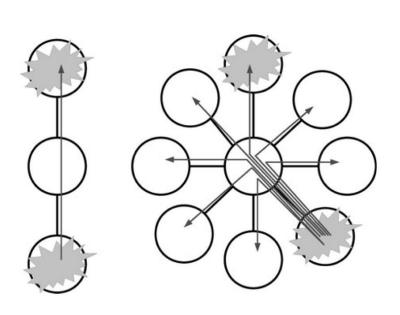
HotNet

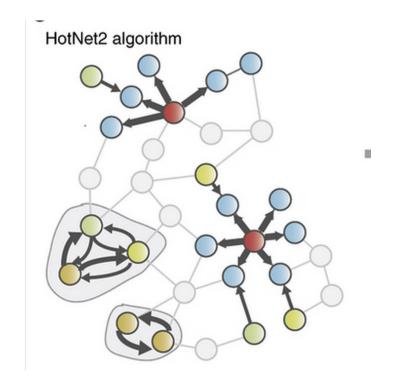
Background

 Determine significantly mutated subnetworks in a large gene interaction network

- Problems with current methods
 - Frequency doesn't always predict significance
 - Naïve subnetwork analysis
 - Enumeration prohibits subnetworks of reasonable size
 - Large number of hypotheses makes statistically significant difficult
 - Hub genes make for small gene diameters

HotNet Overview


1. Formulate an influence measure between pairs of genes in the network


2. Identify subnetworks with <u>Combinatorial</u> <u>Model</u> or <u>Enhanced Influence Model</u>

3. Two-stage multiple hypothesis test to mitigate testing of large number of hypotheses

Influence Graph

 Identify subnetworks that are significant with respect to a set of mutated genes

Diffusion

$$f_{v}^{s}(t)$$
 Amount of fluid @ node V at time T $\mathbf{f}^{s}(t) = [f_{1}^{s}(t), \ldots, f_{n}^{s}(t)]^{T}$ Amount of fluid at all nodes $L_{\gamma} = L + \gamma I$. List the laplacian matrix of the graph $\frac{d\mathbf{f}^{s}(t)}{dt} = -L_{\gamma}\mathbf{f}^{s}(t) + \mathbf{b}^{s}u(t)$, Dynamics of the continuous process

Interpret f_i as the influence of gene g_s on g_i

Combinatorial Model

 Takes in influence measure between genes to discover significant subnetworks

Combinatorial Algorithm

```
Input: Influence graph G_I and parameters \delta and k

Output: Connected subgraph \mathcal{C} of G_I(\delta) with k vertices

1 Construct G_I(\delta) by removing from G_I all edges with weight <\delta;

2 \mathcal{C} \leftarrow \emptyset;

3 for each node v \in V do

4 \mathcal{C}_v \leftarrow \{v\};

5 for each u \in V \setminus \{v\} do p_v(u) \leftarrow shortest path from v to u in G_I(\delta);

6 while |\mathcal{C}_v| < k do

|\mathcal{H}_v(u) = \text{set of nodes in } p_v(u); P_v(u) = \text{elements of } I \text{ covered by } \mathcal{C}_v(u); P_{\mathcal{C}_v} = \text{elements covered by } \mathcal{C}_v; P_{\mathcal{C}} = \text{elements covered by } \mathcal{C}

7 u \leftarrow \arg\max_{u \in V \setminus \mathcal{C}_v: |\ell_v(u) \cup \mathcal{C}_v| \le k} \left\{ \frac{|P_v(u) \setminus P_{\mathcal{C}_v}|}{|\ell_v(u) \setminus \mathcal{C}_v|} \right\};

8 \mathcal{C}_v \leftarrow \ell_v(u) \cup \mathcal{C}_v;

9 if |P_{\mathcal{C}_v}| > |P_{\mathcal{C}}| then \mathcal{C} \leftarrow \mathcal{C}_v;

10 return \mathcal{C};
```

Enhanced Influence Model

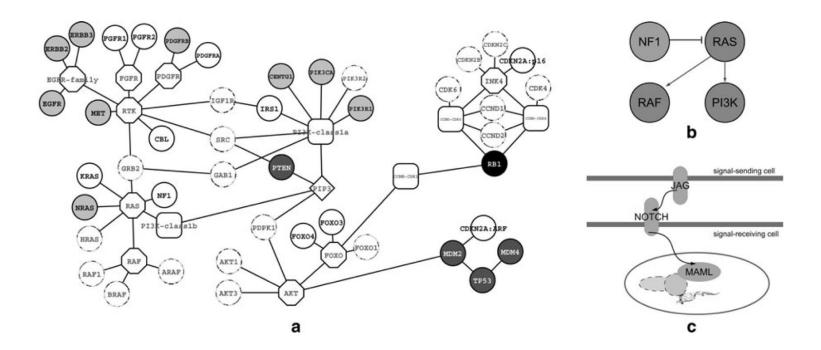
 Enhance the influence measure between genes by the number of mutations observed in each gene

Enhanced Influence Algorithm

```
Input: Influence graph G_I and parameter \delta Output: Connected components of H(\delta)
```

- 1 $V_H \leftarrow \{g_j : \mathcal{S}_j \neq \emptyset\};$
- **2** $E \leftarrow \{g_j, g_k : g_j, g_k \in V_H, g_j \neq g_k\};$
- 3 $H \leftarrow (V_H, E, h)$;
- **4** $E(\delta) \leftarrow \{(g_j, g_k) \in E : h(g_j, g_k) \geq \delta\};$
- 5 $H(\delta) \leftarrow (V_H, E(\delta));$
- **6 return** connected components of $H(\delta)$;

Statistics


- Calibrates with H_o^{sample} and H₀^{gene}
 - Sample: mutations placed at random nodes
 - Gene: Move genes around……?
- Compute significance of number of subnetworks
- Bound FDR

Experimental Data

TABLE 1. RESULTS OF THE COMBINATORIAL MODEL

Dataset	k	Samples	p-value		Pathway enrichment p-value		
			$H_0^{ m sample}$	$H_0^{ m gene}$	All	RTK/RAS/PI(3)K	p53
GBM	10	67	<10 ⁻¹⁰	4×10^{-3}	3×10^{-4}	8×10 ⁻⁴	0.19
	20	78	$< 10^{-10}$	$< 10^{-3}$	10^{-5}	8×10^{-5}	0.05
Lung	10	140	$< 10^{-10}$	0.02	8×10^{-6}	/	
	20	151	$< 10^{-10}$	0.03	3×10^{-3}	/	

k is the number of genes in the subnetwork. Samples is the number of samples in which the subnetwork is mutated. p-value is the probability of observing a connected subgraph of size k mutated in a number of samples \geq samples under the random model H_0^{sample} or H_0^{gene} . enrichment p-value is the p-value of the hypergeometric test for overlap between genes in the identified subgraph and genes reported significant pathways in TCGA (2008) or Ding et al. (2008). For GBM, enrichment p-value is the p-value of the hypergeometric test for RTK/RAS/PI(3)K and p53 pathways.

