Cancer hallmarks, "omic" data, and data resources

Anthony Gitter
Cancer Bioinformatics (BMI 826/CS 838)
January 22, 2015

What computational analysis contributes to cancer research

- 1. Predicting driver alterations
- 2. Defining properties of cancer (sub)types
- 3. Predicting prognosis and therapy
- 4. Integrating complementary data
- 5. Detecting affected pathways and processes
- 6. Explaining tumor heterogeneity
- 7. Detecting mutations and variants
- 8. Organizing, visualizing, and distributing data

Convergence of driver events

 Amid the complexity and heterogeneity, there is some order

Finite number of major pathways that are affected

by drivers

Similar pathway effects

- Tumor 1: EGFR receptor mutation makes it hypersensitive
- Tumor 2: KRAS hyperactive
- Tumor 3: NF1 inactivated and no longer modulates KRAS
- Tumor 4: BRAF over responsive to KRAS signals

Vogelstein2013

Detecting affected pathways

Pathway enrichment

Pathway discovery

31% of pathway is activated

Stimulate receptor Extracellular DG PIP2 GTP STAT3 STAT1

Nucleus

98% of activity is not covered

BioCarta EGF Signaling Pathway

Phosphorylation data from Alejandro Wolf-Yadlin

Hallmarks of cancer

Sustaining proliferative signaling

- Cells receive signals from the local environment telling them to grow (proliferate)
- Specialized receptors detect these signals
- Feedback in pathways carefully controls the response to these signals

Evading growth suppressors

- Override tumor suppressor genes
- Some proteins control the cell's decision to grow or switch to an alternate track
 - Apoptosis: programmed cell death
 - Senescence: halt the cell cycle
- External or internal signals can affect these decisions

Cell cycle

hesis <u>Biology of Cancer</u>

Resisting cell death

- One self-defense mechanism against cancer
- Apoptosis triggers include:
 - DNA damage sensors
 - Limited survival cues
 - Overactive signaling proteins
- Necrosis causes cells to explode
 - Destroys a (pre)cancerous cell
 - Releases chemicals that can promote growth in other cells

 Resolvents Cell

 Reso

Enabling replicative immortality

- Cells typically have a limited number of divisions
- Immortalization: unlimited replicative potential
- Telomeres protect the ends of DNA
 - Shorten over time
 - Encode the number of cell divisions remaining
 - Can be artificially upregulated in cancer

Telomere shortening

Inducing angiogenesis

- Tumors must receive nutrients like other cells
- Certain proteins promote growth of blood vessels

Activating invasion and metastasis

- Cancer progresses through the aforementioned stages
- Epithelial-mesenchymal transition (EMT)

Emerging hallmarks

Genome instability and mutation

- Cancer cells mutate more frequently
- Increased sensitivity to mutagens
- Loss of telomeres increases copy number alterations

Model systems in oncology

• **Cell lines**: Cells that reproduce in a lab indefinitely (e.g. Hela cells)

 Genetically engineered mice: Manipulate mice to make them predisposed to cancer

Xenograft: Implant human tumor cells into mice

"Omic" data types

- DNA (genome)
 - Mutations
 - Copy number variation
 - Other structural variation
- RNA expression (transcriptome)
 - Gene expression (mRNA)
 - Micro RNA expression (miRNA)
- Protein (proteome)
 - Protein abundance
 - Protein state (e.g. phosphorylation)
- Protein DNA binding
- DNA state and accessibility (epigenome)
 - DNA methylation (methylome)
 - Histone modification / chromatin marks
 - DNase I hypersensitivity

"Next-generation" sequencing (NGS)

- Revolutionized high-throughput data collection
- *-seq strategy
 - Decide what you want to measure in cells
 - Figure out how to select or synthesize the right DNA
 - Dump it into a DNA sequencer
- ~100 different *-seq applications

*-seq examples

Generating DNA templates

Generating reads

Assembly and alignment

Microarrays

- High-throughput measurement of gene expression, protein DNA binding, etc.
- Mostly replaced by *-seq
- Fixed probes as opposed to DNA reads

Microarray quantification

University of Utah Wikipedia Wikipedia Wikimedia

DNA mutations

- Whole-exome most prevalent in cancer
 - Only covers exons that form genes, less expensive

 Whole-genome becoming more widespread as sequencing costs continue to decrease

Copy number variation

- Often represented as relative to normal 2 copies
- Ranges from a few bases to whole chromosomes
- Quantitative, not discrete, representation

Gene expression

Transcript (messenger RNA) abundance

Genome-wide gene expression

Quantitative state of the cell

miRNA expression

- microRNA (miRNA)
 - ~22 nucleotides
 - Does not code for a protein
 - Regulates gene expression levels by binding mRNA

Protein abundance

- Protein abundance is analogous to gene expression
- Not perfectly correlated with gene expression
- Harder to measure
- Mass spectrometry is almost proteome-wide
 - Vaporize molecules
 - Determine what was vaporized based on mass/charge

Protein state

- Chemical groups added to mature protein
- Phosphorylation is the most-studied
- Analogous to Boolean state

Protein arrays

- Currently more common in cancer datasets
- Measure a limited number of specific proteins using antibodies
- Protein abundance or state

Transcriptional regulation

- ChIP-seq directly measures transcription factor (TF) binding but requires a matching antibody
- Various indirect strategies

Predicting regulator binding sites

- Motifs are signatures of the DNA sequence recognized by a TF
- TFs block DNA cleavage
- Combining accessible DNA and DNA motifs produces binding predictions for hundreds of TFs

DNA methylation

- Methylation is a DNA modification (state change)
- Hyper-methylation suppresses transcription
- Methylation almost always at C

Target gene expressed

Wikimedia

(Fry, 2011)

Clinical data

- Age, sex, cancer stage, survival
- Kaplan–Meier plot

Large cancer datasets

Tumors

- The Cancer Genome Atlas (TCGA)
- Broad <u>Firehose</u> and <u>FireBrowse</u> access to TCGA data
- International Cancer Genome Consortium (ICGC)

Cell lines

- Cancer Cell Line Encyclopedia (CCLE)
- <u>Catalogue of Somatic Mutations in Cancer</u> (COSMIC)

Cancer gene lists

- COSMIC Gene Census
- Vogelstein2013 drivers

Interactive tools for cancer data

- cBioPortal
- TumorPortal
- Cancer Regulome
- Cancer Genomics Browser
- StratomeX

Gene and protein information

- TP53 example
 - GeneCards
 - UniProt
 - Entrez Gene

Pathway and function enrichment

- <u>Database for Annotation, Visualization and Integrated Discovery</u> (DAVID)
- Molecular Signatures Database (MSigDB)

Gene expression data

- Gene Expression Omnibus (GEO)
- ArrayExpress

Protein interaction networks

- <u>iRefIndex</u> and <u>iRefWeb</u>
- Search Tool for the Retrieval of Interacting Genes/Proteins (STRING)
- High-quality INTeractomes (HINT)

Transcriptional regulation

- Encyclopedia of DNA Elements (ENCODE)
- DNA binding motifs
 - TRANSFAC
 - JASPAR
 - UniPROBE

miRNA binding

- miRBase
- TargetScan