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NCI Pathway interactions in TCGA GBM data.
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PARADIGM Approach

We developed an approach called PARADIGM
(PAthway Recognition Algorithm using Data
Integration on Genomic Models) to infer the activities
of genetic pathways from integrated patient data.

Multiple genome-scale measurements on a single
patient sample are combined to infer the activities of
genes, products and abstract process inputs and
outputs for a single NCI pathway.



PARADIGM Approach

PARADIGM produces a matrix of
integrated pathway activities
(IPAs) A where Alj represents the
inferred activity of entity i in
patient sample j.




Overview of the PARADIGM method.
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Conversion of a genetic pathway diagram into a PARADIGM model.
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Method



GOAL!

Make a factor graph that represents the underlying
pathway.

Each entity can take on one of three states
corresponding to activated, nominal or deactivated
relative to a control level (e.g. as measured in normal
tissue) and encoded as 1, 0 or —1 respectively.

The states may be interpreted differently depending
on the type of entity (e.g. gene, protein, etc)



Factor Graph Goal

The factor graph encodes the state of a cell using a random variable
for each entity X={x1, x2,..., xn} and a set of m non-negative functions,
or factors, that constrain the entities to take on biologically meaningful
values as functions of one another.

The j-th factor ¢j defines a probability distribution over a subset of
entities x_jcX. The entire graph of entities and factors encodes the

joint probability distribution over all of the entities as:

b v
P(X)= Z l_!q‘), (X;).
I

where Z=TTj >ScXj ®|(S) is a normalization constant and S c X denotes
that S is a ‘setting’ of the variables in X.



Construction

In order to simplify the construction of
factors, we first convert the pathway into
a directed graph, with each edge in the
graph labeled with either positive or
negative influence.

Every interaction in the pathway is
converted to a single edge in the
directed graph.

Using this directed graph, we then
construct a list of factors to specity the
factor graph.

For every variable xi, we add a single

factor d(Xi), where Xi={xi}u{Parents(xi)}

and Parents(xi) refers to all the parents
of xi in the directed graph.
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Filling Out the FG

The expected value was set to the majority vote of the parent variables.

) | —€ x;is the expected state from Parents(x;)
di(x;. Parents(x;)) =1 . .
- otherwise.

It a parent is connected by a positive edge it contributes a vote of +1 times its own
state to the value of the factor. (negative edge, then —1)

The variables connected to xi by an edge labeled ‘'minimum’ get a single vote, and
that vote's value is the minimum value of these variables, creating an AND-like
connection. Similarly the variables connected to xi by an edge labeled ‘maximum’ get
a single vote, and that vote's value is the maximum value of these variables, creating
an OR-like connection.

Votes of zero are treated as abstained votes. If there are no votes the expected state
IS zero.

Otherwise, the majority vote is the expected state, and a tie between 1 and —1 results
iNn an expected state of —1 to give more importance to repressors and deletions.



INference

Given patient data, we would like to estimate whether a
particular hidden entity xi is likely to be in state a.

For example, how likely TP53's protein activity is —1
(inactivated) or ‘Apoptosis’ is+1 (activated).

To do this, we first compute the prior probabillity of the event
prior to observing the patient’'s data.

It Ai(a) represents the singleton assignment set {xi=a} and
@ is the fully specified factor graph, this prior probability is:

P(xi=a|®)= = n Z (I),(S

;I\‘



Inference Cont.

The probability that xi is in state a along with all of the
observations made for the patient is:

Pxi=a.D|®P)= — I_l Z ¢,(S).
For the majority of pathways, we use the junction tree
inference algorithm with HUGIN updates to infer the
probabillities in equations. For pathways that take longer than
3 s of inference per patient, we use Belief Propagation with

sequential updates.

To learn the parameters of the observation factors we use the
expectation-maximization (EM) algorithm.



How to Make IPAS

After inference, we output an |PA for each variable
that has an ‘active’ molecular type.

We compute a log-likelinood ratio using the quantities:

. . | (D xij=a|®) | Plxj=a|®) |
L(i.a) = log( Fpazas ) —loe( Fizais)

— loe P(Dx;=a.P)
o S\ PIDx;#a,P) )

We then compute a single IPA for gene | based on the
log-likelihood ratio as:

L(i,]) L. D>L(i,-1) and L(1,1)>L(1,0)
IPA(IY=13 —~L(i.,—1) L(,-1)>L(1,1)and L(1,-1)>L(1.,0)
0 otherwise.




Aside: Factor Graphs



Consider a scenario where we have four students who get together in pairs to work on the homework
for a class. For various reasons, only the following pairs meet: Alice and Bob; Bob and Charles;
Charles and Debbie; and Debbie and Alice. (Alice and Charles just can't stand each other, and Bob
and Debbie had a relationship that ended badly.) The study pairs are shown in figure 3.10a.

In this example, the professor accidentally misspoke in class, giving rise to a possible miscon-
ception among the students in the class. Each of the students in the class may subsequently have

figured out the problem, perhaps by thinking about the issue or reading the textbook. In subsequent
study pairs, he or she may transmit this newfound understanding to his or her study partners. We
therefore have four binary random variables, representing whether the student has the misconcep-
tion or not. We assume that for each X € {A, B,C, D}, z' denotes the case where the student
has the misconception, and x° denotes the case where he or she does not.

Because Alice and Charles never speak to each other directly, we have that A and C' are con-
ditionally independent given B and D. Similarly, B and D are conditionally independent given
A and C. Can we represent this distribution (with these independence properties) using a BN?
One attempt is shown in figure 3.10b. Indeed, it encodes the independence assumption that
(A L C | {B,D}). However, it also implies that B and D are independent given only A,
but dependent given both A and C. Hence, it fails to provide a perfect map for our target dis-
tribution. A second attempt, shown in figure 3.10c, is equally unsuccessful. It also implies that
(A L C | {B,D}), but it also implies that B and D are marginally independent. It is clear that

all other candidate BN structures are also flawed, so that this distribution does not have a perfect
#

map.






Draw Factor Graph









loo Tired to Merge Ihese
Slides

http://www.cedar.buffalo.edu/~srihari/CSE574/Chap8/
Ch8-GraphicalModellnference/Ch8.3.2-
FactorGraphs.pdf
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slides/19-factor-graphs-mc.pdf
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Results



Learning parameters for AKT1.

o~ © AKT1 in sample
« AKT1 in permuted sample

£ .-
G
<
go
L]
o
®
= o
2
£

™~

|

0 1 2 3 4 5 6
EM hteration

Charles J. Vaske et al. Bioinformatics 2010;26:i237-i245

© The Author(s) 2010. Published by Oxford University Press. B | O | N fO rrma t | CS




Distinguishing decoy from real pathways with PARADIGM and SPIA. Decoy pathways were
created by assigning a new gene name to each gene in a pathway.
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Patient sample IPAs compared with ‘within’ permutations for Class | PI3K signaling events
mediated by Akt in breast cancer.
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Table 1. Table 2.

Top PARADIGM pathways in breast cancer Top PARADIGM pathways in GBM
Rank Name Avg.? SPIA?P Rank Name Avg.? SPIA?P
1 Class I PI3K signaling events mediated by Akt 20.7 No 1 Signaling by Ret tyrosine kinase 46.0 No
2 Nectin adhesion pathway 14.1 No 2 Signaling events activated by Hepatocyte GFR 43.7 No
3 Insulin-mediated glucose transport 13.8 No 3 Endothelins 42.5 Yes
4 ErbB2/ErbB3 signaling events 12.1 Yes 4 Arfé downstream pathway 42.3 No
5 p75(NTR)-mediated signaling 11.5 No 5 Signaling events mediated by HDAC Class 111 36.3 No
6 HIF-1-alpha transcription factor network 10.7 No 6 FOXM1 transcription factor network 35.9 Yes
7 Signaling events mediated by PTP1B 10.7 No 7 IL6-mediated signaling events 33.2 No
8 Plasma membrane estrogen receptor signaling 10.6 Yes 8 FoxO family signaling 31.3 No
9 TCR signaling in naive CD8+ T cells 10.6 No 9 LPA receptor mediated events 30.7 Yes
10 Angiopoietin receptor Tie2-mediated signaling 10.1 No 10 ErbB2/ErbB3 signaling events 30.1 No
11 Class 1B PI3K non-lipid kinase events 10.0 No 11 Signaling mediated by p38-alpha and p38-beta 28.1 No
13 Osteopontin-mediated events 9.9 Yes 12 HIF-1-alpha transcription factor network 27.6 Yes
12 IL4-mediated signaling events 9.8 No 13 Non-genotropic Androgen signaling 27.3 No
14 Endothelins 9.8 No 14 p38 MAPK signaling pathway 27.2 No
15 Neurotrophic factor-mediated Trk signaling 9.7 No 15 IL2 signaling events mediated by PI3K 26.9 No



CircleMap display of the ErbB2 pathway.
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Clustering of IPAs for TCGA GBM. Each column corresponds to a single sample, and each row
to a biomolecular entity.
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Kaplan-Meier survival plots for the clusters from Figure 8.
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Future Work



