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Biologists are from Venus, 

Mathematicians are from Mars, 

They cosegregate on Earth, 

And conditionally associate to create a DIGGIT.



Motivation

1. Identification of Driver Mutations is usually performed with statistical models.

2. These models can identify only the highly penetrant and frequent driver events. 

 To achieve statistical power (in context of multiple hypothesis-testing correction), these models need large 

cohorts and/or large effect sizes.

3. Moreover, these models typically do not provide mechanistic insight.

4. On the other hand, Gene-based biochemical studies can provide insight into regulatory 

mechanisms but do not scale.



Problem

Can we identify genetic determinants of a disease:

 Can we go beyond the highly penetrant and frequent driver events 

 While remaining statistically rigorous

 Without using extremely large cohorts

Can such an algorithm provide mechanistic insight into the process by which these genetic 

determinants play out their effect?



Idea

1. Overall Idea:

• Diverse alteration patterns induce common aberrant signals.

• These signals converge on regulatory modules and associated MR proteins that represent key regulatory bottlenecks.

• Dysregulation of these bottlenecks is both necessary and sufficient for disease initiation/progression.

• Once MR proteins and modules representing regulatory bottlenecks are identified, driver genetic events must be harbored either by 

these MRs or by their upstream pathways.

2. Algorithm can identify these driver genetic events by systematically exploring regulatory/signaling networks upstream of 

these MR genes:

• Approach is likely to collapse the number of testable hypotheses.

• Approach may provide regulatory clues to help elucidate associated mechanisms.

Solution: DIGGIT: Driver Gene Inference by Genetical-Genomics and Mutual Information



DIGGIT: Summary of Findings

1. Combining cellular networks, gene expression, and 

genomic data (DIGGIT) finds novel driver mutations.

2. Uncovered KLHL9 deletions as upstream activators of 

two previously established Master Regulators of the 

subtype, C/EBPβ and C/EBPδ.

3. KLHL9 deletions predict mesenchymal transformation 

and poorest prognosis in GBM.

4. KLHL9 post-translationally regulates CEBPβ/δ.

5. Rescue of KLHL9 expression inhibits tumor growth by 

inducing degradation of C/EBP proteins and abrogating 

the mesenchymal signature.

6. DIGGIT can be used on any genetic disease with 

matched expression and genomic data.



MES-GBM: An Ideal Candidate

1. Glioblastoma Multiforme (GBM) is the most common human brain malignancy.

2. Virtually incurable, very aggressive and deadly - average survival of 12–18 

months post-diagnosis.

3. Three subtypes associated with expression of mesenchymal, proliferative, and 

proneural (PN) genes.

4. MES-GBM has the worst prognosis. 

5. Despite multiple studies, genetic determinants of MES-GBM are largely elusive.

6. Provides an ideal context to test this rationale, as its established genetic 

determinants account for < 25% of the patients.



Link to Prior Work

1. In 2010 (The Transcriptional Network for Mesenchymal Transformation of 

Brain Tumours), reported that aberrant co-activation of the transcription 

factors (TFs) C/EBPβ, C/EBPδ, and STAT3 is necessary and sufficient to 

induce mesenchymal reprogramming in GBM.

2. This suggested that this TF module represents an obligate pathway 

or regulatory bottleneck between driver alterations and aberrant 

mesenchymal program activity.

3. Hypothesize that the genetic drivers of MES-GBM are either among these 

genes or in their upstream pathways.



Mutual Information
Slides borrowed from

University of Wisconsin, Madison (CS 760) 

University of Illinois, Chicago (ECE 534)



Entropy



Entropy



Entropy: Example

The Entropy of a randomly selected letter in an 

English document is about 4.11 bits. Assuming its 

probability is as given in the table, we obtain this 

number by averaging log 1/pi (shown in the fourth 

column) under the probability distribution (third 

column)  



Entropy is Important



Mutual Information



Mutual Information and Entropy



Conditional Mutual Information



Mutual Information and Correlation

Correlation:

1. Correlation measures the linear relationship or monotonic relationship (e.g. Pearson's correlation or 

Spearman's correlation) between two variables, X and Y.

Mutual Information:

1. Mutual information is more general and measures the reduction of uncertainty in Y after observing X. 

2. It is the KL distance between the joint density and the product of the individual densities. 

3. So MI can measure non-monotonic relationships and other more complicated relationships.



DIGGIT

Methods / Process



Overall flowchart of the DIGGIT pipeline. 

Green: Use of MR Inference results

Red arrows: Use of F-CNVGs results

Blue arrows: MINDy/aQTL analysis results

DIGGIT: Overall Process

1. 5-step pipeline process

2. Inputs:

 Large set of Gene Expression Profiles (GEPD)

 Sample matched Genetic Variant Profiles (GVPD)

 Accurate and comprehensive repertoire of cell-context-

specific molecular interactions (Interactome)

3. Output: 

 A p-value ranked list of candidate driver F-CNVGs.



Step-0: ARACNE

1. ARACNE (Algorithm for the Reconstruction of Accurate Cellular Networks), a novel algorithm, uses 

microarray expression profiles to reverse engineer human regulatory network.

2. Specifically designed to scale up to the complexity of regulatory networks in mammalian cells, yet general 

enough to address a wider range of network deconvolution problems. 

3. This method uses an information theoretic approach (Mutual Information) to eliminate the vast majority of 

indirect interactions typically inferred by pairwise analysis.

4. On synthetic datasets, ARACNE achieves extremely low error rates and significantly outperforms established 

methods, such as Relevance Networks and Bayesian Networks. 

5. DIGGIT uses ARACNE to reverse engineer the cellular network (Interactome) from GEPD



1. Inferred using the MARINa algorithm. 

2. One MR (blue circle) is represented in the panel. 

3. Grey circles represent the repertoire of genetic alterations that may be associated 

with the phenotype

4. Those within the two diagonal lines (funnel) represent alterations in pathways 

upstream of the MR. 

5. The red circle represents a bona fide causal driver alteration.

Step-1: MR Analysis
Objective:

Identify candidate MRs as TFs that activate over-expressed and repress under-expr genes.

Inputs: 

1. Context specific regulatory network (Interactome) rev-engineered from GEPD set

2. Gene expression signature of interest

Results: 

Identified 6 MR genes - C/EBPβ, C/EBPδ, STAT3, BHLHB2, RUNX1, and FOSL2



Step-2: F-CNVG Analysis

1. F-CNVGs are determined by association analysis of copy number and gene expression.

2. Select copy-number alterations (CNVGs) whose ploidy is informative of gene expression as 

candidate functional CNVs (F-CNVGs). 

3. Assessed based on (1) mutual information (MI) between copy number and expression or (2) 

differential expression in wild-type (WT) versus amplified/deleted samples.

4. Removes a large number of genes whose expression is not affected by ploidy. 

5. The insert shows two examples: (a) an example of no dependency between copy number and 

expression and not selected as a candidate F-CNVG and (b) an example with highly significant 

dependency and thus selected as a candidate F-CNVG.

Objective:

Identify candidate functional CNVs (F-CNVGs).

Inputs: 

1. GEPD & sample matched GVPD.

Results: 

Identified 1,486 candidate F-CNVGs.

Inferred F-CNVGs included most genes previously reported as GBM drivers (14/18 > 88%).



Step-3: MINDy Analysis

1. Use Conditional Mutual Information: Compute the cMI I[MR;T|M], where M is a candidate 

modulator gene and T is an ARACNe-inferred MR-target gene. 

2. Blue arrows represent physical signal-transduction interactions upstream of the MR. 

3. Green arrows represent one specific M → MR → T triplet tested by MINDy, as an example. 

4. MINDy does not infer the blue arrows but only the fact that a protein is an upstream modulator of 

MR activity.

Objective: 

Identify F-CNVGs that are candidate post-translational modulators of MR activity.

Inputs: 

MR list(step 1) & F-CNVG list (step 2).

Output:

Generates a p value-ranked list of candidate F-CNVGs in pathways upstream of MR genes.

Results: 

Identified 92 statistically significant candidate MES-MR modulators.



CMI in MINDy Analysis



1. Activity quantitative trait loci (aQTL) are inferred based on the statistical significance of the MI between copy 

number and MR activity.

2. Differential MR activity is inferred from their differential target expression, using a single-sample version of 

MARINa. Cosegregation computed (shown by the blue arrows). 

3. The vertical gradient rectangle shows all genes sorted from the most over-expressed (red) to the most under-

expressed (blue), when comparing samples with copy-number alterations in a gene (Gene X) (thick red lines) to 

WT samples (thin black lines). 

4. If MR targets significantly cosegregate with the differential expression signature (i.e., if positively regulated and 

repressed MR targets, shown as red and blue bars, are over- and under-expressed, respectively, as shown), then 

Gene X alterations are likely to affect MR-activity.

Step-4: aQTL Analysis
Objective: 

Identify F-CNVGs whose alterations cosegregate with aberrant MR activity.

Inputs: 

MR list (step 1), F-CNVG list (step 2), GEPD data set, and the Interactome.

Output:

Generates a p value-ranked list of candidate F-CNVG-aQTL.

Results: 

125 out of 1,486 F-CNVGs from step 2 were inferred as aQTLs.



Step-5: Conditional Association Analysis

1. Use conditional association analysis 

2. Each cell shows the statistical significance of the association between the i-th gene (rows) and the phenotype of 

interest (as a heatmap), when considering only samples that have no alterations in the j-th gene (columns). 

3. For instance, when conditioning on G3, no other gene is significantly associated with the subtype, whereas G3 is still 

significantly associated with the subtype when conditioning on G1, G2, or G4. 

4. This suggests that G3 is a bona fide driver gene.

Objective: 

Identify F-CNVGs that abrogate all other associations with the phenotype (e.g., the MES-

GBM subtype) when samples harboring their alterations are removed from the analysis. 

Inputs: 

MINDy/aQTL-prioritized F-CNVGs (steps 3/4), a phenotypic classifier, and GEPD data set 

Output:

Generates a final p value-ranked list of candidate driver F-CNVGs

Results: 

C/EBPδ and KLHL9 abrogated assciation of all other F-CNVGs, while remaining significant

Conditional analysis discarded CDKN2A, a well-established tumor suppressor



DIGGIT analysis of pathways upstream of MES-GBM MRs identifies 

CEBPδ amplification and KLHL9 deletions as candidate genetic 

determinants of the GBM-MES subtype. p values shown represent the 

integrated p value of the aQTL and MINDy steps.

Co-mutated F-CNVGs are shown as a network, with distance between 

connected nodes inversely proportional to the statistical significance of their 

cosegregation, as assessed by Fisher’s exact test (FET). Only statistically 

significant pairs are shown (p = 0.05, corrected), with amplifications and 

deletions represented as blue and red nodes, respectively.

DIGGIT Integrative Analysis Infers Candidate MES-GBM Driver Mutations



Conditional association analysis for the two main co-segregating 

mutation clusters identified by DIGGIT. Color scale in the matrix cell (i,j) 

represents the strength of association (−log10(p)) between the i-th F-

CNVG (row) and the MES subtype, conditional to removing samples 

with alterations in the j-th F-CNVG (column). 

Effect size of DIGGIT-inferred genetic determinants of the MES-GBM 

subtype. “Classical” GBM oncogenes are shown only as a reference, for 

comparison purposes. 

DIGGIT Integrative Analysis Infers Candidate MES-GBM Driver Mutations



Key Takeaways

1

• Only C/EBPδ and KLHL9 abrogated association of all other F-CNVGs, while 
remaining significant when conditioning on other F-CNVGs 

2

• Conditional analysis discarded CDKN2A (a well-established tumor suppressor 
located proximally to KLHL9) as a candidate causal driver of MES-GBM.

3
• C/EBPδ amp and KLHL9 −/− events account for 48% of TCGA MES-GBM samples

4

• Along with independent deletions/mutations of NF1 covering an additional 8%, 
these may constitute the most common subtype drivers.



Association of KLHL9 Deletions Is Confirmed in an Independent Cohort

1. Tested whether association of KLHL9 deletions with poor prognosis could be validated in 

an independent cohort. 

2. Analyzed 63 FFPEs, representing 40 poor-prognosis (survival < 35 weeks) and 23 good-

prognosis (survival > 130 weeks) GBM samples. 

3. Quantitative genomic PCR revealed higher frequency of homozygous KLHL9 deletions in 

poor-prognosis (21/40) versus good-prognosis samples (4/23) (p = 0.006 by FET). Even 

higher frequency (>50%) than in TCGA samples (38%). 

4. IHC staining of 10 KLHL9−/− and 10 KLHL9WT confirmed association with aberrant C/EBPβ 

and C/EBPδ protein expression in vivo (odds ratio 12.25, p = 0.028).

5. Confirms KLHL9−/− events as poor-prognosis biomarkers and their association with 

aberrant MES-MR activity in vivo. No KLHL9 missense or nonsense mutations were 

detected.



1. Kaplan-Meier analysis of GBM samples in TCGA. 

2. Patients with KLHL9−/− and C/EBPδAmp events are shown 

as a red curve

3. Proneural subtype patients are shown as a black curve 

4. KLHL9WT/CEBPδWT samples are shown as a blue curve

5. Kaplan-Meier p values are shown, including p1 (red 

versus blue) and p2 (red versus black). 

6. Survival for patients with each specific genotype is 

shown as vertical bars below the plot.

Association of KLHL9 Deletions Is Confirmed in an Independent Cohort



C/EBPδ and KLHL9 Alterations Are Predictive of Poor Prognosis in Multiple Tumors

1. Assessed whether C/EBPδAmp and KLHL9−/− events may be predictive of poor prognosis in GBM and other tumors.

2. In GBM, Kaplan-Meier analysis revealed significantly worse prognosis for patients harboring C/EBPδAmp and KLHL9−/−

alterations, compared to either good-prognosis or C/EBPδWT/KLHL9WT patients.

3. None of the patients with these alterations survived longer than 36 weeks post-diagnosis, and patients harboring both 

events had the worst overall prognosis, suggesting a cooperative effect. 

4. Thus, C/EBPδAmp and KLHL9−/− represent genetic biomarkers of poor prognosis, independent of subtype classification.

5. Kaplan-Meier analysis revealed that KLHL9 homozygous deletions and missense/nonsense mutations are associated with 

the worst prognosis also in Lung (LuAd) and Ovarian (OvCa) adenocarcinomas independent of CDKN2A status. 

6. Gene set enrichment analysis (GSEA) confirmed aberrant C/EBPβ and/or C/EBPδ activity in KLHL9−/− samples, suggesting a 

possible pan-cancer role of KLHL9 deletions via aberrant C/EBP activity.



1. Enrichment analysis of CEBPB and CEBPD 

ARACNe-inferred targets in genes 

differentially expressed in KLHL9−/− versus 

KLHL9WT samples. 

2. Results for both lung adenocarcinoma 

(LuAd) and ovarian cancer (OV) are shown. 

3. This analysis confirms that C/EBP protein 

activity is aberrantly increased by loss of 

KLHL9 function in multiple tumor types.



Kaplan-Meier analysis of the association between KLHL9−/− alterations and poor prognosis in lung and serous ovarian 

adenocarcinoma, respectively. Analysis of inferred differential activity of C/EBPβ and C/EBPδ in KLHL9−/− samples.



Ectopic (Unusual) KLHL9 Expression in GBM Cells Abrogates (stops) C/EBPβ 
and C/EBPδ Abundance

1. To mechanistically elucidate KLHL9-mediated regulation of established MES-MRs (C/EBPβ, C/EBPδ, and STAT3), rescued 

KLHL9 expression in homozygously deleted cells. 

2. Used cell lines SF210 and SF763 cells labeled as KLHL9−/−;CDKN2A−/−;C/EBPWT.

3. RNA-seq profiling revealed significant differential expression of ARACNe-inferred C/EBPβ and C/EBPδ targets by GSEA 

compared to controls.

4. Involved significant down-regulation of established MES markers: CHI3L1/YKL40, LIF, FOSL2, ACTA2, and FN1. 

5. Observed significant reduction in C/EBPδ and more modest decrease in C/EBPβ protein levels. 

6. Levels of phospho-STAT3, representing the transcriptionally active isoform, were also reduced. 

7. Exogenous expression of P16/INK4A (CDKN2A) had no effect on either C/EBPβ or C/EBPδ protein expression or on MES 

signature genes.

8. Results show that rescue of KLHL9 expression collapses the MES-GBM signature by downregulating C/EBPβ and C/EBPδ at 

the protein level. 



Proteasomal Degradation of C/EBPb and C/EBPd Depends on KLHL9-
Mediated Polyubiquitylation

1. KLHL9’s has a putative function as an adaptor of Cul3-based E3 ubiquitin ligase.

2. Tested KLHL9’s role in mediating polyubiquitylation-dependent proteasomal degradation of 

C/EBPb and C/EBPd.

3. Measured degradation and relative half-life of C/EBPb and C/EBPd following rescue of 

KLHL9 expression in SF210.

4. MG-132-mediated proteasome inhibition abrogated C/EBPb and C/EBPd degradation, 

confirming that KLHL9 is required for their proteasomal processing.



More Mechanistic Insights

1. KLHL9 Mediates Polyubiquitylation of C/EBPb and C/EBPd Isoforms

 Confirmed that proteasomal degradation of C/EBPs depends on KLHL9-mediated interaction with the CUL3 

E3 ligase complex

 Confirmed that KLHL9-mediated C/EBP regulation depends on a functional KLHL9-CUL3 E3 ligase complex

2. KLHL9 Expression Delays Exit from S Phase in Glioma Cells

 Confirmed that rescue of KLHL9 expression delays the cell cycle by imposing a late S/G2 checkpoint.

3. KLHL9 Expression in KLHL9-/- Patient-Derived GBM Tumors Reduces Growth in Orthotopic

Xenografts

 Experiments show that in vitro cell-cycle-dependent reduction in proliferative potential, induced by ectopic 

KLHL9 expression in human cell cultures, is recapitulated in vivo and induces retardation in tumor growth.



Unbiased Inference of Driver Alterations in BRCA and AD

1. Analysis of sample-matched CNV/expression data from the TCGA breast cancer (BRCA) cohort. 

 Compiled a list of 25 alterations from a literature search of validated CNV alterations linked to BRCA tumorigenesis

 Final step (Conditional Association Analysis) yielded 35 F-CNVGs

 Of these, 19 (76%) could be matched in the 25-gene literature compiled list

 Only 5 of these were statistically significant by Genome Wide Association Studies (GWAS)

2. Analysis of sample-matched SNP/expression data from a recent integrative study of Alzheimer’s disease.

 DIGGIT identified 13 F-SNPs significant by conditional association analysis. 

 Among these, TYROBP was ranked 1st (p = 4.2 x 10-47), achieving higher significance than even APOE, ranked 9th (p = 

2.0 x 10-21) 


