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| Big Picture in 1999

e The Need for Cancer Classification

e Cancer classification very important for advances in cancer treatment.

e Cancers of Identical grade can have widely variable clinical courses

* Focus on improving cancer treatment by:
e Targeting specific therapies to pathogenetically distinct tumor types
e To maximize efficacy

e To minimize toxicity



/ ;
Big Picture in 1999

* Cancer classification based on:
* Morphological appearance.
e Enzyme-based histochemical analyses.
e Immunophenotyping.
» (Cytogenetic analysis.

e Methods had serious limitations:

e Tumors with similar histopathological appearance can follow significantly different clinical

courses and show different responses to therapy
e Some of these differences have been explained by dividing tumors into sub-classes

e In other tumors, important sub-classes may exist but are yet to be defined

e (lassification historically relied on specific biological insights



— e

Executive Summary

A generic approach to cancer classification based on Gene Expression Monitoring by

DNA microarrays

Applied to human Acute Leukemias as a test case

A Class Discovery procedure automatically discovered the distinction between AML

and ALL without prior knowledge.

An automatically derived Class Predictor to determine the class of new leukemia cases.

Bottom-line: A general strategy for discovering and predicting cancer classes for

other types of cancer, independent of previous biological knowledge.
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Types of Cancer

Some common
carcinomas:

Lung

Breast (women)

Colon

Bladder
Prostate (men)

Leukemias:
Bloodstream

Lymphomas:
Lymph nodes

Some common
sarcomas:

Fat
Bone

Muscle




Leukemia

Leukemia is Cancer of the Blood or Bone Marrow

Characterized by abnormal production of WBC in the body
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Classification of Leukemia

e Acute vs Chronic

e Chronic: The abnormal cells are more mature (look more like normal

white blood cells)
e Acute: Abnormal cells are immature (look more like stem cells).
* Myelogenous vs Lymphocytic
e Myelogenous: Leukemias that start in early forms of myeloid cells

e Lymphocytic: Leukemias that start in immature forms of lymphocytes



Classification of Leukemia
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Some Statistics on Leukemia

Expected New Cases of Leukemia in

Probability of Developing Leukemia
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More Background on Leukemia

In 1999, no single test is sufficient to establish the diagnosis

A combination of different tests in morphology, histochemistry

and immunophenotyping used.

Although usually accurate, leukemia classification remains

imperfect and errors do occur
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Problem

How do we categorize different types of Cancer so that we can increase

effectiveness of treatments and decrease toxicity?

Motivation

No general approach for identifying new cancer classes (Class Discovery)

or for assigning tumors to known classes (Class Prediction).
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Idea / Intuition

Cancers can be automatically classified based on Gene Expression.

Objective

To develop a more systematic approach to cancer classification based on
the simultaneous expression monitoring of thousands of genes using

DNA microarrays with leukemia as test cases.



Gene Expression Monitoring

* Gene Expression

e Process by which information from a gene is used in the synthesis of

a functional gene product.
e Products are typically proteins

e In tRNA or snRNA genes, the product is a functional RNA.



Problem Breakdown

* Class Prediction: Assignment of particular tumor samples

to already-defined classes (supervised learning).

* (Class Discovery: Defining previously unrecognized tumor

subtypes. (unsupervised learning).



/

Class Prediction

How can we use an initial collection of samples belonging to known

classes to create a class Predictor?

* Issue-1: Are there genes whose expression pattern are strongly

correlated with the class distinction to be predicted?

e Issue-2: How do we use a collection of known samples to create a
“class predictor” capable of assigning a new sample to one of two

classes?

e Issue-3: How do we test the validity of these class predictors?



Data: Biological Samples

Primary samples:

e 38 bone marrow samples (27 ALL, 11 AML)

e obtained from acute leukemia patients at diagnosis
Independent samples:

e 34 leukemiasamples (24 bone marrow, 10 peripheral blood samples)
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Process: Use DNA Microarrays

MicroArrays contained probes for 6817 human genes
RNA prepared from cells was hybridized to high-density oligonucleotide MA

Samples were subjected to a priori quality control standards regarding the

amount of labeled RNA and the quality of the scanned microarray image.

About DNA Microarrays
e Also known as DNA chip or biochip

e (Collection of microscopic DNA spots attached to a solid surface.

e Used to measure the expression levels of large numbers of genes

simultaneously or to genotype multiple regions of a genome.
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Issue-1: Are there strong correlations?

Issue-1: Are there genes whose expression pattern are strongly

correlated with the class distinction to be predicted?

e Use Neighborhood Analysis

e Objective: To establish whether the observed correlations were stronger than would be

expected by chance

* Defines an "idealized expression pattern” corresponding to a gene that is uniformly high in

one class and uniformly lowin the other

o Tests whether there is an unusually high density of genes "nearby" (or similar to) this

idealized pattern, as compared to equivalent random patterns.

* Why do we want to start with informative genes?

e To be readily applied in a clinical setting

e Highly instructive



Neighborhood Analysis

vig) = (e,, e, ..., )
C=(C,C,...;.C)
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Compute the correlation between v(g) and c.
1. Euclidean distance
2. Pearson correlation coefficient.

3. P(g,c) =[un,(9) - ny(9)l/l o,(g) + o,(g)]

V(g) = expression vector, with e, denoting the expression level of gene g in ith sample
C=vector of idealized expression pattern. c;= +1or o based on i-th sample belonging to class 1 or 2

P(g,c) = Measure of Signal-to-noise ratio



Neighborhood Analysis
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Results of Neighborhood Analysis

Neighborhood Analysis showed that roughly 1100 genes of the
6,817 genes were more highly correlated with the AML-ALL

class distinction than would be expected by chance

Suggested that classification could indeed be based on

expression data.



Results of Neighborhood Analysis
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Fig. 2. Neighborhood analysis: ALL versus AML. For the 38 leukemia samples in the initial data set,
the plot shows the number of genes within various “neighborhoods” of the ALL-AML class
distinction together with curves showing the 5 and 1% significance levels for the number of genes
within corresponding neighborhoods of the randomly permuted class distinctions (76, 17). Genes
more highly expressed in ALL compared to AML are shown in the left panel; those more highly
expressed in AML compared to ALL are shown in the right panel. The large number of genes highly
correlated with the class distinction is apparent. In the left panel (higher in ALL), the number of
genes with correlation P(g,c) > 0.30 was 709 for the AML-ALL distinction, but had a median of 173
genes for random class distinctions. P(g,c) = 0.30 is the point where the observed data intersect
the 1% significance level, meaning that 1% of random neighborhoods contain as many points as
the observed neighborhood around the AML-ALL distinction. Similarly, in the right panel (higher in
AML), 711 genes with P(g,c) = 0.28 were observed, whereas a median of 136 genes is expected for
random class distinctions.



Issue-2: Building a Predictor
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Issue-2: How do we use a collection of known samples to create a “class

predictor” capable of assigning a new sample to one of two classes?
Use a set of informative genes to build the predictor

They chose 50 genes most closely correlated with AML-ALL distinction in
the known samples.

e Why 50? Why not 20 or 100?

e Predictors with 10 to 200 genes all gave 100% accurate classification

e 50 seemed like a reasonably robust against noise but small enough to be

readily applied in a clinical setting



Class Predictor via Gene Voting

Developed a procedure that uses a fixed subset of “informative genes”
Makes a prediction on basis of the expression level of these genes in a new sample
Each informative gene casts a “weighted vote” for one of the classes

The magnitude of each vote dependent on the expression level in the new sample

and the degree of that gene's correlation with the class distinction

Votes were summed to determine the winning class
“Prediction Strength” (PS), a measure of the margin of victory that ranges from 0 to 1

The sample was assigned to the winning class if PS exceeded a predetermined

threshold, and was otherwise considered uncertain.



Class Predictor via Gene Voting

Parameters (a,, b ) are defined for each informative gene
a, = P(g,c)

b, = [1,(9) + K,(g)1/2

Vg = 04X~ by)

Vi=2 |V, |; forV,>0

V,=3 |V, |; forV,<0

PS=(V . -V

win lose

)/(Vwin 22 VI

ose)

The sample was assigned to the winning class for PS > threshold.



Class Predictor via Gene Voting
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Issue-3: Validation of Class Predictors

Issue-3: How do we test the validity of the class predictors?

* Two-step validation:

e Cross-Validation (Leave-one-out)

e Independent Sample Validation



Results of Validation of Class Predictors

Initial Samples:

e 36 of the 38 samples as either AML or ALL and two as uncertain

e All 36 samples agree with clinical diagnosis

Independent Samples:

e 29 of 34 samples are strongly predicted with 100% accuracy
e Average PS was lower for samples from one lab that used a different protocol

e Should standardize of sample preparation in clinical implementation.



PS (Prediction Strength)

Validation of Class Predictors

Cross-Val
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Prediction Strengths were quite high:
Median PS = 0.77 in cross-validation

Media PS = 0.73 in independent test
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A Look at the Set of 50 Genes

The list of informative genes used in the predictor was highly instructive

Some genes, including CD11c, CD33, and MB-1, encode cell surface

proteins useful in distinguishing lymphoid from myeloid lineage cells.

Others provide new markers of acute leukemia subtype. For example, the
leptin receptor, originally identified through its role in weight regulation,

showed high relative expression in AML.

Together, these data suggest that genes useful for cancer class prediction

may also provide insight into cancer pathogenesis and pharmacology.
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C-myb (U22376)

Protcasome 1ota (X59417)

MB-1 (U05259)

Cyclin D3 (M92287)

Myosin light chain (M31211)
RDAPp48 (X74262)

SNIF2 (D26156)

HKrT-1 (§S50223)

E2A (M31523)

Inducible protein (L47738)

Dynein light chain (U132944)
Topoisomerase 11 B(ZIS5115)
IRF2 (X 15949)

THHER (X63469)

Acyl-Coenzyme A dehydrogenase (M91432)
SNF2 (U29175)

(Ca2+)-ATPasc (Z698K1)

SRP9 (U20998)

MCM3 (D38073)

Deoxyhypusine synthase (U126266)
Op 18 (M31303)

Rabaptin-5 (YOS61 2)
Heterochromatin protein p25 (U35451)
1L.-7 receptor (M29696)
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MAD-3 (M69043)
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Lysozyme (M19045)
Properdin (MS3652)
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When Does This Methodology Work Best?

Can be applied to any measurable distinction among tumors
Importantly, such distinctions could concern a future clinical outcome

Ability to predict response to chemotherapy:

e Among the 15 adult AML patients who had been treated and for whom long-term clinical

follow-up was available.

e No evidence of a strong multigene expression signature was correlated with clinical

outcome (This could reflect the relatively small sample size).

e single most highly correlated gene out of the 6817 genes was the homeobox gene

HOXA9, which was over-expressed in patients with treatment failure

e Further clinical trials needed to test the hypothesis that HOXA9 expression plays a role in

predicting AML outcome.
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Class Discovery

If the AML-ALL distinction was not already known, could it

have been discovered simply based on gene expression?

Issues in Class Discovery:

e Cluster tumors based on Gene Expression

e Determining whether putative classes produced are meaningful
i.e. whether they reflect true structure in the data rather than

simply random aggregation.
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Class Discovery

Clustering for class discovery (Unsupervised)

Self-organizing maps (SOMs) technique:
e User specifies the number of clusters to be identified.

e SOM finds an optimal set of "centroids" around which the data points

appear to aggregate.

e |t then partitions the data set, with each centroid defining a cluster

consisting of the data points nearest to it.



Video on Clustering

K-Means Clustering:
https://www.youtube.com/watch?v=_aWzGGNrcic

SOM:
https://www.youtube.com/watch?v=HgH6s-x-0YE



https://www.youtube.com/watch?v=_aWzGGNrcic
https://www.youtube.com/watch?v=H9H6s-x-0YE
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Self Organizing Map (SOM)

SOM is a mathematical cluster analysis for recognizing and classifying
features in complex, multidimensional data (similar to K-mean approach)
Chooses a geometry of “nodes”

Nodes are mapped into K-dimensional space, initially at random

Iteratively adjust the nodes

Adjusting the Nodes:

e Randomly select a data point P
e Move the nodes in the direction of P
e The closest node Np is moved the most

e Other nodes are moved depending on their distance from N, in the initial geometry



izing Map (SOM)

Self Organ
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Results of Two-Cluster Analysis

Two-cluster SOM was applied to automatically group the 38 initial
leukemia samples into two classes on the basis of the expression pattern of

all 6817 genes.

Clusters were evaluated by comparing them to the known AML-ALL classes
e Class Al contained mostly ALL (24 of 25 samples)
e Class A2 contained mostly AML (10 of 13 samples)

e SOM was thus quite effective at automatically discovering the two types of

leukemia.
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Discovering New Classes

Issue: How do we evaluate such putative clusters if the "right"
answer were not already known?

Idea: Class discovery can be tested using Class Prediction

Intuition: If putative classes reflect true structure, then a class predictor

based on these classes should perform well.

Discussion: Is this Reasonable? Is it possible that the putative classes

perform well even if they do not reflect true structure?



Process & Results (Two Cluster)

Clusters A1 and A2 were evaluated:

e Constructed predictors to assign new samples as “Type Al1" or “Type A2

Cross-Validation:
e Predictors that used a wide range of different numbers of informative genes
performed well
e Cross-validation thus not only showed high accuracy, but actually refined the
SOM-defined classes except for the subset of samples accurately classified
e Similar analysis on random clusters yielded predictors with poor accuracy in

cross-validation



Process & Results (Two Cluster)

Independent Set Validation:

e Median PS was 0.61, and 74% of samples were above threshold

e High PS indicates that the structure seen in the initial data set is also seen in the

independent data set
e Predictors from random clusters consistently yielded low PS on independent data set

Conclusion:

e A1-A2 distinction can be seen to be meaningful, rather than simply a statistical

artifact of the initial data set

e Results show that the AML-ALL distinction could have been automatically discovered

and confirmed without previous biological knowledge



Process & Results (Four Cluster)

SOM divides the samples into four clusters
Largely corresponded to AML, T-lineage ALL, B-lineage ALL & B-lineage ALL

Four-cluster SOM thus divided the samples along another key biological

distinction

Evaluated classes by constructing class predictors. The four classes could be

distinguished from one another, with the exception of B3 versus B4

The prediction tests thus confirmed the distinctions corresponding to AML, B-
ALL, and T-ALL

Suggested that it may be appropriate to merge classes B3 and B4, composed

primarily of B-lineage ALL
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Conclusion

Technique for creating class predictors

These class predictors could be adapted to a clinical setting, with appropriate

steps to standardize the protocol for sample preparation.
Such a test supplementing rather than replacing existing leukemia diagnostics;

Class predictors can be constructed for known pathological categories and

provide diagnostic confirmation or clarify unusual cases.

The technique of class prediction can be applied to distinctions relating to

future clinical outcome, such as drug response or survival.

Class prediction provides an unbiased, general approach to constructing such

prognostic tests.



Conclusion

In principle, the class discovery techniques discovered here can be used to

identify fundamental subtypes of any cancer.

In general, such studies will require careful experimental design to avoid

potential experimental artifacts--especially in the case of solid tumors.
Various approaches could be used to avoid such artifacts;

Class discovery methods could also be used to search for fundamental

mechanisms that cut across distinct types of cancers.
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