Overview

• Groups of 2-3 students
 • Survey forthcoming

• Projects will
 • Use high-throughput cancer data (genomic, gene expression, proteomic, methylation, etc.)
 • Extend an existing method or implement a new model
 • Produce and evaluate novel hypotheses
 • Be computationally reproducible

• Propose your own topic or select from these ideas

• Proposals due 3/10
Extending existing methods

• Choose a method that has source code available
 • GISTIC 2.0
 • Mutational signatures
 • MEMo
 • Dendrix

• Make sure the code isn’t a mess and the data are available before you submit the project proposal

• Look ahead to papers we will read that provide code
 • Helios
 • Setty2012 or RACER
 • Osmanbeyoglu2014
 • HotNet2
 • NBS (bad link?)

• Can improve the algorithm or integrate more data
DREAM Challenges

• Dialogue for Reverse Engineering Assessments and Methods
 • Broad-DREAM Gene Essentiality Prediction Challenge
 • DREAM 7 - Sage Bionetworks-DREAM Breast Cancer Prognosis Challenge
 • DREAM 7 - NCI-DREAM Drug Sensitivity Prediction Challenge

• Don’t reproduce methods that have already been shown to work well
Broad-DREAM Gene Essentiality Prediction Challenge

- Predict gene essentiality in cancer cell lines
 - Whether the cancer cells grow or die when the gene is suppressed

- Available features
 - Gene expression
 - Copy number
 - Mutations
 - External data not included in the challenge
DREAM 7 - Sage Bionetworks-DREAM Breast Cancer Prognosis Challenge

• https://www.synapse.org/#!Synapse:syn2813426

• Predict breast cancer survival

• Available features
 • Clinical information
 • Gene expression
 • Copy number
DREAM 7 - NCI-DREAM Drug Sensitivity Prediction Challenge

• Rank breast cancer cell lines by their sensitivity to drug compounds

• Available features
 • Gene expression
 • Copy number
 • Mutations
 • Methylation
 • Proteomics
Drug sensitivity

• Instead of DREAM challenge, could use a larger dataset from CCLE or Garnett2012 datasets
 • More cell lines and drugs

• Opportunity to train/test across datasets
 • Explore low reproducibility in these screens
Suitable cell line models

• In the spirit of Domcke2013, identify cancer cell lines that are suitable models for tumor samples
• Integrate different types of data
• Focus on a systems-level analysis
Normalizing cancer gene expression

• Many studies that use gene expression for clustering or classification do not account for confounding effects
 • Age, sex, and other covariates
 • Expression due to tissue of origin
 • Meta-PCNA example (next class)

• Normalizing expression data to remove these factors could improve cancer models

• Can integrate expression data from healthy cells or tissues
 • TCGA normal samples
 • GTEx
 • GEO