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The Problem (2014)
Cancer process:

◦ Cancer cells acquire genetic and epigenetic alterations that often target signal transduction pathways

◦ These alterations lead to dysregulation of oncogenic signal transduction pathways

◦ In turn, this alters downstream transcriptional programs. 

Problem/Motivation: 

◦ Deciphering signaling pathways that are deregulated in a given tumor in order to personalize therapy is a major goal. 

◦ Much effort devoted to cataloging somatic alterations across large sets of tumors and mapping them to cellular pathways 

◦ These projects have generated massive repositories of tumor mRNA data, giving a complex readout of the transcriptional 

changes downstream from altered signaling pathways. 

◦ Unable to translate the mutational landscape of a tumor into a usable model of affected pathways.

◦ Unable to use mutational status to accurately predict response to targeted therapies.

◦ Numerous methods attempt to deduce aberrant signaling pathways in tumors from mRNA data alone.

◦ But these pathway analysis approaches remain qualitative and imprecise. 



Advent of proteomic methods has the potential to provide a systematic map of critical signaling pathways that are altered in cancer. 

Recently, TCGA project has added RPPA profiling for a panel of proteins and phosphoproteins. Reverse-phase protein microarrays (RPPAs) 
are a medium-throughput technology to analyze the expression levels of a protein or phosphoprotein across many samples at once. 

Quantitative profiling of proteins in tumor tissues using RPPA presents many technical challenges: Antibody validation, Variability in tissue 
handling & Intra-tumoral heterogeneity. 

This gives rise to noisy measurements of the activity of signaling proteins. 

Recent Developments



The Idea
◦ Link upstream signaling to downstream transcriptional response 

◦ Do so by exploiting Reverse Phase Protein Array (RPPA) and mRNA expression data

◦ Model views RPPA data as a noisy readout of the activity of signaling pathways; 

• Oncogenic signaling pathways converge on a set of Transcription Factors (TFs)

• TF’s dysregulated activity in turn alters the mRNA expression levels of TF target genes.

◦ Created an algorithm called Affinity Regression to learn an interaction matrix between Upstream signal 

transduction proteins and Downstream transcription factors (TFs) to explain target gene expression

◦ Use TF binding site prediction to determine the set of TFs that potentially regulate each gene.

◦ The trained model can then be used in multiple ways:

• Given a tumor sample’s protein expression profile, we can predict the TF activity.

• Given a tumor sample’s gene expression profile, we can infer the signaling protein activity.



Summary of Results
• Applied approach to 397 breast cancer profiles from TCGA for which both 

RPPA and mRNA data are available

• Used Affinity Regression:

1

• To infer the deregulated signaling pathways that drive expression changes in 
distinct breast cancer subtypes

2

• To leverage the tumor model to predict drug sensitivity using breast cancer cell 
line mRNA and drug response data

3
• To predict survival within the heterogeneous ER+, Luminal A subtype. 



Breast Cancer
• Breast cancer has been 

categorized into three basic 

therapeutic groups.

• Within the ER+ category, gene 

expression profiling studies 

(PAM50) have identified two 

subtypes within ER-positive breast 

cancers, Luminal A and Luminal B. 

• Although patients with Luminal A 

cancers have the best prognosis, 

these tumors are heterogeneous, 

and there exist few markers that 

predict recurrence and survival. 

G1: Basal-like or triple-negative breast cancers

• TNBCs, lacking expression of the estrogen receptor [ER], progesterone receptor [PR], and HER2, 

• Characterized by a poor prognosis and no specific targeted therapies

G2: HER2 (ERBB2) amplified

• Associated with relatively poor prognosis if untreated

• With significant clinical benefit from anti-HER2-therapy

G3: Estrogen Receptor-positive (Luminal)

• Characterized by a relatively good prognosis and response to targeted hormonal therapies. 



• Matrix Y: Data set of N genes from M tumor samples; Y = NxM matrix of mean-

centered log gene expression profiles (Microarray data)

• Matrix-D: Using TF binding site prediction in gene promoters, we define a matrix 

D = NxQ, where each row represents a gene and each column is a binary vector 

representing the target genes of a TF. (Motif data from MSigDB TRANSFAC v7.4)

• Matrix-P: P = MxS of tumor sample (phospho) protein attributes where each row 

represents a tumor sample and each column represents mean-centered RPPA 

expression levels of a signaling protein across tumor samples.

• Matrix-W: Transcription Factors to Proteins mapping (To be Learned)

• Bilinear regression using: D * W * PT + Ɛ = Y 

Affinity Regression



Discussion
The W matrix represents an interaction between TFs and Proteins. In this study, they have 
learned the W from tumor samples. What are the implications of this? 

Is the W that is learned from tumor samples meant to be an approximation of true W? Or 
is the W learned from tumor samples meant to be different from true W and reflective of 
the fact that these cells are cancerous and reflective of the specific type of cancer?

Would W be different for different types of 
tumor cells (different types of cancer)? What 
about different stages?



Affinity Regression 

Outperforms Nearest Neighbor 

for Gene Expression Prediction 

on Held-out Samples



Experiment #1
• Evaluated approach on a data set of BRCA tumors from TCGA where both genome-wide mRNA expression data and 

RPPA measurements for 164 proteins/phosphoproteins are available. 

• Trained model on equal numbers of samples for each subtype (n = 48x4 = 192). 

• For Motif data, used binding site predictions for 230 TFs in the promoter regions from MSigDB

• Use the learned Affinity Regression model

• D = 4029 Genes x 230 TFs

• W = 230 TFs x 164 proteins/phosphoproteins.

• PT = 164 proteins/phosphoproteins x 192 samples 

• Y = DxWxPT

• For statistical evaluation, computed the mean Spearman rank correlation between predicted and measured gene 
expression profiles on held-out samples using six-fold cross-validation. 

• Compared results with a Nearest Neighbor approach, where neighbors are chosen based on similarity of protein 
expression profiles

• To further validate the performance, also examined an independent test set of 205 TCGA samples.



Performance vs NN Baseline 

Figure S1. Performance of the trained affinity regression model on an 
independent test set of TCGA samples, compared to nearest neighbor. 

Plot showing Spearman correlations between predicted and actual gene 
expression changes relative to a median ref.

Claim: Affinity Regression outperforms the baseline of NN. Therefore, the 
model explains a meaningful part of the dysregulation of gene expression 
in breast cancer based on the ability to predict gene expression variation 
across tumors on held-out tumor samples.

Critique: 

1. Is Nearest Neighbor the right baseline?

2. How good are Spearman correlation scores of 0.41 (training sample) and 0.39 
(test sample)?



Spearman Correlation
Spearman Correlation 

Assesses how well the 

relationship between two 

variables can be described 

using a monotonic function.

Critique: In reality, a Spearman Correlation of 0.35 to 0.45 is only indicative of an elliptical distribution (similar to 

the middle picture). The Spearman Correlation for the training samples was 0.41 and test samples was 0.39. 



Affinity Regression

Largely Captures 

Previously Defined 

Transcriptomic Subtypes



Experiment #2A: Identify Active TFs for each 
Tumor Sample

• Objective: Examine whether the model reflects the existing PAM50 expression-based breast 

cancer subtype classifications. 

• Process:

• Mapped its protein expression profile PT through the learned interaction matrix by WxPT to obtain a weight 

vector over TFs

• All training examples (n = 192) were used to learn the model. 

• Results:

• Hierarchical clustering of inferred TF activity of tumor samples (WPT) largely recovered the distinction 

between the three major subtypes

• Adjusted Rand Index 0.615 for three-way clustering & ARI of 0.449 for four-way clustering

• Basal-like samples were well separated from other subtypes. 

• Claim: The model largely captures previously defined transcriptomic subtypes.



Figure S2. Performance of Affinity Regression using data from the 

TCPA RPPA data set. 

Key Takeaway: Hierarchical clustering of inferred TF activities 

recovers major transcriptional subtypes.

Critique:

1. Per their own admission, LumA and LumB were not well separated 

(error rate of 40-60%).

2. Even the Her2 cluster seems to have an error of more than 25%. 

3. The heat maps seem to have an intensity predominantly between -

0.50 and 0.50 (quite low).

Unsupervised 
Hierarchical Clustering



Experiment #2B: Identify the Activity of Signaling 
Proteins for each Tumor Sample

• Objective: Examine whether the model reflects the existing PAM50 expression-based breast 

cancer subtype classifications. 

• Process:

• Mapped the expression profiles through the motif hit matrix and our learned model by YTDW

• This gives a weight vector over (phospho) proteins for each sample.

• Results:

• Hierarchical clustering of samples by inferred protein activity also recovered the distinction between 

breast cancer subtypes

• Adjusted Rand Index 0.58 for three-way clustering & ARI of 0.435 for four-way Clustering

• Using just the RPPA values, the ARI was 0.289 for four-way clustering 

• Claim: The model largely captures previously defined transcriptomic subtypes.



Adjusted Rand Index
Adjusted Rand Index is a measure of the similarity between two data clusterings.

Definition: Given a set of n elements S, and two partitions of S: X (a partition of S into r subsets) and Y (a partition of S into s subsets), 

• TP, the number of pairs of elements in S that are in the same set in X and in the same set in Y 

• TN, the number of pairs of elements in S that are in different sets in X and in different sets in Y

• FP, the number of pairs of elements in S that are in the same set in X and in different sets in Y

• FN, the number of pairs of elements in S that are in different sets in X and in the same set in Y

The Rand index (R) is: R = {TP+TN}/{TP+TN+FP+FN}

Rand index: Perfectly random clustering returns the minimum score of 0, perfect clustering returns the maximum score of 1.

Adjusted Rand index: A variation of the Rand index which takes into account the fact that random chance will cause some objects to 
occupy the same clusters, so the Rand Index will never actually be zero. ARI can return a value between -1 and +1.



Affinity Regression

Identifies Subtype-Specific TFs 

& Signaling Proteins 

Associated with 

Expression Changes 



Experiment #3
• Assessed TF-subtype associations using a Mann-Whitney U-test to compare inferred TF activity between 

pairs of transcriptional subtypes or groups of subtypes

• Also assessed differences in inferred protein activity across the clinically relevant transcriptional subtypes

• Tested three pairwise comparisons for each TF: (1) basal-like vs. HER2, Luminal A, Luminal B; (2) HER2 vs. 

Luminal A, Luminal B; and (3) Luminal A vs. Luminal B.

• Results:

• Found more associations using model than with TF mRNA expression levels directly

• Basal-like-specific TF regulators include ETS1, CEBPB, NFATC4, HMG and SOX9, HMX3 and ZBTB14 for HER2 and SMAD4, NKX2-1 and 

FOXA1 for Luminal-A

• Similar results for protein activity



Mann-Whitney U-Test
• Also called the Mann–Whitney–Wilcoxon (MWW), Wilcoxon rank-sum test (WRS), or Wilcoxon–Mann–

Whitney test

• Is a nonparametric test of the null hypothesis that two populations are the same against an alternative 

hypothesis, especially that a particular population tends to have larger values than the other.

• Switch to Wiki Example



Experiment #3: Results



Inferred Protein Activity 

In Breast Cancer Cell Lines 

Can Be Used To 

Predict Drug Response



Experiment #4A
Tested whether our affinity regression model―trained on paired mRNA and RPPA data from breast cancer 

tumors―could be used to: 

◦ Infer protein signaling activity in breast cancer cell lines from their mRNA expression profiles alone

◦ Whether these inferred protein signatures were useful for predicting drug sensitivity. 

Used previously published gene expression data for 35 breast cancer cell lines with corresponding drug 

response data for 77 drugs quantified by growth inhibition (GI50)

Found that 45 out of 74 (61%) of the drugs produced variable responses across the cell lines (standard 

deviation of log-transformed GI50 across cell lines greater than 0.5)

Restricted analysis to these drugs. Out of 45 cell lines, 28 were luminal (ER+), and 15 of those were ERBB2-

amplified.



Experiment #4A
Used the TCGA-trained affinity regression model to infer protein activity profiles for individual cell lines 

(YTDW)

Applied unsupervised hierarchical clustering to these profiles, and confirmed that this clustering 

discriminated between basal-like and luminal subtypes for the breast cancer cell lines 

In contrast, mapping the cell lines through randomized versions of the interaction matrix W did not 

correctly recover Basal-like vs. Luminal subtypes 

Indicates that the model—and not only the initial mRNA expression profiles of the breast cancer cell 

lines—was crucial for segregating cell lines by subtype



Experiment #4A
Figure S8. Clustering of breast cancer cell lines by inferred 
protein activities.  

Unsupervised hierarchical clustering of breast cancer cell lines 
by their inferred protein activity, using the TCGA affinity 
regression model, correctly distinguishes between Basal-like 
and Luminal cell lines. 



Experiment #4B
Objective: Explore possible associations between inferred protein activity and drug response

Method: Computed Spearman rank correlations between (inferred) protein activity and drug GI50 for each (phospho) 

protein-drug pair over cell lines. Followed this up with clustering. To confirm the findings of clustering analysis, for each 

pair of drugs, asked whether ridge regression models trained to predict one drug’s response would generalize to predict 

the other drug’s response. 

Results:

◦ Figure shows the two-way clustering of drugs and proteins by these pairwise Spearman rank correlations; drugs are clustered into 

groups according to the protein activities that correlate with their response. 

◦ Several drugs with similar mechanisms of action or affecting a common signaling pathway clustered together.

◦ Several drugs commonly used in combination for the treatment of breast cancer were often found to cluster together in our analysis.

◦ Results align with several clinical trials demonstrating that inhibiting multiple targets that regulate cancer growth is more effective 

than monotherapy

◦ Results of transfer learning exercise from ridge regression models found similar relationships between drug sensitivities



Figure S9. Correlation of inferred and measured protein activities. Correlation of inferred protein activity and measured protein variation across 
tumors (left) and breast cancer cell lines (right); for cell line data, we predict protein activity using the TCGA affinity regression model and measure 
protein expression using the TCPA resource.  (Basal-like (red), HER2 (pink), LumA (dark blue), LumB (light blue), for tumors; luminal (black) and 
basal (coral) for breast cancer cell lines.)



Figure S9. Correlation of inferred and measured protein activities. Correlation of inferred protein activity and measured protein variation across 
tumors (left) and breast cancer cell lines (right); for cell line data, we predict protein activity using the TCGA affinity regression model and measure 
protein expression using the TCPA resource.  (Basal-like (red), HER2 (pink), LumA (dark blue), LumB (light blue), for tumors; luminal (black) and 
basal (coral) for breast cancer cell lines.)



Figure S10. Correlation of inferred protein 

activities with drug responses in breast 

cancer cell lines.

(A) Heatmap revealing correlations 

between inferred protein activities of cell 

lines (rows) and drug responses (columns).  

Identified two clusters of drugs from 

unsupervised analysis (corresponding 

targets given in parentheses): a group 

consisting mostly of cytotoxic drugs 

including Carboplatin, Cisplatin, and 

Docetaxel, but also Erlotinib (EGFR), shown 

in (B); and a group of targeted therapies 

including Tamoxifen (ESR1), 17-AAG 

(HSP90), Temsirolimus (mTOR), Rapamycin

(mTOR), Lapatinib (EGFR, ERBB2), and 

GSK2119563 (PIK3CA), shown in (C). 

(B) and (C) Interaction maps using the 

STRING resource are constructed for 

proteins whose inferred activities are 

highly correlated with drug sensitivity for 

group (B) and (C).



TGCA affinity regression model infers signaling activity in 
breast cancer cell lines and predicts drug sensitivity

Elastic net drug response models built from inferred 

protein activity reveal drug targets (shown in 

parentheses after drug name) more often than models 

built using gene expression.



Figure S11. Transfer learning for drug response models.

Prediction performance of elastic net models for each drug (shown in columns) predicting 

drug response for all drugs (shown in rows); performance reported as Spearman 

correlations, with values below 0.3 set to 0.

Experiment 4B



Experiment #4C
Objective: Learn Predictive Signatures to Drug Response 

Method: Trained an elastic net regression model for each drug separately using inferred protein activities 
as input features and log-transformed GI50 values as output values. As a baseline comparison method, 
used mRNA expression profiles as input features.

Results: 

◦ The drug response signatures associated with inferred protein activities were more likely to include the 
drug target: 

◦ The protein activity drug signatures contained the drug target at least 10% of the time for 11 out of 14 targeted 
drugs (79%) 

◦ The mRNA drug signature contained the drug target at least 10 times in 100 iterations of training for only 4 out 
of 14 targeted drugs (28%)

◦ Use of inferred protein activities as features incurs some loss in prediction accuracy compared to mRNA 
features, perhaps due in part to the difference between tumor and cell line data.



Inferred Protein Activity 

of Luminal A Cohort 

Predicts Survival



Experiment #5
Objective: Determine whether inferred protein activities based on model could predict survival in patients 

with Luminal A breast cancers.

Method:

◦ Used the METABRIC cohort, which consists of a discovery set and validation set (n = 465 and 254 Luminal A tumors, 

respectively) with mRNA expression profiles and long-term clinical follow-up. 

◦ Used the TCGA-trained affinity regression model to infer protein activity profiles of Luminal A samples in the 

METABRIC cohort (YTDW). 

◦ Using the inferred protein activity, first identified proteins with univariate Cox P < 0.001 on the discovery set.

◦ Associations were tested by predicting the risk for each patient in the validation set using the univariate models and 

performing Kaplan-Meier survival analysis

◦ Built multivariate stepwise Cox regression models using the predicted protein activity and the gene expression 

profiles of the RPPA proteins on the discovery set.



Experiment #5: Results
◦ Univariate survival analysis: (1) For PGR and STAT5A, associated high protein activity with 

better overall survival (2) For high ERBB2 and phosphorylated ERBB2 (pY1248) showed a 

worse prognosis. 

◦ Univariate models built from inferred protein activity can predict survival in the validation 

cohort but not models built from the gene expression levels of those proteins. 

◦ Multivariate models: For the validation cohort, the model trained with inferred protein 

activities can predict survival but not the model trained on gene expression profiles 

corresponding to RPPA-profiled proteins. 

◦ Further confirmed that the multivariate and most of the univariate survival results 

generalized to Luminal A patients in two other cohorts, TRANSBIG and NKI.

◦ Claim: Inferred protein activity from model can predict survival for Luminal A cohort 



Figure S15. Inferred protein activity predicts survival in patients with Luminal A breast 

cancers (TRANSBIG). 

◦ Using inferred protein activity, a prognostic signature for overall survival was trained on the 

METABRIC discovery set. Kaplan–Meier survival curves reveals higher- versus lower-risk patients on 

the TRANSBIG datasets (Desmedt et al. 2007) using inferred protein activity (top panels) but not 

the corresponding gene expression (bottom panels) with (A) univariate Cox models for PGR, 

STAT5A and ERBB2 and (B) multivariate Cox models. 

Experiment #5


