Helios

Motivation

Copy Number alterations

Development of Helios

ISAR

Gistic Method

$$G^{AMP}(m) = \sum_{i=1}^{N} CN(m,i) \times I(CN(m,i) > \theta^{AMP})$$
 CN(m,i) = copy # of n
 $G^{AMP}(m) = \sum_{i=1}^{N} CN(m,i) \times I(CN(m,i) > \theta^{AMP})$ I = indicator function
 Θ = Aberration thresh

CN(m,i) = copy # of marker m in sample II = indicator functionΘ = Aberration threshold

ISAR

$$S(m) = \max_{i \in W} -log 10(qvalue_i(m))$$

W = set of window sizes
I = Window size used
Qvalue = based on local distribution
m = marker

Helios

Helios

$$P(CNA) = \sum_{t \in 0,1} P(SCNA|T=t)P(T=t|X).$$

P(SCNA|T=t): Modeling of Copy Number

 Find Peak genes Independent of chromosomal region because distribution between regions is much larger than in region

$$GSDist(g) = \max_{j \in region(g)} (Gscore(j) - Gscore(g))$$
 j = max in region g = gene

P(T|X) – Modeling Additional Info

- Unified function made up of cues from all data

$$OA_h = -\log(P(S_h \mid Exp_{target(h)})) = -\log(P(\epsilon))$$

$$\epsilon = S_h - \widehat{S_h} = S_h - f(Exp_{target(h)})$$

P(T|X)

 Using Helios, identified 64 candidate drivers using primary and cell line

Method	#genes	#genes gold standard	gold standard enrichment
GISTIC2	452	17	1.2E-3
Gaia	768	18	7.7E-2
DiNAMIC	10651	185	9.9E-2
Helios Top Genes	83	15	4.71E-12
Helios Top Genes			
& Score>0.5	64	15	8.16E-14

Results: Validation

Results: RSF-1

Overexpression of RSF1 in CID cells

A

Results: Dox Inducible

Results: Xenograft

Figure 7. The Landscape of Driver Mutations in Breast Cancer

Take Aways

- A step forward in finding and validating driver genes
- First time (to my knowledge) of a computation → in vitro → in vivo study
- Open up potential to incorporate therapeutic targets