovals represent feature groups, squares depict base features, and triangles depict
subtrees of the hierarchy that were not tested by the FDR procedure. Color intensity
indicates the magnitude of the associated p-value. White nodes are those that were
tested but did not survive the FDR procedure.
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Figure 4.2: Important features mapped to the HSV-1 genome coordinates for all three
disease phenotypes: (a) blepharitis, (b) stromal keratitis, (c¢) neovascularization.
Color intensity indicates the magnitude of the associated importance p-value.

coded diagnoses (DIAGNOSES), intervals between events (TIMESTAMPS), and
interventions (which includes medications and procedures). We note that even
when all the features are erased (ROOT), the model still performs better than
random, with AUROC = 0.537. This is likely due to the fact that the number of
encounters in a patient’s history is associated with the exacerbation risk. Even
when we erase all other information, we leave the number of events in a patient’s
history intact. Figure 4.3b depicts a subset of features identified as important after

performing hierarchical FDR analysis on the diagnosis feature group. These results
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Figure 4.3: Feature importance analysis of the LSTM model for predicting asthma
exacerbations. Darker shades correspond to larger effect sizes, i.e., lower model
AUROCs when the feature groups are perturbed. (a) Subtree showing important
feature groups at the highest level of the feature hierarchy. (b) Subtree showing
important features and feature groups comprising the ICD-9 hierarchy of diagnoses.
Note that the root node in panel (b) corresponds to the DIAGNOSES node in panel

(a).

are also summarized in Table 4.3. A large number of hypotheses are rejected at FDR
control level ¢ = 0.05, indicating that many features and feature groups have some
predictive signal for this task. Figure 4.3b shows a subtree of nodes surviving FDR
control while having the largest effect sizes. The features identified as important
include those with known connections to asthma, such as the respiratory diseases
subtree (460-519) terminating at asthma (493.90), and the mental disorders subtree
(290-319) (Scott et al. 2007). We also identify as important some features whose
relationships to to asthma are not as clear, such as the metabolic diseases feature
group (240-279).
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4.3.5 Identifying Important Interactions

We apply our approach to identifying important interactions to the RF models
trained to capture HSV-1 genotype-phenotype associations. We evaluate two sets of
candidate interactions. First, we assess interactions across all pairs of outer nodes
that are identified as important using feature importance analysis. We identify
780, 630, and 276 candidate pairwise interactions for blepharitis, stromal keratitis,
and neovascularization, respectively. After performing hypothesis testing, we use
the Benjamini-Hochberg procedure to control the false discovery rate at the 0.1
level. Only one candidate interaction across the three phenotype models survives
FDR control, namely, an interaction between two base features for the stromal
keratitis model, out of which one feature has the largest effect size among the
outer nodes. Second, we consider interactions between a set of nodes located at
an intermediate level in the feature hierarchy that survives FDR control during
feature importance analysis. We are able to detect several significant interactions
for the stromal keratitis phenotype. Among 435 candidate interactions tested, three

interactions are identified as significant.

4.4 Discussion

We have presented a model-agnostic approach to understanding learned models by
identifying important features at various levels of resolution. The key contributions
of our approach are that it employs hypothesis testing, along with hierarchical
tfeature groupings and a hierarchical-FDR control method, in order to rigorously
assess which features and groups of features have a significant effect on a model’s
loss. We have also presented an approach for testing important feature interactions.

We demonstrated and evaluated our approach in the context of two biomedical
domains. In both domains, our method lent insight into complex learned models
by determining important features and feature groups. Additionally, we identified
important interactions in one of our HSV-1 models. The analysis of the asthma

exacerbation prediction model showed the differential impact of EHR categories
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on the predicted outcome. We also examined which diagnoses, as defined by
the ICD-9 hierarchy, are important in determining the model’s predictions. Our
analysis highlighted several known and some unknown (but potentially important)
diagnoses associated with the asthma exacerbations, as determined by the model.
Finally, our approach identified important features across a range of resolutions in
both domains, from large feature groups down to base features, facilitating concise

yet accurate descriptions of the model and aiding the goal of model interpretability.
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5 FEATURE IMPORTANCE EXPLANATIONS

FOR TEMPORAL BLACK-BOX MODELS

In this chapter, we propose TIME, a method to explain models that are inherently
temporal in nature. Our approach (i) uses a model-agnostic permutation-based
approach to analyze global feature importance, (ii) identifies the importance of
salient features with respect to their temporal ordering as well as localized windows
of influence, and (iii) uses hypothesis testing to provide statistical rigor.

This work was performed in collaboration with Mark Craven and appears at the
36th AAAI Conference on Artificial Intelligence, with a preprint available at http:
//arxiv.org/abs/2102.11934. The code for running the algorithm and generating
the experimental results is available at https://github.com/Craven-Biostat-Lab/

anamod and as Python package ‘anamod’ on PyPL

5.1 Introduction

Existing research on model interpretability has largely focused on explaining mod-
els trained over tabular data, where each feature takes a single value per instance,
instead of explaining temporal models, where the instances consist of sequences
or time series. Ismail et al. (2020) demonstrate the unreliability and inaccuracy of
commonly used model-agnostic and gradient-based methods when used to explain
temporal models. Some approaches have focused on interpreting recurrent neural
networks (Ismail et al. 2019; Karpathy et al. 2015; Suresh et al. 2017) and attention-
based models (Choi et al. 2016¢; Zhang et al. 2019), while others have explored
methods to encourage temporal models during training to be more interpretable
using tree regularization (Wu et al. 2017) and game-theoretic characterizations (Lee
et al. 2018). However, these approaches require specific model architectures or
training-time alterations, limiting their applicability.

Model-agnostic methods such as LIME (Ribeiro et al. 2016) and SHAP (Lund-
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berg and Lee 2017) avoid this limitation by treating models as black-boxes but are
designed for tabular representations. Recent work has begun to address model-
agnostic explanation for temporal models. Tonekaboni et al. (2020) propose FIT,
a method to assign importance scores for sequence-sequence models, and Bento
et al. (2020) propose TimeSHAP, an extension of SHAP (Lundberg and Lee 2017)
to temporal models. Importantly, all these methods focus on local interpretability,
which seeks to explain individual predictions in terms of their important features,
rather than global interpretability, which seeks to characterize a model’s decisions
across a population of instances.

Local and global explanations are complementary approaches to interpretability.
While local explanations may be used to justify specific decisions, global expla-
nations are often advantageous for model diagnostics, feature engineering, bias
detection, trust, and scientific understanding (Doshi-Velez and Kim 2017; Ibrahim
et al. 2019).

Our approach falls under the class of perturbation-based methods for model
explanation. Some methods, such as Feature Occlusion (Zeiler and Fergus 2014)
and CXPlain (Schwab and Karlen 2019), perturb features by setting their values to
zero. Our approach is most similar to permutation-based feature importance meth-
ods. Breiman (2001) uses permutations to identify important features in random
forests, and many variants of feature importance using permutations have since
been studied (Altmann et al. 2010; Fisher et al. 2019; Gregorutti et al. 2015; Ojala
and Garriga 2010; Strobl et al. 2008). The simplicity and generality of permutations
makes them attractive as a tool for model-agnostic explanation. While existing
methods focus on permutations of features as part of a tabular representation, we
extend permutation-based feature importance to temporal models.

In this work, we propose Temporal Importance Model Explanation (TIME),
a method for explaining temporal black-box models. Our approach is model-
agnostic, produces global explanations, and elicits specific properties of temporal
models. It takes as input a learned model over features representing sequences or
time-series, and a test data set used to analyze the model, and does the following:
(i) it identifies features that are important for the model’s predictions across the
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distribution of instances, (ii) for each such feature, it identifies the most important
temporal window that the model focuses on, (iii) it determines whether the model’s
predictions are dependent on the ordering of the values within the window, (iv) it
uses hypothesis testing and a false discovery rate control methodology to identify
important features and their temporal properties with statistical rigor, and (v) it
treats the model as a black-box and thus may be used to analyze a variety of temporal
models. There are many applications that match the setting we address, such as
numerous clinical risk approaches that make predictions relative to an index time:
hospital readmission, inpatient deterioration, post-hospitalization complications,
post-surgical complications, and asthma exacerbations, among others (Ashfaq et al.
2019; Cobian et al. 2020; Kawaler et al. 2012; Mayampurath et al. 2019; Xue et al.
2021). Figure 5.1 illustrates the setting and our approach.

5.2 Methods

5.2.1 Identifying Important Features/Timesteps via Permutation

Non-temporal models. We first outline the case of a model trained on a tabular
data set where each feature takes a single value per instance. Consider a model f
over D features, trained to predict a target y. We are interested in examining the
importance of a given feature j for the model in predicting y. We assume that a
test set comprising M instances is available to analyze the model’s generalization
performance. Let (x¥), y(V) be the i" instance-target pair, and £ be a loss function
linking the model output f(x) to the target y. The perturbed output of the model
for instance 7 w.r.t feature j and another instance [ # i is given by:

f (xg»i’l)> =f (xgi), xgi), - ,:L’;I), o ,x@) (5.1)

where the value of feature j is replaced by its corresponding value from instance
[, as shown in Figure 5.2a. Then, we can compute the change in loss between the



71

X4 Xp
2 2 e LS
- SO SR L DU =
15 15 Rakor P AR s RV
E « Fa 03 b o e 4 hd ~
2 o Se >
2 y 2, = »
= ~ = 1
> 2 & royt S
05 - 'AI}\(.‘I ){r\lw—:“w—““ . = ﬁ;,—' A 05 = -
¥'~4—'r¢<w‘#’ P e A e "-..“..-l“':"--....-r---l----lr‘ (B -c&/
0 ¢ 0
Timestep Timestep
Xc Xp
2 2
An
P A
15 15 <
. « EAEN X RS
, o =gy 2N g
iﬁ 1 4 N ""\ “;:’k‘ '% 1 ’_—‘:}Q‘)‘* 9 4 ¥ * > =9
= e ,.)'\\ &7 ¥R, 5} 7 ¥
. P e SRR, PR s KV 05 7
R T R, -l T T
K & et L 5 el - . L Eorg I/ 3
0 ,.—r———'-\ o = hRt 1D R
Timestep®* - 4 Timestep &
Positive Instance (y = 1) Negative Instance (y = 0)
(a)
y=fX X4
Importance
score
's max(xs) > 0.8 [ TTTTTTTTTTITTTTTITT]
n
~" y=fX) = a"g("c,c,, ----"c,cz) >0.7 Xc _ Unimportant feature/timestep
‘ y n a 2 . Important feature/timestep
slope(xp,a,, - Xp,a,) >0.2) | xp _ "] Ordering of feature important
I dy d;
-
X = (X4,Xp,Xc,Xp) Timestep

(b)

Figure 5.1: An illustration of the task addressed by TIME. (a) Time series for
positive (green) and negative (red) instances for four different features, showing
temporal properties of the features that a learned model may capture. (b) A trained
binary classification model over the four time-varying features, whose underlying

(©)

function uses the features’ temporal properties to capture the target concept. x4

is not used by the model; all timesteps for xp are equally important; the model
focuses on windows [c;, ¢2] and [d;, ds] for x¢ and xp respectively; the ordering of
values is important only for xp. (c) The output of TIME, showing for each feature
(i) its overall importance to the model, (ii) the most important window that the
model focuses on, and (iii) whether the ordering of the values within the window

is important to the model.
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perturbed and original losses as:
AL = £y, 1 (<) = £ [y, 1 (x)]. (5.2)

Let Il = (m,ma,...,my) be a permutation of the data set sampled from a set of
permutations P;, so that feature j is sampled from instance [ = m; for each instance
i. Averaging over all instances i = 1... M and |P;| permutations of the data set, we

compute the importance score of feature j as:

. 1 1 — (i,m1)
](f,j)zmz M;Aﬁj” . (5.3)

11eP;

A model includes many features, all of which may have some effect on the model’s
output, but only some of which may be useful in predicting the target. We consider
a feature to be important if the model’s performance degrades on average when
the feature is perturbed via permutation, a notion that is captured by focusing on
the model loss rather than the model output. We use hypothesis testing to test the

significance of this degradation, as outlined in Section 5.2.4.

Temporal models. We extend the idea of permutation-based feature importance
to temporal models. Here, we assume that each feature is represented by a time
series of length L, so that the data is represented by an M x D x L tensor, with
instance i represented by a matrix XY and feature j of instance i by a time series
K — (20,0, 0. ),

By unrolling in time, this may be viewed as tabular data consisting of M in-
stances and D - L features, so that permutations of individual features in the tabular
setting correspond to permutations of individual timesteps in the temporal setting.
However, doing so ignores the temporal structure of the data and correlations
within time series. Thus, we consider joint permutations of contiguous regions, i.e.,

windows, in time. Given a time window [k1, k2], the perturbed output of the model
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Figure 5.2: Perturbation for instance i and feature j to compute feature importance.
(a) Data matrix showing the replacement of the value of feature j in instance i from
instance [. (b) Data tensor showing the replacement of a window of feature j in
instance i from the corresponding window of instance [ . (¢) Data tensor showing

the exchange of values at two timesteps within the same time series X§~Z).

for instance ¢ w.r.t. feature j is given by:

(i.0) — (1) L (@) (i.,0) (4)
f <Xj,[k1,k2]) =f <X1 JXg X s X ) (54)
where xﬁl[i)l 1, Is the time series for instance i and feature j with timesteps in the

window [k, ko] replaced by the corresponding window from another instance ! # 1,

as shown in Figure 5.2b.
(4,0) @ @) MO) () (@)
Xj-,[l‘"l«,kg] — <xj71,xj,27...,ljj:kd?...7x.j’k2,...7xj7L>. (5-5)

We compute the perturbed loss £ [y(i), f <X§Z[Ql kQ])] and the change in loss (Equa-
tion 5.2) for instance i. We average this over all instances i = 1... M and |P,|
permutations of the data set to compute the importance score corresponding to the
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window [k, ko] for feature j:

=1

M
) 1 1 i
I (fa]a [kb kZ]) - F Z M ZAﬁg}[kl?kz] ) (5'6)
| j’ Her

The overall importance score I (f,j,[1, L]) of feature j is computed by selecting
/ﬁ:landkgzL.

5.2.2 Identifying Important Windows

Given that the features have an explicit temporal structure, we want to localize the
timesteps that the model may be focusing on. We assume that for a given feature j,
there exists an underlying contiguous time window W* = [k, ko] : 1 < ky < ky < L,
so that most of the effect of perturbing j derives from W*. Specifically, we consider
a partitioning of the sequence into three windows: prior window Wp = [1,k; — 1],
important window W* = [k, k|, and subsequent window Wg = [k + 1, L] where
Wp are Wg both have low importance and a size of zero or more timesteps. In order
to pin down the most salient timesteps, we want to find the largest Wp and W that
satisty:

100 < (157) 1 0.1) 57)

where 7 : 0 < 7 < 1 controls the degree to which the model focuses on W* and
affects the size of the identified windows. We use a binary search algorithm to
identify Wp and W, and by exclusion, identify the important window W*. We
start with an initial estimate Wp = [1, k] with k; = L. We then perturb Wp and
observe its importance score I(f, j, Wp). If Wp contains important timesteps, its
importance score is likely to be inflated due to the breakage of correlations between
all timesteps of the important window, i.e., predictors strongly associated with the
response (Nicodemus et al. 2010), leading the search algorithm to contract W5 to
exclude these timesteps. On the other hand, if Wp has a low importance score that
satisfies Equation 5.7, we expand it unless doing so would violate this condition.

We expand or contract Wp by updating k; and repeat the perturbation until we
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find the largest Wp that satisfies Equation 5.7, and set k; = |Wp| + 1.

Similarly, to identify k,, we start from an initial estimate Ws = [/2;2, L] with
ky = ki + 1, measure its importance score, and iteratively expand or contract
it under the constraint ky > ki, until we identify the largest Wy that satisfies
Equation 5.7. We select the final boundary estimates k; and k, = L — ]WS| to
characterize the important window W*. We then compute its importance score
using Equation 5.6 and use hypothesis testing to test its significance. We note that

importance scores are not additive in general, and W* is not guaranteed to satisfy
I(f,3,W7) > 7I(f, 5, [1, L])-

5.2.3 Identifying the Importance of Feature Ordering

To examine how a feature’s ordering affects the model’s performance, we consider
permutations of timesteps within its time series. Such permutations have previously
been used to detect circadian patterns in gene expression data (Ptitsyn et al. 2006;
Storch et al. 2002). To determine the importance of the ordering of a feature j
within a window [k, k2], we permute its values within the window, as illustrated

in Figure 5.2c, and average across instances. Let IIj, ;,) = (Thys Thy a1, - - - TThy) DE A
permutation over timesteps within the window. The perturbed model output is
given by:
(@) — (1) L (@) (@) (4)
f (X%H[khkﬂ) =f <x1 1 Xg s X, ,XD) (5.8)
where the permuted time series for instance ¢ and feature j is given by:
(4) — ((® (@) O) O (@) (@)
X My = (a:jJ, SRS YSERTE S CSRURE  KOINE )y SRTRR .:vj7L> (5.9)

As before, we compute the average change between the perturbed and original
losses over all instances ¢ and multiple permutations IIj;, ,;, and use hypothesis
testing to test the significance of the change.
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5.2.4 Hypothesis Testing and False Discovery Rate Control

Existing work has leveraged hypothesis testing in conjunction with permutations to
examine black-box models (Burns et al. 2020; Golland et al. 2005; Ojala and Garriga
2010; Tansey et al. 2019). Our previous work (Chapter 4) uses hypothesis testing to
test feature groups in addition to base features, but employs the Wilcoxon signed-
rank test, which makes assumptions about the null distribution of the test statistic
that may be inappropriate for certain perturbations or models. Here, we perform
hypothesis testing using permutation tests, a type of widely used, non-parametric,
exact statistical test that makes few assumptions about the null distribution. We
use permutation tests to assess the significance of important features and windows
as well as time series ordering.

We use importance scores to quantify the degree to which permuting features
degrades the model’s performance, and use hypothesis testing to test the statistical
significance of this degradation. Specifically, we use the formulation of permutation
tests in Ojala and Garriga (2010), using the mean loss as the test statistic. The one-
sided empirical p-value for feature j is given by:

|{H€,PJ,C_H§Z}|+1
Pyl +1

p= (5.10)
where P; is a set of permutations of the original data with feature j permuted in
some way, L is the mean loss for the original data, and Ly is the mean loss for
permuted data. By repeatedly permuting the data, we generate the empirical null
distribution of the test statistic (mean loss). The null hypothesis is that the effect
of the feature on the model’s loss is zero when averaged across instances, so that
the test statistic on the original data set comes from this distribution. When the
one-sided p-value is sufficiently small, we conclude that permuting the feature
degrades the model’s performance. This approach may also be used to detect
overfitted features by reversing the inequality in Equation 5.10.

Depending on the permuted quantity, we can use Equation 5.10 to test the

overall importance, window importance, and ordering importance of feature j.
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Figure 5.3: (a) A hierarchy of tests used to check a given feature for its (i) overall
importance, (ii) important window and (iii) the importance of ordering within the
window. (b) A hierarchy over the features, where each node is tested using the
testing hierarchy shown in (a). Feature groups are tested via joint permutations
of their constituent features. Hierarchical FDR control is used for multiple testing
correction, and subtrees rooted at nodes with p-values above a threshold are pruned.

These tests may be organized as a hierarchy, as shown in Figure 5.3a, so that a test
is performed only if its parent test returns a significant p-value.

The multiplicity of hypothesis tests for a given feature and across the set of
features leads to a multiple comparisons problem. We address this by using a
hierarchical false discovery rate (FDR) control methodology (Yekutieli 2008), with
the FDR for sibling tests controlled using the Benjamini-Hochberg procedure (Ben-
jamini and Hochberg 1995). This approach also readily extends to features arranged
in a hierarchy in order to interpret models in terms of feature groups, as shown in
Figure 5.3b.

5.2.5 Rationale for Permutation-based Feature Importance

In this section, we further discuss the rationale behind the permutation-based
feature importance approach used by TIME. We elucidate connections of the impor-
tance scores to existing permutation-based feature importance measures. We then
discuss issues due to out-of-distribution sampling by feature importance methods,
including TIME. Finally, we provide an illustrative example showing how our ap-

proach may be used to discover relevant features and windows even in the presence
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of out-of-distribution sampling and feature correlations.

Equation 5.3 computes the importance score of feature j for a tabular model,
and Equation 5.6 computes the importance score for window [y, ks] of feature j for
a temporal model. Intuitively, Equation 5.6 captures the notion that a window for a
given feature is considered important to the model if it has a positive association
with the target, in the sense that perturbing its values via permutation increases the
model’s loss on average across the distribution of instances. We use permutation
tests to assess the statistical significance of this degradation, and compute the
empirical p-value for feature j using Equation 5.10.

Permutations serve two purposes in our approach: (i) to compute the impor-
tance score for a feature j (Equation 5.6), and (ii) to test the significance of feature
j using permutation tests (Equation 5.10). While numerous works have examined
permutation-based feature importance scores, e.g., Breiman (2001), Fisher et al.
(2019), Gregorutti et al. (2015), Henelius et al. (2014), and Strobl et al. (2008),
and some works have used hypothesis testing based on permutation tests to assess
the statistical significance of important features (Burns et al. 2020; Golland et al.
2005; Ojala and Garriga 2010), combining the two approaches is a novel aspect
of our work. In particular, it allows us to improve the value of the explanations
(by examining the relative importance of features and windows, rather than just
performing feature selection) while providing them with statistical rigor (by using
hypothesis testing and controlling for false discoveries). By choosing the mean loss
as the test statistic for permutation tests, we can leverage the same computation for

both the importance score of a feature and the test for its statistical significance.

5.2.5.1 Theoretical Properties

The importance score computed by TIME (Equation 5.6) is closely related to
model reliance, a formalization of permutation-based feature importance measures
by Fisher et al. (2019) based on the approach to examine feature importance for
random forests introduced by Breiman (2001). The difference-based model reliance
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(M Rais) of a tabular model f on a feature group S is defined as:

M Raig(f, S) = [Expected loss of f under noise] — [Expected loss of f without noise]
—E[£[v.fX)]] -ElL rx)

where X represents the original features and X represents X with noise added
to the subset X5 that renders it completely uninformative of the target Y without
altering the marginal distribution of features in S. Then, Equations 5.3 and 5.6
correspond to empirical estimates of difference-based model reliance for tabular
and temporal models respectively, with S representing a feature for tabular models
and a window [k, k;] for a feature for temporal models (generalizable to feature
groups in both cases).

Interested readers should refer to Fisher et al. (2019) for a detailed formal
treatment of model reliance and related permutation-based feature importance
measures, and Gregorutti et al. (2015) for a study of an equivalant formulation of
M Rgig in the presence of feature correlations. In Proposition 5.1, we use results
for model reliance to show that for additive models under certain assumptions,
Equation 5.6 is a measure of the positive association between the relevant window
of a feature j and the target.

Proposition 5.1. Let X, ...Xp be independent random vectors of size L representing
temporal features F = {1,2,..., D} for the additive temporal model f(X,,...Xp) =

> gy(Xj). Let W be a window for X, perturbed according to Equation 5.5, and let
j'EF
W represent the timesteps outside the window. Further, assume that g;(X;) decomposes

additively over the sequence as:
9;(X;) = gjw(Xjw) + 9;w (X, )

where X; w and X, 7 represent subsequences of X ; inside and outside the window respec-
tively, and g;w(X;w) and g;7 (X, 77) represent arbitrary feature functions over these

subsequences. Let Y be the target and L be the quadratic loss function.
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Then, the importance score I( f, j, W) of the window W for feature X; as computed by
Equation 5.6 satisfies:

EI(f,5,W)] =2

cov (Y, gj,W(Xj,W)> — cov <gj,W(Xj,W)a 9jw (ij))] - (511)

Proof. Consider an additive tabular model f = ) ¢;(X;/) composed of univariate
JEF
functions g;/(X/) over tabular features X. Assuming a quadratic loss function £,

Proposition 15 from Fisher et al. (2019) ! gives M Ry;z of model f on feature group
S as:

MRag(f,S) = 2[cov (Y, g5(Xs)) — cov (g5(Xg), 85(Xs))] (5.12)

where X and X correspond to features inside and outside the feature group S
respectively, and gg and gz are vector-valued functions over X ¢ and X 5 respectively.
Since the importance score in Equation 5.3 is an empirical estimate of M Ry for
tabular models, we have E [I(f, S)] = M Rai(f, S). Extending to the case of a tem-
poral model f under the assumptions of the proposition, the expected importance
score of feature j in window W is given by:

EI(f,5,W)] =2

cov (Y, gLW(Xj,W)) — Z cov (%’,W(XJ,W)?gj/(Xj'))

J'EF\I

— cov (%W (Xjw), 9;w(X; ’W)) ]

=2

cov (Vg0 (X)) = cov (gj,w<xj,w>,gj,w<xj,w>)] (5.13)

since cov (g;w (X;w), g5(X;)) =0V j € F\jas Xy,...Xp are assumed indepen-
dent. O

1Gregorutti et al. (2015) and Gregorutti et al. (2017) show equivalent formulations under
stronger assumptions.
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Corollary 5.1. Let feature j have a relevant window W*, so that there is no association
between the timesteps outside the window and the target, i.e., cov (Y, 9w (X 7 )) =0.
Then, the expected importance score for the entire sequence for feature j is given by:

E [I(fajv [17 L])] =2 cov (}/7 g](XJ))
= 2 cov (Y, gjw~(Xjw~)) + 2 cov (Y> gj,W*(Xj,W*)>
=2 cov (Y, gjw+(Xjw+)). (5.14)

Thus, the expected importance score for feature j is a measure of the positive as-
sociation between the target and its relevant window. Moreover, when the timesteps
inside and outside the window are weakly correlated, i.e.,
cov <gj7W* (Xjw+), 95 (X]W)) ~ 0, then using Equations 5.13 and 5.14, we have
E[I(f,j,1,L])] = E[I(f,j,W*)]. In other words, the expected importance score
of the entire sequence for feature j is approximately equal to the expected impor-
tance score of its relevant window W*, motivating the window search algorithm
(Section 5.2.2).

5.2.5.2 Out-of-distribution Sampling

Since permutations of a given feature break correlations that may exist between
that feature and other features, the model may end up being evaluated on ‘out-
of-distribution” samples that are not representative of the underlying distribution
of data in the domain. This is a common concern with many feature importance
methods (Kumar et al. 2020), and may lead to distorted importance scores for
correlated features (Gregorutti et al. 2017). We note that methods that perform
perturbations using reference values, such as feature occlusion (Zeiler and Fergus
2014) and CXPlain (Schwab and Karlen 2019), may also evaluate the model on out-
of-distribution samples, and tractable approximations of many Shapley-value-based
methods, including KernelSHAP (Lundberg and Lee 2017) and SAGE (Covert et
al. 2020b) use marginal in place of conditional distributions, leading to out-of-

distribution sampling.
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For permutation-based feature importance measures, certain strategies may be
employed to mitigate the distortion of importance scores due to out-of-distribution
sampling. One approach is to induce approximate independence between the
tested and held-out features, using (i) backward selection (Gregorutti et al. 2017),
when the goal of feature importance is to perform feature selection, or (ii) feature
hierarchies (Chapter 4), when the goal of feature importance is model explanation,
which is the case for TIME.

A second approach to avoid out-of-distribution sampling is to use permutations
sampled from distributions conditioned on the held-out features (Strobl et al. 2008).
However, this is computationally intractable in general, so that significant approxi-
mation is necessary, and may also produce importance scores that may (i) differ
between equally relevant groups of correlated and uncorrelated features (Nicode-
mus et al. 2010), and (ii) change based on the choice of correlated features included
in the model (Kumar et al. 2020).

5.2.5.3 An Illustrative Example

Using results for model reliance (Equation 5.12), we show an illustrative example
where our approach is able to detect the importance of features and windows accu-

rately, even in the presence of out-of-distribution sampling and feature correlations.

Tabularmodels. Consider an additive model over four features: f(X) = 2?21 9;(X;),
where X is a random variable corresponding to feature j and g;(X;) is a univariate
function over feature j. Let h;(X;) be the standardized version of g;(.X;), so that
9;(X;) = o;h;(X;)+ pj, where p; and o; represent the mean and standard deviation
of g;(X;) respectively. Then, f = Z?Zl o;h;(X;) + c where o; may be interpreted
as the weight assigned to feature j by the model, and c is a constant. We use g; and
h; as shorthand for ¢;(X;) and h;(X,) respectively.

Let features 1 and 2 be relevant and have covariance p with the target, and let
features 3 and 4 be irrelevant. Additionally, let features 1 and 2 be highly correlated
with each other with covariance pg, let features 3 and 4 be highly correlated with

each other with covariance pj, and let the relevant and irrelevant features be weakly
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correlated with each other with covariance pr;. Namely:

L pr pri pri
prR 1 pri pri
prI PRI L pr
pri pr1 pr 1

cov(Y,h) = cov(h,h) =

S O D

To examine the effect of feature correlations on the importance scores, we select
specific values for the coefficients. Let ¢ = 0, 0y = 0o = 0.9, and 03 = 04, = 0.1,
so that f = 0.9h; + 0.9hy 4 0.1h3 + 0.1hy, i.e., the model places the highest weight
on relevant features 1 and 2 but also incorporates irrelevant features 3 and 4. Let
p=pr=p=0.9and pg; = 0.1.

The expected importance scores, i.e., model reliances, for different features and
feature groups may be computed using Equation 5.12. The model reliance of f on

feature 1 is given by:

M R (f,{1}) = 2[cov (Y, g1) — cov (g2, 91) — cov (g3, g1) — cov (g4, 91)]
= 201 [cov (Y, hy) — oacov (hg, hy) — ozcov (hg, hy) — ascov (hy, hy)]
= 201 [p — 02prR — O3pRI — O4pri]
=2:0.9-[0.9-0.9-0.9—0.1-0.1—0.1-0.1]
=0.126



84

Similarly, we can compute the model reliance of f on all features and feature groups:

MRag(f,{2}) = MRaig(f,{1}) = 0.126

MRain(f, {3}) = MRan(f. {4}) = —0.054

MRag(f,{1,2}) = 3.168

MRaig(f,{1,3}) = MRas(f,{1,4}) = MRar(f,{2,3}) = MRa(f,{2,4}) = 0.108
MRag(f,{3,4}) = —0.072

MRaig(f,{1,2,3}) = M Raig(f, {1,2,4}) = 3.186

MRag(f,{1,3,4}) = MRag(f,{2,3,4}) = 0.126

MRag(f,{1,2,3,4}) = 3.24

This leads us to make the following observations:

1. The expected importance scores of feature groups that include all relevant fea-
tures, i.e., {1,2}, {1,2,3}, {1,2,4}, and {1, 2, 3,4} are approximately the same.

2. The sum of expected importance scores of the relevant features (0.252) does not

add up to the expected importance score of the relevant feature group (0.3168)

due to the correlation between the features. This is consistent with observations

made by other authors (Gregorutti et al. 2015; Tolosi and Lengauer 2011).

3. The expected importance scores of features and feature groups composed entirely
of irrelevant features, i.e., {3}, {4}, and {3, 4} have the lowest magnitude.

In summary, out-of-distribution sampling caused by marginal permutations
of the features may break feature correlations and distort importance scores and
rankings, but permuting feature groups in addition to base features can ameliorate
this problem. Since enumerating and permuting all feature groups is intractable
for a large feature set, we leverage feature hierarchies to identify feature groups to
permute. The hierarchies may represent groupings of conceptually related features
derived from domain knowledge, or they may be generated by pre-processing the
data, such as using hierarchical clustering (Chapter 4). For the current example,
Figure 5.4 shows a feature hierarchy that groups highly correlated features together,
thus allowing an accurate assessment of importance scores for relevant features at
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3.24

-0.72

Figure 5.4: A hierarchy over four features for the illustrative example in Sec-
tion 5.2.5.3, with highly correlated features grouped together. Darker shades indi-
cates higher importance scores, and gray shades indicate pruned tests.

the group level, as well as pruning tests for importance of irrelevant features.

Temporal models. We extend this example to temporal models in order to illus-
trate the search algorithm used to identify the relevant window for a feature (Sec-
tion 5.2.2). Instead of representing a tabular model over four features, let f represent
an additive temporal model over D independent temporal features having four
timesteps each. Namely, let f(X4,...,Xp) = Z?Zl g5/ (Xj) = Zle S (X))
Consider a feature j with each timestep X;; mapped to tabular feature X, : ¢t €
{1,2, 3,4}, so that the model reliance calculations and observations from the previ-
ous discussion still hold but apply to timesteps instead of features.

Figure 5.5 uses the calculated expected importance scores to walk through the
steps of the search algorithm used to identify the relevant window for feature j.
A contiguous relevant window may be located at either the edge (Figure 5.5a) or
the center of the sequence (Figure 5.5b). At each step of the search, the algorithm
expands or contracts Tp or W in order to identify the largest prior and subsequent
windows that satisfy Equation 5.7, with v chosen as 0.95. In both cases, the resulting
window includes all the relevant timesteps and excludes all the irrelevant timesteps.

Thus, the window search algorithm can leverage joint permutations of timesteps
and correctly identify the relevant window, even in the presence of correlated
timesteps. While this example uses a univariate function g; (X ;) for each timestep
in the sequence, the analysis generalizes to multivariate functions g; w (X; ) over

windows of correlated timesteps, potentially including interaction effects. This is
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Figure 5.5: Illustration of the window search algorithm for (a) a relevant win-
dow comprising the first two timesteps of a feature, and (b) a relevant window
comprising the second and third timesteps of a feature. Held-out timesteps are
represented in white, permuted timesteps are represented in green, estimated prior
and subsequent windows are represented in gray, and the estimated important
window is represented in red. The top row for each figure represents the search for
the prior window, and the bottom row represents the search for the subsequent
window. Expected importance scores are shown below the sequence at each step of
the search.
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the case for the synthetic model that we use to evaluate our approach in Section 5.3.1.
Moreover, as noted in Section 5.2.4, the hierarchical FDR approach used to organize
tests of temporal properties can readily be integrated with feature hierarchies, as
shown experimentally in Section 5.3.2.

5.2.6 Computational Details

Choice of data set. The classical approach for permutation-based feature impor-
tance uses out-of-bag (OOB) samples to examine the model, and avoids in-sample
importance estimation (Breiman 2001). However, Fisher et al. (2019) show uni-
form bounds on the model reliance estimation error for all models in a sufficiently
regularized class of models, so that it is possible to train a model and to analyze its
feature importance using the same data. For our experiments, we use a validation

data set to analyze models trained on real data.

Number of permutations. The size of P; (the set of permutations used to examine
feature j) may be selected based on available computational resources, the desired
precision, or using sequential probability ratio tests (Ojala and Garriga 2010). In
our experiments, we select |P;| = 50 for synthetic data and |P;| = 200 for real data,
but empirically observe minor differences in results beyond |P;| = 20.

Time complexity. Marginal permutation-based feature importance methods such
as TIME are considered an efficient tool for ascertaining feature importance (Gre-
gorutti et al. 2015). The time complexity of our method is O(M PL min{Rlog L, D}),
where M, D, L, R and P = |P;| are the test-set size, number of features, sequence
length, number of relevant features and number of permutations respectively. The
logarithmic term arises since the window search algorithm partitions the search
space in half at each step of the search. In practice, as shown in Table 5.1, TIME
is often significantly faster than univariate permutations, since permutations of
windows can be performed faster than permutations of their constituent timesteps

using a vectorized implementation.
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Distributed computing. TIME can be computed significantly faster by leveraging
a distributed computing environment, where each node analyzes a feature or a
subset of features. Our implementation of TIME uses HTCondor for distributed
computing. For a fair comparison, the distributed implementation is disabled while

comparing running times of different baseline methods, as shown in Table 5.1.

5.3 Results

We evaluate TIME by analyzing synthetic data sets and models where the ground
truth pertaining to relevant features and their temporal properties is known, and by
analyzing a long short term memory (LSTM) model (Hochreiter and Schmidhuber
1997) trained to predict in-hospital mortality from intensive care unit (ICU) data.

5.3.1 Synthetic Data Sets and Models

We create synthetic time-series data where we control the generating processes for
different features. A set of feature functions operate on windows for each feature
and are used to generate targets for each instance. These include a mixture of linear,
non-linear, ordering-insensitive and ordering-sensitive operators. We also create
synthetic models that approximate these functions and serve as the models to be
analyzed. We control the features that are relevant to the models, as well as the
temporal properties of the models, including relevant windows and dependence on
ordering for each feature. We then analyze these models using TIME and evaluate
the results in terms of power (the fraction of relevant features correctly identified)
and FDR (the fraction of features estimated to be important, but not truly relevant

in the underlying function).

Synthetic data. We use Markov chains to generate time series data, as shown
in Figure 5.6a. Each feature is associated with a randomly selected window and
a pair of Markov chains, one each to generate values for in-window and out-of-

window timesteps. The number of states in each chain is sampled uniformly
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at random between 2 and 5. The features include a combination of continuous
and discrete features. Each state m is associated with a Gaussian random variable
S ~ N (pim, 02,) (for continuous features) or an integer value (for discrete features)
and transition probabilities p,,,, to other states n within the same chain. The mean,
standard deviation, and transition probabilities for each state are sampled uniformly
at random. The sequence for a given instance and feature is generated via a random
walk through the chains. For example, a sequence i for feature j with 5 timesteps and
underlying window [2, 3] may be generated as: xgi) = <x§?, x%, x%, xg’i, x§’é> =
(50,15 Sh.95 1,3, S1.45 S0 5), Where s, is sampled from S,, at timestep ¢. For some
continuous features, sampled values are aggregated over time to model increasing,

constant, or decreasing trends, as shown in Figure 5.6b. In this case, for each
t-1
timestep t, 2,1 = Sy + D Tjk-
k=1
Synthetic models. For each synthetic data set, we create a synthetic model com-
prising a multi-level function to generate targets for the instances. For each feature
j, we apply a feature function g; that aggregates the values within the window

[k1, ko] of that feature:

9 (Xj) = 90305 (Tjky - - Tjky) (5.15)

where (i) g, is aggregation operator, randomly selected from one of max, average
(both insensitive to temporal ordering), monotonic-weighted-average and
random-weighted-average (both sensitive to temporal ordering) functions, (ii) g;
is randomly selected from one of identity, absolute-value and square functions
and serves to potentially induce interactions between the timesteps in the window,
and (iii) g, is a standardization operator that yields zero mean and unit variance
for feature j across the data set.

We designate a subset of all features as relevant and take a linear combination
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Figure 5.6: (a) Generator for a continuous feature consisting of two Markov chains,
one each for in-window and out-of-window states. Here each Markov chain con-
sists of three states, and each state is associated with a Gaussian random variable.
(b) Three sequences generated via random walks through the chains, with the
sampled values aggregated over time to create trends. The window is represented
by blue shading.
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of their feature functions to generate the target:

y=">_ ag;(x;) (5.16)

JER

where R is the set of relevant features, and coefficients o; are sampled uniformly at
random between -1 and 1. This serves to generate responses for a regression task.
To emulate a classification task, we choose a threshold such that half the instances
are labeled negative and the other half are labeled positive.

The synthetic model represents an approximation of this function and is gener-
ated by adding a weighted linear combination of the set of irrelevant features R’ to
the function:

FX) = ajg; (%) + 8 lz gy (Xj/)] : (5.17)
jER jER!

The terms corresponding to the irrelevant features represent noise in the model,
with the overall level of noise controlled by the multiplier 5. The rationale behind
the approximation is to have a realistic model that does not perfectly match the
underlying function and whose output changes in a small way when irrelevant
features are perturbed, but not in a way that consistently affects the loss function L.

Unlike a real model where training may involve optimizing over a loss function,
here we use a loss function only to measure the fidelity of the model output f to
the target y and compute the importance of each feature. We use quadratic loss for

regression models and binary cross-entropy for classification models.

Baseline comparisons. We compare TIME against several model-agnostic base-
line methods, covering a range of alternative methodologies: global vs. local, loss
vs. output-based, reference value vs. permutation-based. We also attempted to
include methods that address model-agnostic interpretability of temporal models,
namely, TimeSHAP (Bento et al. 2020) and FIT (Tonekaboni et al. 2020), but were
unable to do so due to the lack of a public implementation for TimeSHAP and
impractically slow performance of FIT. Acronyms used to refer to variants of the
same method are indicated in parentheses.
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e LIME (Ribeiro et al. 2016): a method for local explanations. We aggregate local
feature importance scores to generate global ones, based on the submodular pick
algorithm described by the authors. We include LIME due to its widespread
usage as an explanation method, and as a representative of other methods that
focus on the model output rather than loss and generate local explanations.

e Feature Occlusion (Zeiler and Fergus 2014): a perturbation-based method that
focuses on the model output and perturbs features by replacing them with zero
reference values (FO-z). Suresh et al. (2017) use a variant that uses uniformly
sampled reference values to analyze LSTM models (FO-u).

e CXPlain (Schwab and Karlen 2019): a method that trains a surrogate explanation
model and perturbs features using reference (typically zero) values to calculate
importance scores.

e SAGE (Covert et al. 2020b): a method that generalizes SHAP (Lundberg and
Lee 2017) to global explanations. SAGE is intractable to compute exactly, so we
use two approximations: sampling held-out features from (i) their marginal
distributions (SAGE), or (ii) reference values, namely mean (SAGE-m) or zero
(SAGE-z) values.

e PERM: a method that uses conventional permutations of individual timesteps
rather than sequences to compute importance scores. We also test a variant that
also performs hypothesis testing and FDR control using permutation tests and
the BH-procedure (Benjamini and Hochberg 1995) over all timesteps (PERM-f).

Since the baseline methods are designed for a tabular feature representation, we

unroll the temporal data comprising D features and L timesteps into tabular data

with D x L features. To avoid confusion with temporal features, we refer to tabular
features simply as ‘timesteps’ in the context of evaluation, since each tabular feature
corresponds to a single feature-timestep pair in the original representation.

For TIME, we set 7 (see Section 5.2.2) to 0.99 and control FDR at the 0.1 level.
We sample |P;| = 50 permutations to compute importance scores and p-values for
each feature ;.

We generate data sets with 1,000 instances, 10 features and 20 timesteps per

feature. Five features are randomly selected as relevant. We create a synthetic



93

model for each data set, with § tuned to yield a 90% accuracy for classification
models or an R? value of 0.9 for regression models. We evaluate the methods by
examining power and FDR for identifying relevant features as well as timesteps,
and average the results over 100 data sets and models.

For the baseline methods, we estimate a feature’s importance by averaging
non-zero importance scores across the timesteps belonging to the feature. We sort
timesteps in decreasing order of importance scores and report the n features or
timesteps with the highest scores, where n is determined by the number of relevant
features and timesteps in the ground truth. Since TIME identifies specific features
and windows as important, we evaluate it based on two metrics: (i) using all the
features and timesteps it identifies as important, and (ii) using up to n timesteps
with the highest non-zero scores, as we do with the other baselines. We refer to
these as TIME and TIME-n respectively.

Table 5.1 shows results from this comparison, averaged across 100 data sets and
classification models. Both TIME and TIME-n significantly outperform all baselines
in terms of average power and FDR for both features and timesteps, and the average
FDR is well-controlled at the 0.1 level. We also include the average number of
windows as a measure of the interpretability of the resulting explanations. Each
ground truth model has five windows (one per relevant feature), so values closer
to five are better. By this metric, TIME and TIME-n are advantaged in the sense
that they identify one window per feature, though the high performance of TIME
rests on its ability to distinguish relevant and irrelevant features accurately. In
contrast, most baseline methods identify a much larger number of windows, leading
to more fragmented and less interpretable explanations. Finally, we note that
our implementation of TIME supports distributed processing of features, which
provides a significant speedup, but which is disabled for these results for a fair
comparison of running times.

Figure 5.7 illustrates feature importance explanations for a single model. It
shows a set of heat maps indicating relevant timesteps for the ground truth model
along with the importance scores returned by different explanation methods. For

the ground truth model, boxes corresponding to relevant timesteps are shown in
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Table 5.1: Comparison between different explanation methods on synthetic data,
indicating sample means and standard deviations for power and FDR for detecting
relevant features and timesteps, the number of windows, and the median runtime.

Features Timesteps . Runtime

Method Windows (seconds)
Power FDR Power FDR

z s T s z s z s z s z s

TIME 0.930 0.111 0.037 0.080 0.923 0.138 0.054 0.124 4.87 0.76 371 116
TIME-n 0922 0.113 0.018 0.058 0.914 0.141 0.021 0.071 4.83 0.75 371 116
LIME 0.710 0.122 0.290 0.122 0.692 0.146 0.308 0.146 849 2.03 572 585
FO-u 0.644 0.135 0356 0.135 0.637 0.167 0.363 0.167 7.17 1.99 292 88
FO-z 0.676 0.155 0.324 0.155 0.666 0.169 0.334 0.169 8.05 1.87 29 8
CXPlain 0.686 0.156 0.314 0.156 0.661 0.157 0.339 0.157 836 221 45 21
SAGE 0.806 0.129 0.194 0.129 0.786 0.128 0.214 0.128 11.05 3.47 15384 12695
SAGE-m 0.758 0.140 0.242 0.140 0.731 0.153 0.269 0.153 10.26 3.54 128 125
SAGE-z 0.656 0.142 0.344 0.142 0.648 0.163 0.352 0.163 821 2.19 44 96
PERM 0.836 0.127 0.164 0.127 0.818 0.135 0.182 0.135 9.28 2.87 1478 663
PERM-f 0326 0451 0.024 0.071 0.312 0430 0.008 0.022 271 392 1478 663

a uniform color. For the explanation methods, colored boxes indicate non-zero
importance scores, with higher scores shown in darker shades. Hatched textures
are used to show features for which ordering is relevant (ground truth) or identified
as important (TIME), but they are not shown for other explanation methods since
they are not able to detect the significance of ordering. TIME assigns importance
scores to windows for each feature, while the other explanation methods assign
importance scores to each timestep, since they operate on a tabular representation.
For this model, TIME identifies all the relevant features, timesteps and their ordering
correctly. Other explanation methods assign non-zero importance scores to a mix of
relevant and irrelevant timesteps, and rank irrelevant timesteps above relevant ones
in some cases, adversely affecting their power and FDR for detecting important
features. They also generally produce more fragmented explanations due to the
larger number of reported windows.

We also perform baseline comparisons on synthetic data using a larger feature
set composed of 30 features and 50 timesteps, with 10 features randomly selected
as relevant. Table 5.2 shows these results, aggregated over 100 different models.



95

Ground Truth TIME LIME
= ] = ] = ]
7 [ o o
[ D o D e
b Eh N
T | g w0 ]
0 [ 1] Qe e
27N 7N 7N 1]
@ @ @ 1
> [T T > [T T T T T > [T
1234567891011121314151617181920 12345678 91011121314151617181920 12345678 91011121314151617181920
Timesteps Timesteps Timesteps
(a) (b) (c)
_ FO-u _ FO-z CXPlain
e[ ] © TTTTFITTT ° TTTTTTT
7 o o
Do Vo U e
- - -
=0 =0 =i
=, = B
e ] 8- e
SN T e TN
© | © @
> [ > > I
1234567 891011121314151617181920 1234567 891011121314151617181920 1234567 891011121314151617181920
Timesteps Timesteps Timesteps
(d) (e) ()
. SAGE . . SAGE-m - . SAGE-z .
=M T ] = ] B 5
7 o o
D e D e e
- - -
5 5 =i
- - = o
[ [ [
[ [V [
7N 7N =7IN
© © P
ES 1T I11 o o
1234567 891011121314151617181920 1234567 891011121314151617181920 1234567 891011121314151617181920
Timesteps Timesteps Timesteps
(8) (h) (1)
. PERM _ . PERM-f .
@ o o
go 8o
2. 2.
[ ]
[ [V
SN o
@© | | ©
> L1111 o [ [T
1234567 891011121314151617181920 1234567 891011121314151617181920
Timesteps Timesteps

() (k)

Figure 5.7: Heat maps for a single synthetic model showing (a) relevant features,
windows and ordering for the ground truth model, and importance scores for (b)
TIME, (c) LIME, (d) FO-u, (e) FO-z, (f), CXPlain, (g), SAGE, (h), SAGE-m, (i)
SAGE-z, (j) PERM, and (k) PERM-f. Color indicates non-zero importance scores,
and darker shades indicate higher scores. Hatched textures indicate sensitivity to
ordering.
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Table 5.2: Comparison between different explanation methods for synthetic models
composed of 30 features and 50 timesteps, indicating sample means and standard
deviations for power and FDR for detecting relevant features and timesteps, the
number of windows, and the median runtime.

Features Timesteps ) Runtime

Method Windows d
etho Power FDR Power FDR (seconds)
T s x S T s T s x S T S

TIME 0914 0.093 0.033 0.062 0.909 0.105 0.037 0.079 9.51 1.34 2810 1026
TIME-n 0909 0.092 0.015 0.039 0905 0.104 0.011 0.034 936 1.15 2810 1026
LIME 0.728 0.105 0.272 0.105 0.680 0.117 0320 0.117 17.77 3.87 1704 810
FO-u 0565 0.124 0435 0.124 0564 0.135 0436 0.135 1442 2.83 2396 759
FO-z 0.626 0.106 0374 0.106 0.615 0.113 0.385 0.113 1738 3.65 261 114
CXPlain 0.675 0.110 0.325 0.110 0.636 0.105 0.364 0.105 17.64 3.57 169 62
SAGE 0.804 0.094 0.196 0.094 0.750 0.081 0.250 0.081 27.87 5.32 207241 183574
SAGE-m 0.692 0.107 0.308 0.107 0.642 0.114 0.358 0.114 2243 6.51 2463 3037
SAGE-z 0.609 0.111 0.391 0.111 0.583 0.127 0417 0.127 1731 3.77 667 8747
PERM 0.830 0.092 0.170 0.092 0.792 0.097 0.208 0.097 22.73 5.37 11365 7444
PERM-f 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00 0.00 11365 7444

In case of SAGE and SAGE-m, these results are aggregated over 99 instead of 100
models each due to convergence issues. PERM-f does not identify any features as
important. The results corroborate the conclusions drawn from Table 5.1.

Performance vs. test set size. In addition to baseline comparisons, we examine
the performance of our method as a function of the size of the test set used to
analyze the model. We generate data sets with 6,400 instances, 30 features and 50
timesteps per feature, and increase the size of the test set available to the model in
multiples of two. Ten features are randomly selected as relevant. For each test set
size, we aggregate the results over 100 different models.

Figures 5.8 and 5.9 show the results of this analysis for regression and classifica-
tion models respectively. Figure 5.8a shows average power and FDR for relevant
features and timesteps as a function of test set size. The power increases as the
test set size increases and has high terminal values, indicating that our approach is
successful at identifying most of the relevant features and windows. The average
FDRs are well-controlled at the 0.1 level.
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Figure 5.8: Average power and FDR for synthetic regression models for detecting
(a) relevant features and timesteps, and (b) ordering relevance for features and
windows, as a function of test set size. The bands represent 95% confidence intervals,
and the dotted horizontal line represents the 0.1 level at which FDR is controlled.

Figure 5.8b shows average power and FDR for detecting features and windows
for which the ordering of values is important. Feature ordering refers to the ordering
of a feature’s values across its entire sequence. Since the distribution of values
inside the window is different from that outside the window, the model is sensitive
to the ordering of all features having windows smaller than the sequence length.
However, the model is sensitive to the ordering of values within the window only
for certain feature functions. At the largest test set size, TIME is able to detect
ordering with high accuracy while the FDRs are well-controlled at the 0.1 level.

We detect window ordering at lower power compared to feature ordering due to
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Figure 5.9: Average power and FDR for synthetic classification models for detecting
(a) relevant features and timesteps, and (b) ordering relevance for features and
windows, as a function of test set size. The bands represent 95% confidence intervals,
and the dotted horizontal line represents the 0.1 level at which FDR is controlled.

the greater difficulty of the task, and the fact that relevant features that are not
identified as important are not assessed for important windows or their ordering.

Similar conclusions may be drawn from Figure 5.9.

5.3.2 MIMIC-III Benchmark LSTM Model

To consider a challenging, real-world task, we analyze an LSTM trained on MIMIC-
I1I, a publicly available critical care database consisting of records of 58,976 intensive
care unit (ICU) admissions (Johnson et al. 2016). The model is one of several pro-
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posed as part of a benchmark suite for four different clinical prediction tasks over
MIMIC-III (Harutyunyan et al. 2017), trained to predict in-hospital mortality of
patients given the first 48 hours of their ICU stay observations. The data comprises
training, validation and test sets of 14,682, 3,221 and 3,236 stays respectively, with
13.23% of the labels being positive. There are 76 features, each represented by a
sequence of length 48. The features are derived from chart and laboratory measure-
ments, and include ‘mask’ features indicating interpolated values. Further details
on the model and features may be found in the benchmarks paper (Harutyunyan
et al. 2017).

We use the validation set to analyze the LSTM and identify important features
and windows, and whether or not their ordering is important to the model. We set
7 as 0.9 and control FDR at the 0.1 level. We sample 200 permutations to compute
importance scores and p-values. Figure 5.10 shows the results of this analysis. TIME
identifies a set of 31 features that are important for the model’s predictions, as well
as important windows for these features. The windows almost always focus on
the more recent part of the patients” histories, which is expected since death is
more likely to be predicted by abnormalities in the later stages of the ICU stay. We
also note that the ordering of timesteps is found to be important for some features,
suggesting that the model may be picking up on trends for these features.

Since ground truth is not available for this data, we cannot compute power and
FDR. Instead, to validate that our analysis has identified truly important factors, we
use the set of features and windows estimated to be important to perform feature
selection. We prune the features that are not estimated to be important and set the
out-of-window timesteps for important features to zero. We then retrain the LSTM
on the pruned data set and compare its area under the ROC curve (AUROC) to the
original model on the held-aside test set. We repeat this pruning and retraining
procedure for the baseline methods in Section 5.3.1, while limiting the number of
features and timesteps to the numbers reported by TIME (since the baselines report
non-zero importance scores for every feature and timestep). We also train and test
20 feature-selected models with 31 features and windows chosen at random.

Table 5.3 shows the results of this comparison. The AUROC for the retrained
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Figure 5.10: Heat map showing the TIME analysis of a MIMIC-III LSTM model
trained to predict in-hospital mortality. Out of a total of 76 features, 31 were
identified as important and are shown in decreasing order of their importance scores.
Each row corresponds to a single feature and shows the window corresponding to
important timesteps in color. The importance score is indicated by the color bar,
and hatched textures show windows that were found to be significant in relation to
ordering.

model pruned using TIME is close to that of the original model but significantly
higher than the models using randomly selected features, suggesting that TIME is
able to identify a salient subset of features and windows for this model. Baseline
methods are advantaged in this evaluation since they assign non-zero importance
scores to each timestep, whereas TIME is constrained to select features as important
after performing FDR control and hence affected by the chosen FDR control rate.
While AUROC serves as an imperfect surrogate of the performance of the methods
in identifying important features and timesteps, it does not assess the comprehensi-
bility of the resulting explanations, which is better represented by the number of
contiguous windows identified. The results show that TIME performs competitively
with the best-performing baselines while reporting significantly fewer contiguous

windows, leading to concise yet accurate explanations of temporal models.
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Table 5.3: Comparison of baseline methods for MIMIC-III LSTM models retrained
after feature selection, using the number of features and timesteps reported by
TIME to select the top-scoring features and timesteps for each method. PERM-f is
not included since it does not identify any important features after FDR control.

Original TIME Random  LIME FO-u FO-z CXPlain SAGE-m SAGE-z PERM

AUROC 0.838 0.835 0.801+0.015 0.784 0.805 0.818 0.834 0.840 0.834 0.837
Windows - 31 31 38 61 61 85 101 135 225

Figure 5.11 shows heat maps for the analysis of the MIMIC-III model for three
competitive baseline methods (CXPlain, SAGE-m and PERM). The heat maps show
higher fragmentation and dispersion of important windows compared to TIME
(Figure 5.10), leading to less interpretable explanations.

MIMIC-III LSTM analysis with feature hierarchy. Recall that the hypothesis
tests performed by TIME for a given feature are arranged in a hierarchy, which may
be extended to test feature groups (Figure 5.3), and for which we use a hierarchical
FDR control methodology (Section 5.2.4). Using feature hierarchies can mitigate
out-of-distribution sampling (Section 5.2.5.2), as well as provide explanations at
multiple resolutions (Chapter 4). Figure 5.12 shows a feature hierarchy created by
grouping together conceptually related features included in the MIMIC-III LSTM
model. TIME is used to explain the model in conjunction with the hierarchy. Feature
groups are permuted in addition to features, and important windows for feature
groups are used to prune important windows for their constituent features. Features
belonging to unimportant feature groups are not tested. Figure 5.13 shows a subset
of the hierarchy comprising important features and feature groups identified by
TIME. Figure 5.14 shows the corresponding heat map for base features. The analysis
identifies fewer and more compact windows (27 windows, 859 timesteps) compared
to Figure 5.10, where no hierarchy is used (31 windows, 1111 timesteps). Table 5.4
shows baseline comparisons for feature selection using this analysis, analogous to
Table 5.3 (random feature selection is not included). The retrained model for TIME
performs nearly as well (AUROC 0.833) as when not using a hierarchy (AUROC
0.835), and performs competitively with the best-performing baseline methods.
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Figure 5.11: Heat maps showing explanations for the MIMIC-III LSTM model
generated by (a) CXPlain and (b) SAGE-m.
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Figure 5.11: Heat maps showing explanations for the MIMIC-III LSTM model
(cont.) generated by (c) PERM. The number of important timesteps is selected to
match the number reported by TIME. Different methods use different importance
scales, as indicated by the color bars.
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Figure 5.12: Hierarchy over features included in the MIMIC-III LSTM model, created
by grouping together conceptually related categories of features. Only feature
groups are shown, with each leaf node containing two or more individual features,

including a mask feature.
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Table 5.4: Comparison of baseline methods for MIMIC-III LSTM models retrained
after feature selection, using the number of features and timesteps reported by
TIME in conjunction with a feature hierarchy to select the top-scoring features and
timesteps for each method. PERM-f is not included since it does not identify any
features as important after performing FDR control.

Original TIME LIME FO-u FO-z CXPlain SAGE-m SAGE-z PERM

AUROC 0.838 0.833 0.780 0.784 0.806 0.833 0.839 0.836 0.833
Windows - 27 41 59 59 73 90 129 219
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5.4 Discussion

We have presented TIME, a method to explain black-box models having an explicit
sequential or temporal structure. TIME identifies the set of important features and
their degree of importance, and for each important feature, it identifies the window
that the model focuses on and the significance of ordering within the window.
It uses hypothesis testing and an FDR control methodology to detect these with
statistical rigor.

Our experiments showed that on synthetic data, TIME performs significantly
better than baseline methods at identifying relevant features and timesteps, and
is potentially more interpretable, since it identifies important features in terms of
contiguous windows rather than scattered fragments. Moreover, TIME identifies
the significance of feature ordering and controls for false discoveries. Like other
marginal permutation-based feature importance methods, TIME is fairly efficient
to compute. We applied TIME to an LSTM trained to predict risk of in-hospital
mortality from ICU data, and we identified salient features, windows and ordering
in patients’ clinical histories that the model focuses on. Using the important features
and timesteps identified by this analysis to perform feature selection, we showed
that TIME performs competitively with the best-performing baselines while yielding

more comprehensible explanations.
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6 CONCLUSIONS AND FUTURE WORK

Machine learning continues to have a growing impact on society, and the need for
better methods to explain the decision-making of black-box models has never been
greater. Interpretability in machine learning has evolved into a dynamic field of
research with many areas of inquiry. Yet it remains a subject that often poses more
questions than answers and presents challenges with no simple or direct solutions.

In this thesis, we explored issues of comprehensibility arising from the use
of complex models for tasks characterized by large, structured feature represen-
tations. We focused on the development and analysis of black-box models that
address tasks in challenging biomedical domains where interpretability is essen-
tial. We developed model-agnostic methods that can interpret these and other
models by leveraging feature abstractions to expand the explanation vocabulary,
while providing statistically grounded characterizations of population-level model
behavior.

6.1 Summary of Contributions

1. Modeling asthma exacerbations from electronic health records (Chapter3).
We presented research on modeling asthma exacerbations, a prevalent acute
respiratory condition, from EHRs. We developed an algorithm for phenotyp-
ing asthma excarbations from EHRs using a set of expert-curated features.
We used this algorithm to identify exacerbations in our patient cohort, which
we then utilized for two key tasks in modeling exacerbations. First, we con-
sidered the task of predicting exacerbations from a patient’s clinical history as
represented in their EHR, and performed a comparative study of supervised
learning approaches for predicting near-term exacerbations. We were able
to learn models that predict exacerbations with a moderately high degree
of accuracy, serving as proof-of-concept for models that can enable better
care for patients suffering acute asthma. Second, we considered the task
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of inferring temporal exacerbation phenotypes from EHRs using a mixture
of semi-Markov models. We showed that our approach is able to identify
subpopulations of asthma patients sharing distinct temporal and seasonal

patterns in their exacerbation susceptibility.

. Interpreting black-box models at multiple resolutions (Chapter 4). We
proposed a model-agnostic approach to interpreting learned models at various
levels of resolution. Given a learned model and a hierarchy over the features
extracted from domain knowledge or from data, our approach identifies
features and feature groups important to the model’s predictions. It uses a
hypothesis testing methodology and a novel application of hierarchical FDR
control to assess the statistical significance of features and feature groups. We
also presented an approach to identify important feature interactions. We
validated our approach by analyzing models using synthetic data, as well as
real data from two biomedical domains, and demonstrated how our approach

lends insight into complex learned models.

The analysis of the asthma exacerbation prediction model showed the differ-
ential impact of EHR categories on the predicted outcome. We also examined
which diagnoses, as defined by the ICD-9 hierarchy, are important in deter-
mining the model’s predictions. Our analysis highlighted several known and
some unknown (but potentially important) diagnoses associated with asthma

exacerbations, as identified by the learned model.

. Interpreting temporal black-box models (Chapter 5). We presented TIME, a
method to explain black-box models having an explicit sequential or temporal
structure. Our approach identifies the set of features important to the models’
predictions as well as importance scores to indicate their degree of importance.
For each important feature, it identifies the window that the models focus on
and the significance of ordering within the window. TIME uses permutations
both for assessing the importance of features and for hypothesis testing using
permutations tests, followed by hierarchical FDR control. We showed the

close connections of our method to existing permutation-based, theoretically
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grounded feature importance measures, and illustrated how it is able to
identify important features and windows even in the presence of out-of-

distribution sampling and feature correlations.

Our experiments showed that on synthetic data, TIME performs significantly
better than baseline methods at identifying relevant features and timesteps
and produces more interpretable explanations, since it identifies important
features in terms of contiguous windows rather than isolated timesteps. More-
over, it identifies the significance of feature ordering and controls for false
discoveries. We showed that TIME is fairly efficient to compute. We used
TIME to analyze an LSTM trained to predict risk of in-hospital mortality from
ICU data, and we identified salient features, windows and ordering in pa-
tients’ clinical histories that the model focuses on. We showed that a model
trained on features and timesteps selected using this analysis performs nearly
as well as the original model, and produces more concise explanations than

comparable baseline methods.

Finally, we provided a software package that includes an efficient, distributed
implementation of TIME as well as tools to readily visualize the model expla-

nations generated by the method.

6.2 Future Directions

In this section, we present some promising directions for future work based on the

contributions made by this thesis.

6.2.1 Predictive Modeling using Electronic Health Records

Other sources of data. Population and environmental data: Population data such as
census tract characteristics and the area deprivation index can provide information
about the epidemiological characteristics of diseases being modeled. Environmental
data such as pollution and weather data can also be valuable, particularly for

diseases with significant seasonal and environmental factors such as asthma.
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Unstructured data: Our work uses structured data present in EHRs, including
diagnoses, medications, and procedures, for predictive modeling. However, EHRs
also include a significant amount of rich, unstructured data in the form of clinical
notes, which may be analyzed using natural language processing techniques.

Genomic data: Genetic profiles of patients, if available, present a significant
opportunity for augmenting the information embedded in EHRs and improving

predictions, particularly for personalized and precision medicine.

Unsupervised and semi-supervised approaches. Unsupervised and semi-supervised
approaches have the potential to significantly improve predictive models trained

for specific tasks of interest. In case of asthma exacerbations, our approach based

on a mixture of semi-Markov models could lend value to the supervised learning
approach for predicting exacerbations. One way in which we might do this is by
using the mixture model to cluster each patient based on their past exacerbation
history and then computing a seasonally varying, cluster-specific risk score to use

as another input feature for the exacerbation prediction models.

Institutional variability. Conventions, practices, ontologies, and systems for
recording EHRs can vary significantly across healthcare institutions and states.
The robustness and practical usefulness of the approach may be significantly im-
proved by developing and evaluating models across multiple institutions.

6.2.2 Black-box Model Explanation

Local explanations. Our work focuses on global explanations, i.e., explanations of
model behavior across the distribution of instances. While global explanations are
valuable for many reasons, such as feature engineering and scientific understanding,
local explanations are useful for explaining specific decisions made by the model.
One way to extend our permutation-based approach to local explanations would be
to use a generative model to generate instances in the neighborhood of the instance
being explained, and to constrain perturbations to this neighborhood.
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Model translation. Model translation methods learn interpretable explanatory
models such as decision trees to approximate the black-box model. The important
features, feature groups, and temporal properties of the features identified by our
approach could be used to augment or replace the representation used by such an
explanatory model in order to produce more comprehensible explanations, while
maintaining high fidelity to the black-box model.

User studies. The effect of different feature abstractions on the comprehensibility
of explanations and their inducement of trust could be empirically evaluated with
user studies. Users could be asked to evaluate explanations using progressively
granular feature sets, presented in contrast with important features resolved using
feature hierarchies. Temporal explanations indicating windows of importance
could be evaluated visually, such as using heat maps, or by translating them into
descriptive decision rules. To isolate the effect of explanation accuracy on trust,
explanations could be grouped based on their accuracy as measured by retraining
and retesting the model after performing feature selection.

Other feature organizations. We use a feature hierarchy to identify groupings of
related features in order to interpret models at multiple resolutions. In place of a
hierarchy, however, we could consider other organizations of the features, such as
using a directed acyclic graph where a feature may belong to multiple groups.

Other temporal alignments. Our approach for permutation across sequences
currently assumes regularly sampled, time-aligned and fixed-length sequences.
This assumption could be generalized by considering windows that are aligned in
other ways, such as on an absolute scale (e.g., dates on the Gregorian calendar)
or a relative scale (e.g., patient age). Where applicable, irregularly sampled time

series could be transformed to a single time scale.

Other temporal properties. TIME makes the assumption that there exists a single
contiguous window that is important, which could be generalized at the cost of
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increased computational and explanation complexity. Additionally, we could iden-
tify other temporal properties of the model by perturbing occurrences of frequently
observed temporal patterns in addition to contiguous windows. Another approach
might be to identify important pairwise interactions between windows by testing
pairs of non-correlated windows for non-additivity (Equation 4.2). Candidate in-
teractions could be selected by first identifying important windows for each feature

using TIME and then searching for pairs of windows having low cross-correlation.

Conditional permutations. Like many other explanation methods, TIME may
perform out-of-distribution sampling, potentially breaking correlations between
features, due to its use of marginal permutations for feature perturbation. Condi-
tional permutations (Strobl et al. 2008) could be used to ameliorate this problem at

the cost of increased computational complexity.
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