Simultaneous Identification of
Multiple Driver Pathways in Cancer



Goal

* To distinguish the functional driver mutations
responsible for cancer development from the

random passenger mutations that have no
conseqguences for cancer.



Distinguishing driver vs. passenger

» Strategies for identifying the driver mutations (Ding2014)
* Recurrence and frequency assessment
* Variant effect prediction

Pathwayfor network analysis




Multi-Dendrix

* Dendrix — De novo Driver Exclusivity
* Important Assumption:

1) High Coverage- most patients have at least
one mutation in the set, i.e, set of potential
mutated genes of a particular pathway

2) High Exclusivity- nearly all patients have
no more than one mutation in the set



Justification by the author

will have a mutation in some gene in the pathway. Second, a driver
mutation in a single gene of the pathway is often assumed to be
sufficient to perturb the pathway. Combined with the fact that
driver mutations are relatively rare, most patients exhibit only
a single driver mutation in a pathway. Thus, we expect that the
genes in a pathway exhibit a pattern of mutually exclusive driver
mutations, where driver mutations are observed in exactly one
gene in the pathway in each patient (Vogelstein and Kinzler 2004;
Yeang et al. 2008). There are numerous examples of pairs of

From Vandin, et al, 2012
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Dendrix - Method

Mutation Matrix

B = mutated genes
= not mutated

From Vandin, et al, 2012



Dendrix Method

Maximum Coverage Exclusive Submatrix Problem: Given an m*n mutation
matrix A and an integer k>0, find a mutually exclusive m*k submatrix of M of
k columns (genes) of A with the largest number of nonzero rows (patients).

Coverage Overlap

Denote the set of patientsin
which g is mutated

¢
(M) =2 ool T(8)] — [T(M)].

N Denote the set of patientsin
which at least one of the genes in
M is mutated

Weight

W(M)=[(M)| — w(M)=2[[(M)| -3, T(g]].

From Vandin, et al, 2012



Dendrix Method

Maximum Weight Submatrix Problem: Given an m * n mutation matrix A
and an integer k >0, find the m * k column submatrix M of A that maximizes
W (M).

Problem
Computationally Difficult to Solve

Size k = 6 of 20,000 genes
107 23 subsets
Solution

A greedy Algorithm for independent genes
Markov Chain Monte Carlo (MCMC)

From Vandin, et al, 2012



Limitation of Dendrix

 Mutations in different pathways may not be
mutually exclusive.

 Mutations in different pathways may exhibit
significant patterns of co-occurrence across

patients.
e Solution -> Multi-Dendrix Algorithm



Multi-Dendrix Algorithm

* 1) Find sets of genes with high coverage as an
integer linear program (ILP)

e 2) Generalize the ILP to simultaneously find
multiple driver pathways

e 3) Additional Analysis: Subtype-specific
mutations, stability measures, permutation
test, compute enrichment states



0. Data preprocessing

The Multi-Dendrix Pipeline
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Multi-Dendrix Method - the same
as the first step of Dendrix

Maximum Coverage Exclusive Submatrix Problem: Given an m*n mutation
matrix A and an integer k>0, find a mutually exclusive m*k submatrix of M of
k columns (genes) of A with the largest number of nonzero rows (patients).

Coverage Overlap

Denote the set of patients in
which g is mutated

¢
(M) =2 ool T(8)] — [T(M)].

N Denote the set of patients in
which at least one of the genes in
M is mutated

Weight

W(M)=[(M)| — w(M)=2[[(M)| -3, T(g]].



ILP- Integer Linear Programming

 Mathematical optimization or feasibility
program where variables are restricted to be
Integers

The graph on the rlght shows the fﬂ”ﬂWl-nQ prﬂb'ﬂm. LI (0;1)
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IP polytope with LP relaxation

From Wikipedia



ILP for the Maximum Weight
Submatrix Problem

Mutation matrix:

4 { 1 1if gene;1s mutated in patient ¢
! 0 otherwise.

For each gene j, a gene set M is determined by

, 1 1if genejis a member of gene set M, \
Tu(j)= . (3)
0 otherwise.

For each patient |, the coverage is determined by

1 1f gene set M 1s mutated 1n patient i, \
Ci( M) = 4)

0 otherwise.



Then, Dendrixg p(k) 15 defined as follows:

maximize i (1- Ci(M)— i I A L") (5a)
i=1 j=1

# 6 . . B
P E 1t (1) < ke subject to ; Iy(N=k (5b)
— =

i

Denote the set of patientsin

whicr&is mutated (“ A.-"f_ {f}) EEI{MJ:- [5 }
o(M)=Yqur, [T (g)| - [T(M)]. L c

Denote the set of patients in
which at least one of the genes in

M is mutated torl < [ < .



Multiple Maximum Weight
Submatrices Problem

Multiple Maximum Weight Submatrices Problem: Given an
m™*n mutation matrix A and an integer t>0, find a collection
M={M1, M2, ...., Mt} of m*k column submatrices that
maximizes W'(M)= 3> _, W(M,).

maximize i i (Z-C,-(Mp) — ifmrp U)‘Ag) (7a)
j=1

p=1i=1

subject to (i pr(f)'ffg) > Ci(M,), (7b)
=1

forl<i<m,l<p<t,

!
Ly,(D<L1<j<m. (7c)
p=1



Multi-Dendrix Results on the GBM
Dataset
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Multi-Dendrix Results on the BRCA
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* Thank you for your attention!



