Simultaneous Identification of Multiple Driver Pathways in Cancer

Mark D. M. Leiserson, et.al

Goal

 To distinguish the functional driver mutations responsible for cancer development from the random passenger mutations that have no consequences for cancer.

Distinguishing driver vs. passenger

- Strategies for identifying the driver mutations (<u>Ding2014</u>)
 - Recurrence and frequency assessment
 - Variant effect prediction
 - Pathway or network analysis

Multi-Dendrix

- Dendrix De novo Driver Exclusivity
- Important Assumption:
- 1) High Coverage- most patients have at least one mutation in the set, i.e, set of potential mutated genes of a particular pathway
- 2) High Exclusivity- nearly all patients have no more than one mutation in the set

Justification by the author

will have a mutation in some gene in the pathway. Second, a driver mutation in a single gene of the pathway is often assumed to be sufficient to perturb the pathway. Combined with the fact that driver mutations are relatively rare, most patients exhibit only a single driver mutation in a pathway. Thus, we expect that the genes in a pathway exhibit a pattern of mutually exclusive driver mutations, where driver mutations are observed in exactly one gene in the pathway in each patient (Vogelstein and Kinzler 2004; Yeang et al. 2008). There are numerous examples of pairs of

Vogelstein2013

Dendrix - Method

Mutation Matrix

Dendrix Method

Maximum Coverage Exclusive Submatrix Problem: Given an m*n mutation matrix A and an integer k>0, find a mutually exclusive m*k submatrix of M of k columns (genes) of A with the largest number of nonzero rows (patients).

Coverage Overlap

Denote the set of patients in which g is mutated

$$\omega(M) = \sum_{g \in M} |\Gamma(g)| - |\Gamma(M)|.$$

K

Denote the set of patients in which at least one of the genes in M is mutated

Weight

$$W(M) = |\Gamma(M)| - \omega(M) = 2|\Gamma(M)| - \sum_{g \in M} |\Gamma(g)|.$$

Dendrix Method

Maximum Weight Submatrix Problem: Given an m * n mutation matrix A and an integer k >0, find the m * k column submatrix M of A that maximizes W (M).

Problem

Computationally Difficult to Solve

Size k = 6 of 20,000 genes

10[^] 23 subsets

Solution

A greedy Algorithm for independent genes Markov Chain Monte Carlo (MCMC)

Limitation of Dendrix

- Mutations in different pathways may not be mutually exclusive.
- Mutations in different pathways may exhibit significant patterns of co-occurrence across patients.
- Solution -> Multi-Dendrix Algorithm

Multi-Dendrix Algorithm

- 1) Find sets of genes with high coverage as an integer linear program (ILP)
- 2) Generalize the ILP to simultaneously find multiple driver pathways
- 3) Additional Analysis: Subtype-specific mutations, stability measures, permutation test, compute enrichment states

The Multi-Dendrix Pipeline

Multi-Dendrix Method - the same as the first step of Dendrix

Maximum Coverage Exclusive Submatrix Problem: Given an m*n mutation matrix A and an integer k>0, find a mutually exclusive m*k submatrix of M of k columns (genes) of A with the largest number of nonzero rows (patients).

Coverage Overlap

Denote the set of patients in which g is mutated

$$\omega(M) = \sum_{g \in M} |\Gamma(g)| - |\Gamma(M)|.$$

1

Denote the set of patients in which at least one of the genes in M is mutated

Weight

$$W(M) = |\Gamma(M)| - \omega(M) = 2|\Gamma(M)| - \sum_{g \in M} |\Gamma(g)|.$$

ILP- Integer Linear Programming

 Mathematical optimization or feasibility program where variables are restricted to be integers

The graph on the right shows the following problem.

$$\max y$$

$$-x + y \le 1$$

$$3x + 2y \le 12$$

$$2x + 3y \le 12$$

$$x, y \ge 0$$

$$x, y \in \mathbb{Z}$$

From Wikipedia

ILP for the Maximum Weight Submatrix Problem

Mutation matrix:

$$A_{ij} = \begin{cases} 1 & \text{if gene } j \text{ is mutated in patient } i \\ 0 & \text{otherwise.} \end{cases}$$
 (1)

For each gene j, a gene set M is determined by

$$I_M(j) = \begin{cases} 1 & \text{if gene } j \text{ is a member of gene set } M, \\ 0 & \text{otherwise.} \end{cases}$$
 (3)

For each patient I, the coverage is determined by

$$C_i(M) = \begin{cases} 1 & \text{if gene set } M \text{ is mutated in patient } i, \\ 0 & \text{otherwise.} \end{cases}$$
 (4)

Then, $Dendrix_{ILP}(k)$ is defined as follows:

maximize
$$\sum_{i=1}^{m} \left(2 \cdot C_i(M) - \sum_{j=1}^{n} I_M(j) \cdot A_{ij} \right)$$
 (5a)

$$k_{\min} \le \sum_{j=1}^{n} I_M(j) \le k_{\max}.$$
 \longleftarrow subject to $\sum_{j=1}^{n} I_M(j) = k$ (5b)

Denote the set of patients in which g is mutated
$$\omega(M) = \sum_{g \in M} |\Gamma(g)| - |\Gamma(M)|. \qquad \left(\sum_{j=1}^n A_{ij} \cdot I_M(j)\right) \ge C_i(M), \tag{5c}$$

Denote the set of patients in which at least one of the genes in M is mutated $forl \le i \le m$.

Multiple Maximum Weight Submatrices Problem

Multiple Maximum Weight Submatrices Problem: Given an m*n mutation matrix A and an integer t>0, find a collection $M = \{ M1, M2,, Mt \}$ of m*k column submatrices that maximizes $W'(\mathbf{M}) = \sum_{\rho=1}^{t} W(M_{\rho})$.

maximize
$$\sum_{\rho=1}^{t} \sum_{i=1}^{m} \left(2 \cdot C_i(M_\rho) - \sum_{j=1}^{n} I_{M_\rho}(j) \cdot A_{ij} \right)$$
 (7a)

subject to
$$\left(\sum_{j=1}^{n} I_{M_{\rho}}(j) \cdot A_{ij}\right) \ge C_{i}(M_{\rho}),$$
 (7b)

for $1 \le i \le m, 1 \le \rho \le t$,

$$\sum_{\rho=1}^{t} I_{M_{\rho}}(j) \le 1, 1 \le j \le m. \tag{7c}$$

Multi-Dendrix Results on the GBM Dataset

Multi-Dendrix Results on the BRCA

• Thank you for your attention!