Gene Expression Profiling Predicts Clinical Outcome of Breast Cancer

Motivation

Observation: breast-cancer patients at same stage have different outcomes

Problem: existing outcome predictors are poor

- lymph nodes
- histological grade

Goals:

- identify categories of breast cancer
- predict outcome based on gene expression
- decide therapy accordingly

Treatment

"Chemotherapy or hormonal therapy reduces risk of distant metastases by approximately one-third; however 70-80% of patients receiving this treatment would have survived without it."

A main contribution of this method is lower false positives.

Result Overview

Table 1 Breast cancer patients eligible for adjuvant systemic therapy

	Patient group		
Consensus	Total patient group $(n = 78)$	Metastatic disease at $5 \text{ yr } (n = 34)$	Disease free at $5 \text{ yr} (n = 44)$
St Gallen NIH Prognosis profile*	64/78 (82%) 72/78 (92%) 43/78 (55%)	33/34 (97%) 32/34 (94%) 31/34 (91%)	31/44 (70%) 40/44 (91%) 12/44 (27%) (18/44 (41%)†)

The conventional consensus criteria are: tumour ≥2 cm, ER negative, grade 2-3, patient <35 yr (either one of these criteria; St Gallen consensus); tumour >1 cm (NIH consensus).

† Number of tumours with a poor prognosis signature in the group of disease-free patients, when the cross-validated classifier is applied.

^{*} Number of tumours having a poor prognosis signature using our microarray profile, defined by the optimized sensitivity threshold in the 70-gene classifier (see Fig. 2b).

Result Overview

Table 1 Breast cancer patients eligible for adjuvant systemic therapy

	Patient group		
Consensus	Total patient group $(n = 78)$	Metastatic disease at $5 \text{ yr } (n = 34)$	Disease free at $5 \text{ yr} (n = 44)$
St Gallen NIH Prognosis profile*	64/78 (82%) 72/78 (92%) 43/78 (55%)	33/34 (97%) 32/34 (94%) 31/34 (91%)	31/44 (70%) 40/44 (91%) 12/44 (27%) (18/44 (41%)†)

The conventional consensus criteria are: tumour ≥2 cm, ER negative, grade 2-3, patient <35 yr (either one of these criteria; St Gallen consensus); tumour >1 cm (NIH consensus).

gets therapy needs therapy

^{*} Number of tumours having a poor prognosis signature using our microarray profile, defined by the optimized sensitivity threshold in the 70-gene classifier (see Fig. 2b).

[†] Number of tumours with a poor prognosis signature in the group of disease-free patients, when the cross-validated classifier is applied.

Result Overview

- 1. unsupervised clustering, look for tumor categories
- 2. supervised learning, find prognosis reporter genes

- 1. unsupervised clustering, look for tumor categories
- 2. supervised learning, find prognosis reporter genes

Unsupervised Hierarchical Clustering: Dendogram

http://youtu.be/XJ3194AmH40?t=5m

2 categories

4 categories

co-regulates with ER-a

- 1. unsupervised clustering, look for tumor categories
- 2. supervised learning, find prognosis reporter genes

- 1. unsupervised clustering, look for tumor categories
- 2. supervised learning, find prognosis reporter genes

Method

Start with 25K genes (some double counting)

From these, identify **5K** that are significantly regulated

From these, identify **231** significantly associated with disease outcome

From these, identify 70 as classification features

Sporadic breast tumours

Test Data (19 tumors)

Summary

New ideas (for 826):

- new label: clinical outcome
- use of unsupervised learning
- accuracy vs. sensitivity tradeoffs