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The Problem (2014)

Cancer process:
° Cancer cells acquire genetic and epigenetic alterations that often target signal transduction pathways
° These alterations lead to dysregulation of oncogenic signal transduction pathways

° In turn, this alters downstream transcriptional programs.

Problem/Motivation:
> Deciphering signaling pathways that are deregulated in a given tumor in order to personalize therapy is a major goal.
> Much effort devoted to cataloging somatic alterations across large sets of tumors and mapping them to cellular pathways

° These projects have generated massive repositories of tumor mRNA data, giving a complex readout of the transcriptional
changes downstream from altered signaling pathways.

° Unable to translate the mutational landscape of a tumor into a usable model of affected pathways.
> Unable to use mutational status to accurately predict response to targeted therapies.
> Numerous methods attempt to deduce aberrant signaling pathways in tumors from mRNA data alone.

> But these pathway analysis approaches remain qualitative and imprecise.



Recent Developments
AN

Advent of proteomic methods has the potential to provide a systematic map of critical signaling pathways that are altered in cancer.

\

Recently, TCGA project has added RPPA profiling for a panel of proteins and phosphoproteins. Reverse-phase protein microarrays (RPPAs)

Quantitative profiling of proteins in tumor tissues using RPPA presents many technical challenges: Antibody validation, Variability in tissue
handling & Intra-tumoral heterogeneity.

' are a medium-throughput technology to analyze the expression levels of a protein or phosphoprotein across many samples at once.
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The |dea

> Link upstream signaling to downstream transcriptional response
> Do so by exploiting Reverse Phase Protein Array (RPPA) and mRNA expression data
> Model views RPPA data as a noisy readout of the activity of signaling pathways;

* Oncogenic signaling pathways converge on a set of Transcription Factors (TFs)

* TF’s dysregulated activity in turn alters the mRNA expression levels of TF target genes.

> Created an algorithm called Affinity Regression to learn an interaction matrix between Upstream signal

transduction proteins and Downstream transcription factors (TFs) to explain target gene expression

> Use TF binding site prediction to determine the set of TFs that potentially regulate each gene.

° The trained model can then be used in multiple ways:
* Given a tumor sample’s protein expression profile, we can predict the TF activity.

* Given a tumor sample’s gene expression profile, we can infer the signaling protein activity.



Summary of Results

* Applied approach to 397 breast cancer profiles from TCGA for which both
RPPA and mRNA data are available

* Used Affinity Regression:

e To infer the deregulated signaling pathways that drive expression changes in
distinct breast cancer subtypes

e To leverage the tumor model to predict drug sensitivity using breast cancer cell
line MRNA and drug response data

e To predict survival within the heterogeneous ER+, Luminal A subtype.




Breast Cancer

Breast cancer has been \
categorized into three basic

_ G1: Basal-like or triple-negative breast cancers
therapeutic groups.

* TNBCs, lacking expression of the estrogen receptor [ER], progesterone receptor [PR], and HER2,
Within the ER+ category, gene e Characterized by a poor prognosis and no specific targeted therapies
V4

expression profiling studies \\
(PAMS50) have identified two

subtypes within ER-positive breast

cancers, Luminal A and Luminal B.

G2: HER2 (ERBB2) amplified

¢ Associated with relatively poor prognosis if untreated
¢ With significant clinical benefit from anti-HER2-therapy

Although patients with Luminal A

cancers have the best prognosis, //
these tumors are heterogeneous, G3: Estrogen Receptor-positive (Luminal)
and there exist few markers that e Characterized by a relatively good prognosis and response to targeted hormonal therapies.

predict recurrence and survival.
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7 Affinity Regression
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e Matrix Y: Data set of N genes from M tumor samples; Y = NxM matrix of mean-

centered log gene expression profiles (Microarray data)

/ * Matrix-D: Using TF binding site prediction in gene promoters, we define a matrix
B D = NxQ, where each row represents a gene and each column is a binary vector
TFs ¥ Proteins  Sumples Samples representing the target genes of a TF. (Motif data from MSigDB TRANSFAC v7.4)
) o £ ~ 8 * Matrix-P: P = MxS of tumor sample (phospho) protein attributes where each row
. D £ W |sEpt s Y
v & © represents a tumor sample and each column represents mean-centered RPPA
E—— learned ! O expression levels of a signaling protein across tumor samples.
interaction 1Y
matrix * Matrix-W: Transcription Factors to Proteins mapping (To be Learned)

* Bilinear regression using:D * W *PT+ E=Y

_P =) ::::'_;’ ‘

TF binding reverse phase
predictions protein arrays



Discussion

The W matrix represents an interaction between TFs and Proteins. In this study, they have
learned the W from tumor samples What are the implications of this?
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Is the W that is learned from tumor samples meant to be an approximation of true W? Or
is the W learned from tumor samples meant to be different from true W and reflective of
the fact that these cells are cancerous and reflective of the specific type of cancer?



Affinity Regression
Outperforms Nearest Neighbor
for Gene Expression Prediction

on Held-out Samples



Experiment #1

* Evaluated approach on a data set of BRCA tumors from TCGA where both genome-wide mRNA expression data and
RPPA measurements for 164 proteins/phosphoproteins are available.

* Trained model on equal numbers of samples for each subtype (n = 48x4 = 192).
* For Motif data, used binding site predictions for 230 TFs in the promoter regions from MSigDB
* Use the learned Affinity Regression model

* D=4029 Genes x 230 TFs

* W =230 TFs x 164 proteins/phosphoproteins.

* PT =164 proteins/phosphoproteins x 192 samples

* Y = DXWxPT

* For statistical evaluation, computed the mean Spearman rank correlation between predicted and measured gene
expression profiles on held-out samples using six-fold cross-validation.

* Compared results with a Nearest Neighbor approach, where neighbors are chosen based on similarity of protein
expression profiles

* To further validate the performance, also examined an independent test set of 205 TCGA samples.



Performance vs NN Baseline

Affinity regression
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Figure S1. Performance of the trained affinity regression model on an
independent test set of TCGA samples, compared to nearest neighbor.

Plot showing Spearman correlations between predicted and actual gene
expression changes relative to a median ref.

Claim: Affinity Regression outperforms the baseline of NN. Therefore, the
model explains a meaningful part of the dysregulation of gene expression
in breast cancer based on the ability to predict gene expression variation
across tumors on held-out tumor samples.

Critique:
1. Is Nearest Neighbor the right baseline?

2. How good are Spearman correlation scores of 0.41 (training sample) and 0.39
(test sample)?



Spearman Correlation

Spearman correlation=1

Pearson correlation=0.88 Spearman correlation=0.35
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variables being compared are monotonically related, )(

even iftheir relationship is not linear. This means that
all data-points with greater x-values than that ofa
given data-point will have greater y-values as well. In
contrast, this does not give a perfect Pearson
correlation.

When the data are roughly elliptically distributed &3
and there are no prominent outliers, the Spearman
correlation and Pearson correlation give similar
values.

Spearman correlation=0.84
Pearson correlation=0.67

The Spearman correlation is less sensitive than the &7
Pearson correlation to strong outliers that are in the
tails of both samples. Thatis because Spearman’s rho
limits the outlier to the value of its rank.

Spearman Correlation

Assesses how well the
relationship between two
variables can be described

using a monotonic function.

Critique: In reality, a Spearman Correlation of 0.35 to 0.45 is only indicative of an elliptical distribution (similar to
the middle picture). The Spearman Correlation for the training samples was 0.41 and test samples was 0.39.



Affinity Regression
Largely Captures
Previously Defined
Transcriptomic Subtypes



Experiment #2A: [dentify Active TFs for each
Tumor Sample

Objective: Examine whether the model reflects the existing PAM50 expression-based breast
cancer subtype classifications.

Process:

* Mapped its protein expression profile PT through the learned interaction matrix by WxPT to obtain a weight
vector over TFs

* All training examples (n = 192) were used to learn the model.

Results:

* Hierarchical clustering of inferred TF activity of tumor samples (WPT) largely recovered the distinction
between the three major subtypes

* Adjusted Rand Index 0.615 for three-way clustering & ARI of 0.449 for four-way clustering

* Basal-like samples were well separated from other subtypes.

Claim: The model largely captures previously defined transcriptomic subtypes.



Unsupervised
Hierarchical Clustering

Figure S2. Performance of Affinity Regression using data from the
TCPA RPPA data set.
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Critique:

1. Per their own admission, LumA and LumB were not well separated
(error rate of 40-60%).

2. Even the Her2 cluster seems to have an error of more than 25%.

3. The heat maps seem to have an intensity predominantly between -
0.50 and 0.50 (quite low).
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Experiment #2B: |dentify the Activity of Signaling
Proteins for each Tumor Sample

Objective: Examine whether the model reflects the existing PAM50 expression-based breast
cancer subtype classifications.

Process:
* Mapped the expression profiles through the motif hit matrix and our learned model by Y'DW

* This gives a weight vector over (phospho) proteins for each sample.

Results:

* Hierarchical clustering of samples by inferred protein activity also recovered the distinction between
breast cancer subtypes

* Adjusted Rand Index 0.58 for three-way clustering & ARI of 0.435 for four-way Clustering

* Using just the RPPA values, the ARI was 0.289 for four-way clustering

Claim: The model largely captures previously defined transcriptomic subtypes.



Adjusted Rand Index

Adjusted Rand Index is a measure of the similarity between two data clusterings.

Definition: Given a set of n elements S, and two partitions of S: X (a partition of S into r subsets) and Y (a partition of S into s subsets),

. TP, the number of pairs of elements in S that are in the same set in X and in the same setin Y
. TN, the number of pairs of elements in S that are in different sets in X and in different sets in Y
. FP, the number of pairs of elements in S that are in the same set in X and in different setsin Y
. FN, the number of pairs of elements in S that are in different sets in X and in the same setin Y

The Rand index (R) is: R = {TP+TN}/{TP+TN+FP+FN}
Rand index: Perfectly random clustering returns the minimum score of 0, perfect clustering returns the maximum score of 1.

Adjusted Rand index: A variation of the Rand index which takes into account the fact that random chance will cause some objects to
occupy the same clusters, so the Rand Index will never actually be zero. ARI can return a value between -1 and +1.

AR = HTP*TN-FP*FN)
(TP + TNATN + FP)4(TP 4+ FNUFN + FP)




Affinity Regression
Identifies Subtype-Specific TFs
& Signaling Proteins
Associated with
Expression Changes



Experiment #3

* Assessed TF-subtype associations using a Mann-Whitney U-test to compare inferred TF activity between

pairs of transcriptional subtypes or groups of subtypes
* Also assessed differences in inferred protein activity across the clinically relevant transcriptional subtypes

» Tested three pairwise comparisons for each TF: (1) basal-like vs. HER2, Luminal A, Luminal B; (2) HER2 vs.

Luminal A, Luminal B; and (3) Luminal A vs. Luminal B.

* Results:

* Found more associations using model than with TF mRNA expression levels directly

* Basal-like-specific TF regulators include ETS1, CEBPB, NFATC4, HMG and SOX9, HMX3 and ZBTB14 for HER2 and SMAD4, NKX2-1 and
FOXA1 for Luminal-A

* Similar results for protein activity



Mann-Whitney U-Test

 Also called the Mann—Whitney—Wilcoxon (MWW), Wilcoxon rank-sum test (WRS), or Wilcoxon—Mann—
Whitney test

* Is a nonparametric test of the null hypothesis that two populations are the same against an alternative

hypothesis, especially that a particular population tends to have larger values than the other.

» Switch to Wiki Example




Experiment

3: Results

Table 1. Transcription factors that show significant subtype

specificity

Basal-like vs. HER2 wvs.  Lumé vs. Subtype
TF HWH Luminal LumB specificity
SOX9 0.07 0.61 0.74 Basal-like
HMG 0.08 0.69 0.83 Basal-like
NFATC4 0.09 0.85 0.86 Basal-like
ET51 0.07 0.54 0.86 Basal-like
CEBPB <103 0.85 1 '
FETB14 - 0.76 0.1
HMX3 <1073 0.85 0.9

051 VA

VSX2 0.97 0.86 0 Luma
MEX2-2 0.55 0.58 0.06 Luma
TTF1 0.92 0.81 0.06 LurmA
FOXAI 0.B6 0.81 0.09 Lum#,
IRF2 0.49 0.54 0.1 Luma
GTF2I 0.08 0.65 0.71 LumA/B
GATA3 0.1 0.54 0.86 LumaA/B
MEIST <1073 0.94 LumA/B
FXR 0.85 0.97 Luma/B
IRF10 0.54 0.97 LumaA/B
FOXF1 0.85 0.97 LumA/B
MECOM 0.95 0.97 LumA/B/HER2

FDR adjusted P < 0.1.

Table 2. Proteins/phosphoproteins that show significant subtype specificity

Basal-like vs. HER2 vs. LumA vs. Subtype
Protein HER2, Luminal Luminal LumB specificity
KIT ( <10 ) 0.45 0.27 Basal-like
CCMET <1073 0.06 0.27 Basal-like
MSH2 <1073 0.04 0.6 Basal-like
CHEK2 <103 0.14 0.03 Basal-like
CDH3 <1073 0.03 0.92 Basal-like
MSH6 0.01 0.14 0.12 Basal-like
WWTR1 (pS89) 0.01 1 0.54 Basal-like
PTGS2 0.01 0.03 0.99 Basal-like
KDR 0.02 1 0.54 Basal-like
CTMMNET 0.02 1 0.27 Basal-like
CCMB1 0.02 0.28 =103 Basal-like
STATSA 0.02 0.06 0.7 Basal-like
MAPK14 (pT180) 0.06 0.72 0.71 Basal-like
RE1 (pS807) 0.08 0.33 0.93 Basal-like
ERBB2 (pY1248) <1073 <1073 0.76 HER2
ERBB2 <1073 <107% 0.99 HER2
AKT1/AKT2/AKT3 (ps473) 0.03 0.09 0.7 HER2
AKT1/AKT2/AKT3 <1073 0.33 0.52 HERZ/LumA
RPS6 (pS235) 0.03 0.81 0.05 HERZ/LumB
AR <1073 0.03 0.99 HERZ/LumA/B
PDK1 (pS241) 0.01 0.22 016 Lurmné
PGR 0.13 <10? 0.09 Luma
PEATS 0.44 0.79 0.09 Lumda
IGFBP2 0.09 0.49 0.29 LumB
RPS6 (pS240) 0.12 0.74 <10°* LumB
INPP4B <1073 0.01 0.76 Luma/B
ESR1 <1073 0.04 0.54 Luma/B
GATA3 <1073 <1073 0.97 LumA/B
FMT 0.02 0.06 0.98 Luma/B
CAV1 0.02 0.05 0.52 LumA/B
CCND1 0.02 <1073 0.99 LumA/B
BCLZ 01 ) 0.04 0.99 LumaA/B

FDR adjusted P < 0.1.




Inferred Protein Activity
In Breast Cancer Cell Lines

Can Be Used To
Predict Drug Response



Experiment #4A

Tested whether our affinity regression model—trained on paired mRNA and RPPA data from breast cancer

tumors—could be used to:
o Infer protein signaling activity in breast cancer cell lines from their mRNA expression profiles alone

o Whether these inferred protein signatures were useful for predicting drug sensitivity.

Used previously published gene expression data for 35 breast cancer cell lines with corresponding drug
response data for 77 drugs quantified by growth inhibition (G150)

Found that 45 out of 74 (61%) of the drugs produced variable responses across the cell lines (standard

deviation of log-transformed GI50 across cell lines greater than 0.5)

Restricted analysis to these drugs. Out of 45 cell lines, 28 were luminal (ER+), and 15 of those were ERBB2-

amplified.



Experiment #4A

Used the TCGA-trained affinity regression model to infer protein activity profiles for individual cell lines
(YTDW)

Applied unsupervised hierarchical clustering to these profiles, and confirmed that this clustering

discriminated between basal-like and luminal subtypes for the breast cancer cell lines

In contrast, mapping the cell lines through randomized versions of the interaction matrix W did not

correctly recover Basal-like vs. Luminal subtypes

Indicates that the model—and not only the initial mMRNA expression profiles of the breast cancer cell

lines—was crucial for segregating cell lines by subtype



il Experiment #4A
i ﬂﬁhﬁ Wﬂ Figure S8. Clustering of breast cancer cell lines by inferred
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Experiment #4B

Objective: Explore possible associations between inferred protein activity and drug response

Method: Computed Spearman rank correlations between (inferred) protein activity and drug GI50 for each (phospho)
protein-drug pair over cell lines. Followed this up with clustering. To confirm the findings of clustering analysis, for each

pair of drugs, asked whether ridge regression models trained to predict one drug’s response would generalize to predict
the other drug’s response.

Results:

o Figure shows the two-way clustering of drugs and proteins by these pairwise Spearman rank correlations; drugs are clustered into
groups according to the protein activities that correlate with their response.

o Several drugs with similar mechanisms of action or affecting a common signaling pathway clustered together.
o Several drugs commonly used in combination for the treatment of breast cancer were often found to cluster together in our analysis.

o Results align with several clinical trials demonstrating that inhibiting multiple targets that regulate cancer growth is more effective
than monotherapy

o Results of transfer learning exercise from ridge regression models found similar relationships between drug sensitivities
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Figure S9. Correlation of inferred and measured protein activities. Correlation of inferred protein activity and measured protein variation across
tumors (left) and breast cancer cell lines (right); for cell line data, we predict protein activity using the TCGA affinity regression model and measure
protein expression using the TCPA resource. (Basal-like (red), HER2 (pink), LumA (dark blue), LumB (light blue), for tumors; luminal (black) and
basal (coral) for breast cancer cell lines.)
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Figure S9. Correlation of inferred and measured protein activities. Correlation of inferred protein activity and measured protein variation across
tumors (left) and breast cancer cell lines (right); for cell line data, we predict protein activity using the TCGA affinity regression model and measure
protein expression using the TCPA resource. (Basal-like (red), HER2 (pink), LumA (dark blue), LumB (light blue), for tumors; luminal (black) and
basal (coral) for breast cancer cell lines.)
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Figure S10. Correlation of inferred protein
activities with drug responses in breast
cancer cell lines.

(A) Heatmap revealing correlations
between inferred protein activities of cell
lines (rows) and drug responses (columns).
Identified two clusters of drugs from
unsupervised analysis (corresponding
targets given in parentheses): a group
consisting mostly of cytotoxic drugs
including Carboplatin, Cisplatin, and
Docetaxel, but also Erlotinib (EGFR), shown
in (B); and a group of targeted therapies
including Tamoxifen (ESR1), 17-AAG
(HSP90), Temsirolimus (mTOR), Rapamycin
(mTOR), Lapatinib (EGFR, ERBB2), and
GSK2119563 (PIK3CA), shown in (C).

(B) and (C) Interaction maps using the
STRING resource are constructed for
proteins whose inferred activities are
highly correlated with drug sensitivity for
group (B) and (C).




TGCA affinity regression model infers signaling activity in
breast cancer cell lines and predicts drug sensitivity
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Experiment 4B

Figure S11. Transfer learning for drug response models.
Prediction performance of elastic net models for each drug (shown in columns) predicting
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Experiment #4C

Objective: Learn Predictive Signatures to Drug Response

Method: Trained an elastic net regression model for each drug separately using inferred protein activities
as input features and log-transformed GI50 values as output values. As a baseline comparison method,

used mRNA expression profiles as input features.
Results:

o The drug response signatures associated with inferred protein activities were more likely to include the
drug target:

o The protein activity drug signatures contained the drug target at least 10% of the time for 11 out of 14 targeted
drugs (79%)

o The mRNA drug signature contained the drug target at least 10 times in 100 iterations of training for only 4 out
of 14 targeted drugs (28%)

o Use of inferred protein activities as features incurs some loss in prediction accuracy compared to mRNA
features, perhaps due in part to the difference between tumor and cell line data.



Inferred Protein Activity
of Luminal A Cohort
Predicts Survival



Experiment #5

Objective: Determine whether inferred protein activities based on model could predict survival in patients
with Luminal A breast cancers.

Method:

(¢]

Used the METABRIC cohort, which consists of a discovery set and validation set (n = 465 and 254 Luminal A tumors,
respectively) with mRNA expression profiles and long-term clinical follow-up.

Used the TCGA-trained affinity regression model to infer protein activity profiles of Luminal A samples in the
METABRIC cohort (YTDW).

Using the inferred protein activity, first identified proteins with univariate Cox P < 0.001 on the discovery set.

Associations were tested by predicting the risk for each patient in the validation set using the univariate models and
performing Kaplan-Meier survival analysis

Built multivariate stepwise Cox regression models using the predicted protein activity and the gene expression
profiles of the RPPA proteins on the discovery set.



Experiment #5: Results

o Univariate survival analysis: (1) For PGR and STAT5A, associated high protein activity with
better overall survival (2) For high ERBB2 and phosphorylated ERBB2 (pY1248) showed a

worse prognosis.

o Univariate models built from inferred protein activity can predict survival in the validation
cohort but not models built from the gene expression levels of those proteins.

o Multivariate models: For the validation cohort, the model trained with inferred protein
activities can predict survival but not the model trained on gene expression profiles
corresponding to RPPA-profiled proteins.

o Further confirmed that the multivariate and most of the univariate survival results
generalized to Luminal A patients in two other cohorts, TRANSBIG and NKI.

o Claim: Inferred protein activity from model can predict survival for Luminal A cohort
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Experiment #5

Figure S15. Inferred protein activity predicts survival in patients with Luminal A breast
cancers (TRANSBIG).
o Using inferred protein activity, a prognostic signature for overall survival was trained on the

METABRIC discovery set. Kaplan—Meier survival curves reveals higher- versus lower-risk patients on
the TRANSBIG datasets (Desmedt et al. 2007) using inferred protein activity (top panels) but not

the corresponding gene expression (bottom panels) with (A) univariate Cox models for PGR,
STAT5A and ERBB2 and (B) multivariate Cox models.




