Linking Proteomic and Transcriptional Data through the Interactome and Epigenome Reveals a Map of Oncogeneinduced Signaling

Anthony Gitter
Cancer Bioinformatics (BMI 826/CS 838)
April 16, 2015

All figures and quotes from <u>Huang2013</u> unless noted otherwise

Prize-Collecting Steiner Tree (PCST)

- Pathways needed to determine how heterogeneous drivers lead to cancer-related phenotypes
- PCST focuses on learning pathway structure

Pathway structure important for therapeutics

RTK antibody BRAF inhibitors BRAF **RAF** inhibitors PTEN MEK inhibitors 战险

Kinase inhibitors target <a>

specific pathway members

Glioblastoma model

U87H – **H**igh EGFRvIII

RTK antibody inhibitors

RTK small-melecular inhibitors

BRAF Inhibitors

BRAF RAS/GTP PIRSCA

RAS/GTP PIRSCA

RAF Inhibitors

PIP3

PTEN

MEK Inhibitors

PIP3

PTEN

MEK Inhibitors

RAF INH

U87DK – Dead Kinase

- Phosphorylation changes (88 proteins)
- DNase hypersensitivity changes (~13000 regions)
- Gene expression changes (1623 genes)

Pathways for integrating data

- Low correlation between phosphorylation and transcription
- Provide complementary information

Regress transcription factor affinities to transcript changes

mRNA

TF Affinity Score

Epigenetic Regions

F-affinity Score

Select transcription factors as terminal nodes and assign prizes

Stage 1: phosphorylation prizes

- Prize based on phosphorylation fold change
- Proteins with prizes called terminals
- p: protein
- prize_{ph}: phosphorylation prize

$$prize_{ph}(p) = \left| log_2 \frac{phospho_{U87H}(p)}{phospho_{U87DK}(p)} \right|$$

Stage 1: TF prizes

- Find differentially expressed genes
- Find differential DNase peaks
- Create gene X TF score matrix

$$x_{g,\tau} = \sum_{i=1}^{|S_{g,H}|} x_{i,g,\tau,H} - \sum_{i=1}^{|S_{g,DK}|} x_{i,g,\tau,DK}$$

Peaks mapped to gene g in U87H cells

Peaks mapped to gene g in U87DK cells

DNA binding motif affinity for TF τ at score for peak i in condition c proximal to gene g

Stage 1: TF prizes continued

- Test each TF independently for association with differentially expressed gene g
- Are coefficients in linear regression significantly different from 0?

$$y_g = \alpha_\tau x_{g,\tau} + \varepsilon_g$$

Changes

TF Affinity Score

Gene $g \log_2$ expression fold change

Binding affinity for TF τ near gene g

Regression coefficient, use t-test statistic for prize

Stage 2: identify subnetwork

Solving PCST

$$o(F) = \beta \sum_{v \notin V_F} p(v) + \sum_{e \in E_F} c(e)$$

Prize vs. edge cost tradeoff

Cost of selected edges

Penalty for omitted prize nodes

- Use off-the-shelf Steiner tree solver
- Solver creates an integer program

EGRFvIII signaling pathway

Comparing with other network approaches

Also compare to xenograft phosphorylation

Using pathway structure for validation

- Which proteins to test?
- What are appropriate negative controls?

Three tiers of proteins to test

Experiment	Small molecule inhibitor	Antibody	Target	Target rank	Target type
Viability	Dasatinib		SRC	3	High-ranked target
			FYN	12	
ChIP-Seq		sc-585x	EP300	4	High-ranked target
Viability	ICG-001		CREBBP	5	High-ranked target
Viability	4-hydroxytamoxifen (4-OHT)		ESR1	15	High-ranked target
Viability	suberoylanilide hydroxamic acid (SAHA)		HDAC1	19	High-ranked target
Viability	PKF118-310		CTNNB1	21	High-ranked target
Viability	ammonium pyrrolidinedithiocarbamate (PDTC)		NFKB1	23	High-ranked target
Viability	17-N-Allylamino-17-demethoxygeldanamycin (17-AAG)		HSP90AA1	26	High-ranked target
Viability	SB-505124		TGFBR1	193	Mid-ranked target
Viability	SB-431542		TGFBR1	193	Mid-ranked target
			ACVR1B	1695	
Viability	Rapamycin		MTOR	698	Lower-ranked targe
Viability	D4476		CSNK1A1	875	Lower-ranked targe
Viability	Harmine		DYRK1A	2232	Lower-ranked targe
			MAOA	8508.5	
Viability	Paclitaxel		TUBB1	3582	Lower-ranked targe

For cell viability assays, the inhibitors used are listed. Note that some inhibitors have multiple targets. For ChIP-Seq, the antibody used is listed. doi:10.1371/journal.pcbi.1002887.t001

Inhibitor viability screening

 U87H cells very sensitive to inhibiting high-ranked targets

Inhibitor viability screening

- 3 of 4 top targets more toxic in U87H
- 1 of 3 lower targets more toxic, requires high dose

ChIP-seq to explore EP300 role

- EP300 is a Steiner node, top-ranked TF
- Find its targets include epithelial-mesenchymal transformation markers

PCST versus other pathway approaches

- MEMo / Multi-Dendrix (mutual exclusivity)
- RPPA regression
- GSEA / PARADIGM (pathway enrichment / activity)
- HotNet / NBS (network diffusion)
- ActiveDriver (phosphorylation impact)

Multi-sample Prize-Collecting Steiner Forest (Multi-PCSF)

- PCST => PCSF: allow multiple disjoint trees
- PCSF => Multi-PCSF: jointly optimize pathways for many related samples (e.g. tumors)
- Approximate optimization with belief propagation instead of integer program

PCST formulation

Protein-protein interactions

$$o(F) = \beta \sum_{v \notin V_F} p(v) + \sum_{e \in E_F} c(e)$$

Prize vs. edge cost tradeoff

Cost of selected edges

Penalty for omitted prize nodes

Multi-PCSF formulation

$$o(\mathcal{F}) = \sum_{i=1}^{N} o(F^{i}) + \lambda \sum_{i=1}^{N} \sum_{v \notin V_{F^{i}}} \phi(\alpha, v, p^{i}(v), \mathcal{F} \setminus F^{i})$$

Original Steiner tree objective

Artificial prizes to share information

Explaining individuals' data vs. similarity tradeoff

Breast cancer tumor TCGA-AN-AOAR

Unique pathways with common core

Appendix

Alternative pathway identification algorithms

- Steiner tree/forest (related to PCST)
 - Prize-collecting Steiner forest (<u>PCSF</u>)
 - Belief propagation approximation (<u>msgsteiner</u>)
- k-shortest paths
 - Ruths2007
 - Shih2012
- Integer programs
 - Signaling-regulatory Pathway INferencE (<u>SPINE</u>)
 - Chasman2014

Alternative pathway identification algorithms continued

- Path-based objectives
 - Physical Network Models (<u>PNM</u>)
 - Maximum Edge Orientation (MEO)
 - Signaling and Dynamic Regulatory Events Miner (SDREM)
- Maximum flow
 - ResponseNet
- Hybrid approaches
 - PathLinker: random walk + shortest paths
 - ANAT: shortest path + Steiner tree

Recent developments in pathway discovery

- Multi-task learning: jointly model several related biological conditions
 - ResponseNet extension: <u>SAMNet</u>
 - Steiner forest extension: Multi-PCSF
 - SDREM extension: MT-SDREM
- Temporal data
 - ResponseNet extension: <u>TimeXNet</u>
 - Pathway synthesis