Evaluating cell lines as tumor models by comparison of genomic profiles

Domcke, S. et al. Nat. Commun 4:2126

Motivation

➤ Problem: Genomic differences between cancer cell lines and tissue samples

TCGA and CCLE provide molecular profiles for tumor samples and cell lines

Compared high-grade serous ovarian cancer (HGSOC) to genomic profiles to identify suitable cell lines for *in vitro* models

Ovarian Cancer

- ➤ Over 100,000 women die of ovarian cancer each year
- > 5th leading cause of cancer death
- > Divided into 4 major histological subtypes:
 - ➤ Serous (study's focus)
 - **≻** Endometrioid
 - **≻**Clear Cell
 - > Mucinous carcinoma

➤ Common cell line models for ovarian cancer and HGSOC are: SK-OV-3, A2780, OVCAR-3, CAOV3 and IGROV1

➤ Need for well-characterized cell line models for cell types

➤ Found differences between most common models and majority of HGSOC samples

Figure S1

- Analyzed 316 HGSOC tumor samples from TCGA and 47 ovarian cancer cell lines from CCLE
- > DNA copy-number, mutation and mRNA expression data
- > Fraction genome altered (FGA):

$$FGA = (\sum_{CNi > T} L(i)) / (\sum L(i))$$

CN=log2(sample intensity/reference intensity)

L(i) is length of segment i

T is threshold value of Cn_i above which segments are altered

- T= 0.2 for TCGA samples
- T=0.3 for CCLE cell lines

Suitability of HGSOC Models

$$S = A + B - 2 \times C - D/7$$

A = Correlation with mean CNA of tumors

B = 1 for cell lines with *TP53* mutation or else 0

C = 1 for hypermutated cell line or else 0

D = # of genes mutated in 7 "non-HGSOC" genes

Future Directions

- Drug response profiles using accurate cell line models with known alterations for patient selection in clinical trials
- Perform preclinical drug screens for moreinformed patient therapy
- Any others?