Dissecting cancer heterogeneity with a probabilistic genotype-phenotype model

Anthony Gitter
Cancer Bioinformatics (BMI 826/CS 838)
May 5, 2015

All figures from Cho2013 unless noted otherwise

Class business

- Project presentations Thursday
- Guidelines on website
- Project report due May 11

How to schedule presentation order?

Inspiration from CMapBatch

Outlier

1
4
٧4 (1)
7
6
√42 (3)
3
3 5
3

Subtyping in cancer

- Substantial differences across tumors even within one type of cancer
 - Molecular alterations
 - Survival outcomes
 - Response to therapy

Traditional subtyping

- Learn gene expression signature to distinguish classes
 - AML vs ALL
 - PAM50 for breast cancer
 - Glioblastoma (GBM) Verhaak2010

GBM subtypes

- Learn class centroids with <u>ClaNC</u> (classification to nearest centroids)
 - t-test statistic to identify genes
 - 210 genes per class in GBM
- Neural subtype has been criticized

Verhaak2010

Many analyses depend on subtypes

MutSig or other enrichment tests

Many analyses depend on subtypes

Group lasso in regulator regression

Many analyses depend on subtypes

DIGGIT functional CNV association test

Chen2014

Problem with subtype classifiers

 Cancer and individual tumors are heterogeneous

Ding2014

Heterogeneity in expression classification

 Single-cell RNA-seq shows a single
 GBM tumor is composed of cells from multiple
 subtypes

Patel2014

Prob_GBM: mixtures of subtypes

- Patients are mixtures of subtypes
- Subtypes are mixtures of genomic factors

Sound familiar?

Relation to Non-negative Matrix Factorization

- Network-based stratification
- Similar concepts, different strategies

Hoffree2013

Prob_GBM model

- Gene expression is a molecular level phenotype
 - Treated as effect of disease, not cause
- Patient-patient similarity based on expression

- Genomic factors cause disease
 - Mutations, CNV, miRNAs
- Expression similarities explained by genomic similarities

Build patient-patient similarity network

Choose co-expression threshold

Learn subtype distributions

Likelihood of edge between similar patients from subtype assignments

Inspired by relational topic model

- Documents are bags of words
- Document-document citation network

Mapping to cancer domain

- Documents = patients
- Bag of words = bag of genomic alterations
- Document citation link = patient-patient coexpression above some threshold

Generative probabilistic model

1. For each patient d:

d -> p w -> g

- (a) Draw subtype proportions $\theta_d | \alpha \sim \text{Dir}(\alpha)$.
- (b) For each "gene" $w_{d,n}$:
 - i. Draw assignment $z_{d,n}|\theta_d \sim \text{Mult}(\theta_d)$.
 - ii. Draw "gene" $w_{d,n}|z_{d,n}, \boldsymbol{\beta}_{1:K} \sim \operatorname{Mult}(\boldsymbol{\beta}_{z_{d,n}})$.
- 2. For each pair of patients d, d':
 - (a) Draw binary link indicator

$$y_{d,d'}|\mathbf{z}_d,\mathbf{z}_{d'} \sim \psi(\cdot|\mathbf{z}_d,\mathbf{z}_{d'},\boldsymbol{\eta}),$$

where
$$\mathbf{z}_d = \{z_{d,1}, z_{d,2}, \dots, z_{d,n}\}.$$

Generative probabilistic model

Prob_GBM distributions

Joint distribution

$$p(\mathbf{B}, \Theta, Z, \mathbf{G}, \mathbf{L}) = \prod_{k} p(\beta_{k}) \prod_{p} p(\theta_{p})$$

$$\times \left(\prod_{n} p(z_{p,i} | \theta_{p}) p(g_{p,i} | \beta_{z_{p,i}}) \right) \prod_{p,p'} \psi(l_{p,p'} | \mathbf{z}_{p}, \mathbf{z}_{p'}).$$

Posterior distribution of the latent variables

$$p(B, \Theta, Z|G, L) = \frac{p(B, \Theta, Z, G, L)}{p(G, L)}.$$

Model estimation

- Cannot maximize posterior exactly
- Gibbs sampling generates samples from this distribution

- Two Gibbs sampling references:
 - 1 page summary
 - 231 slide tutorial

Latent variables of interest

$$\hat{\theta}_k^p = \frac{c_k^p + \alpha}{\sum_{k=1}^K c_k^p + K\alpha}.$$

Subtype distributions per patient *p*

$$\hat{\beta}_k^n = \frac{c_k^n + \gamma}{\sum_{k=1}^K c_k^n + N\gamma}.$$

Distributions of genomic alteration *n* under subtype *k*

Visualizing patient distributions

Visualizing genomic alteration distributions

Assigning patients to subtypes

Neural is mixture of subtypes

Stability of subtype assignments

Ultimate patient-subtype, alteration-subtype associations

