Inferring transcriptional and microRNA-mediated regulatory programs in glioblastma

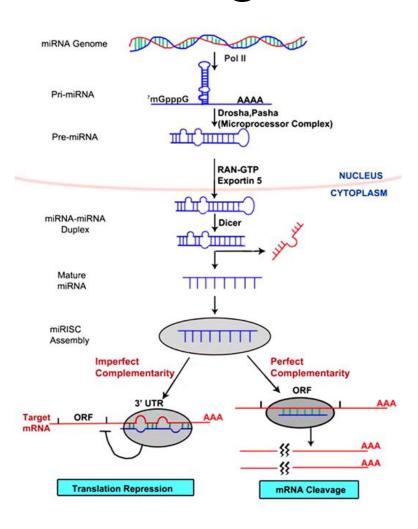
Setty, M., et al

Goal

- Integrate multiple layers of data for tumor DNA copy number, promoter methylation, mRNA expression, and miRNA expression.
- Understand the role of miRNA-mediated and transcription factors (TFs) regulation.
- Characterize the pattern of dysregulation in tumors in terms of TFs and miRNAs

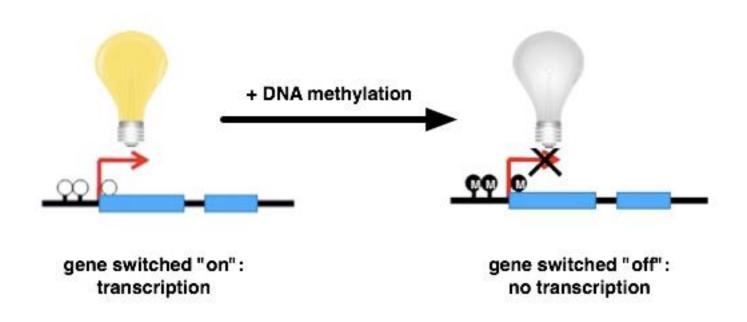
Glioblastoma muliforme (GBM)

Four expression-based subtypes –


Proneural

Classical

Mesenchymal


Neural

miRNA Regulation

DNA methylation

DNA methylation is a biochemical process where a methyl group is added to the cytosine or adenine DNA nucleotides.

Why Important to Study miRNA Regulation?

• Impairment of the miRNA regulatory network is viewed as a key mechanism of glioblastma pathogenesis.

• miRNA expression signatures have been used to classify GBM into subtypes related to lineages in the nervous system

• miR-26a has been shown to promote gliomagenesis in vivo by repression of the tumor suppressor PTEN.

Scheme

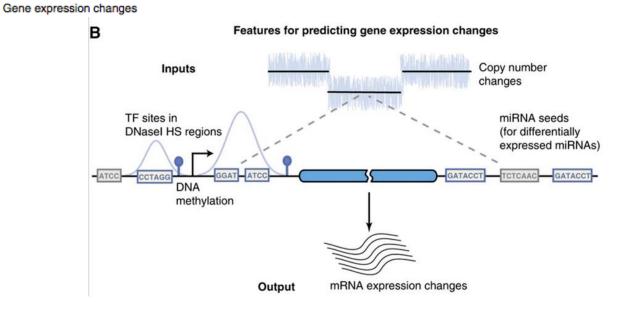
• Combine mRNA, copy number and miRNA profiles with regulatory sequence information

• Learn the key direct regulators – TFs and miRNAs using promoter and 3'UTR motif features with sparse regression

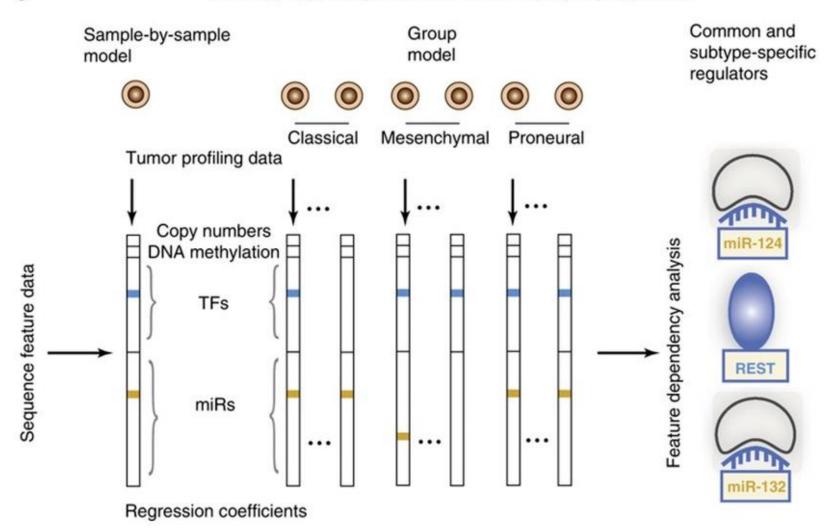
Method-outline

Tumor sample

Copy number changes


Normal sample

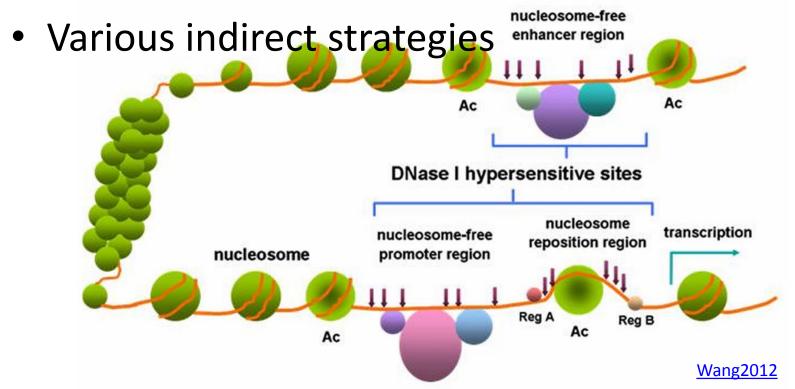
Output


Constraint

DNA methylation

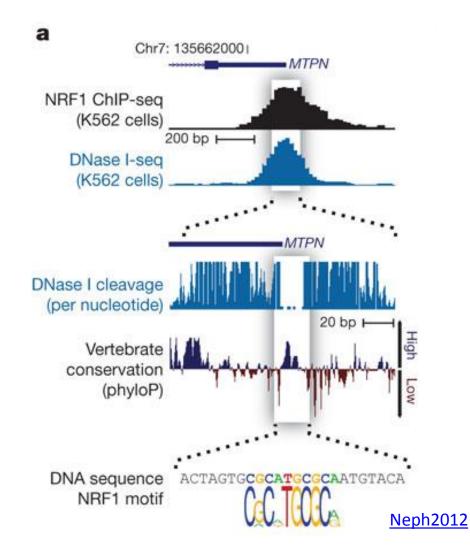
Gene g

Learning regulatory models and identifying key regulators


Target prediction for TFs and miRNAs

 Determine TFs binding site using DnaseI HS Sequencing

• Determine miRNA binding sites using 7-mer seed matches in the 3'UTR of the Refseq genes.


Transcriptional regulation

 ChIP-seq directly measures transcription factor (TF) binding but requires a matching antibody

Predicting regulator binding sites

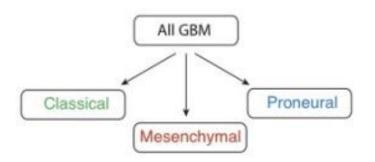
- Motifs are signatures of the DNA sequence recognized by a TF
- TFs block DNA cleavage
- Combining accessible DNA and DNA motifs produces binding predictions for hundreds of TFs

Regression model to predict log gene expression changes

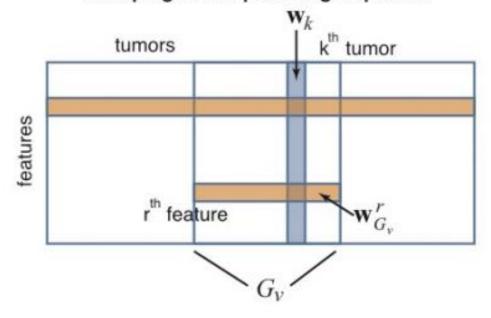
- Counts of TF and miRNA binding sites
- An estimate of gene's average copy number
- Promoter DNA methylation

$$y_g \approx w^{CN} C_g + \sum_{miR} w^{miR} N_{g, miR} + \sum_{TF} w^{TF} N_{g, TF}$$

Lasso regression models

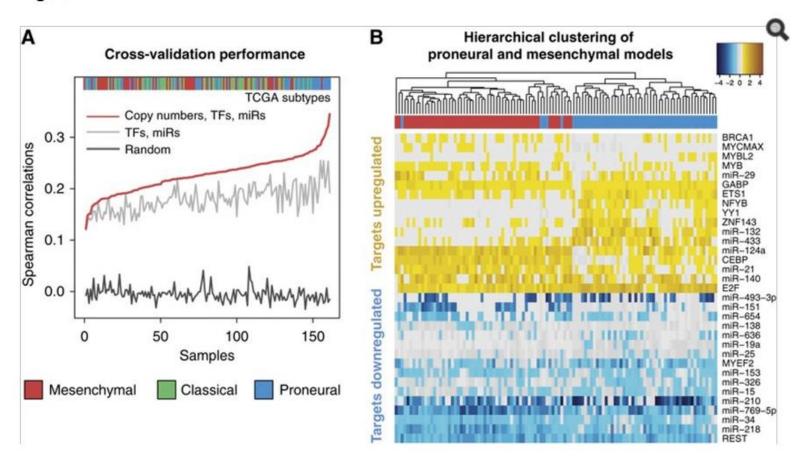

- To avoid overfitting
- Use lasso constraint to identify a small number of TFs and miRNA

$$\min_{\mathbf{w}} \sum_{g} (y_g - w \cdot x_g)^2 + \lambda \sum_{r \in \{\text{CN,miR,TF}\}} |w^r|$$


Joint Learning with Group Lasso

$$\min_{\mathbf{w}} \sum_{g,k} (y_{g,k} - w_k \cdot \mathbf{x}_{g,k})^2 + \lambda \sum_{r \in \{\text{CN}, \text{miR}, \text{TF}\}} \sum_{v} a_v \parallel \mathbf{w}_{G_v}^r \parallel_2$$

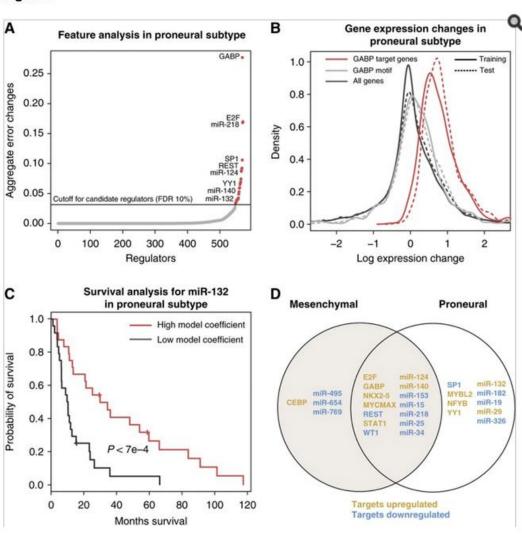
a Encoding subtypes as a tree

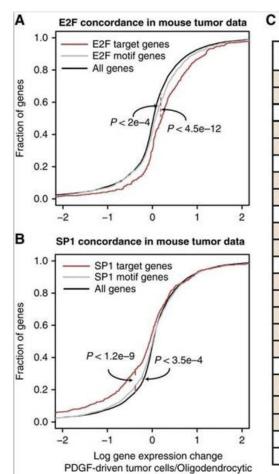


b Grouping of samples for group lasso

Sparse Regression Models Predict Differential of Subtypes of Tumor Samples

Figure 2

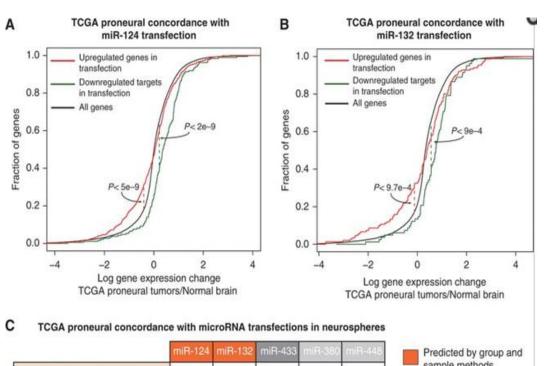

Dependency analysis

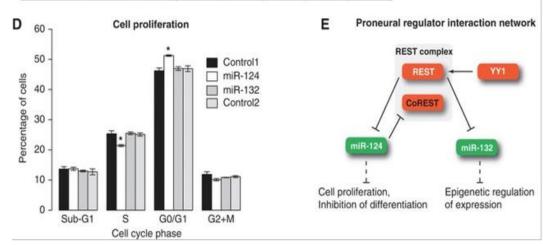

• To determine regulators (TFs and miRNAs) that significantly account for common and subtype-specific gene expression changes.

$$score(r, v) = \sum_{g} score(r, v, g) = \sum_{g} \sum_{k \in G_v} [L(y_{g,k}, w_k^{r \to 0} \cdot x_{g,k}) - L(y_{g,k}, w_k \cdot x_{g,k})]$$

Results - Feature Analysis of Group Models Identifies Common and Subtype Specific Regulators

Figure 3




progenitor cells

Candidate regulators in proneural subtype

Candidate regulator	Ontologies associate with geneset	Target regulation	Regulator significance <i>P</i> -value 2e-6	
GABP	DNA metabolism, DNA replication	Up		
E2F	Cell-cycle process	Up	2e-6	
miR-218	Synaptic transmission	Down	2e-6	
SP1		Down	2e-6	
miR-15	Cell morphogenesis, microtubule process	Up	9e-6	
REST		Down	2e-5	
MYBL2	Mitotic cell cycle, chromosome organization	Up	2e-5	
WT1	Neuron development, axonogenesis	Down	8e-5	
miR-153	Cell-cell signaling, synaptic transmission	Down	9e-5	
miR-124	Cell differentiation	Up	9.5e-5	
miR-182		Down	2e-4	
miR-34	Neuron development	Down	2e-4	
YY1	RNA metabolism, chromosome organization	Up	5e-4	
miR-29	Matrix organization	Up	5.5e-4	
miR-140	Cell development and migration	Up	1e-3	
NKX2-5	Regulation of apoptosis	Up	1.2e-3	
STAT1		Up	1.3e-3	
miR-25		Down	1.5e-3	
miR-132	Epigenetic regulation of gene expression	Up	1.5e-3	
MYCMAX	RNA metabolic process	Up	1.5e-3	
NFYB	Cell-cycle process	Up	2e-3	
miR-326		Down	2.5e-3	
miR-19	Signal transmission	Down	3e-3	

	miR-124	miR-132	miR-433	miR-380	m/R-448	Predicted by group and
Targets (Down in neurosphere+ Up in Proneural)	v	v v	×	x	x	sample methods Predicted by sample method only Control microRNA
Genes (Up in neurosphere+ Down in Proneural)						

• Thanks for your attention!