
Probabilistic Machine Learning
with

Omics Data and Biological Prior Knowledge

by

David Merrell

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN–MADISON

2023

Date of final oral examination: 06/30/2023

The dissertation is approved by the following members of the Final Oral Committee:
Anthony Gitter, Associate Professor, Biostatistics and Medical Informatics
Michael Newton, Professor, Statistics
Xiaojin Jerry Zhu, Professor, Computer Sciences
Yixuan Sharon Li, Assistant Professor, Computer Sciences

© Copyright by David Merrell 2023
All Rights Reserved

i

To Ma and Pa.

ii

acknowledgments

A long list of people helped me finish this dissertation.
My advisor, Tony Gitter, accepted me into his group as I started my

fourth year of graduate school. He took a big chance on me. I am extremely
grateful for that and have striven to make him proud of his decision.

My family has been a reliable source of support and encouragement.
We are scattered across the country, but our group chat and Zoom calls
keep us close.

I write these acknowledgements just after finishing a delightful dinner
with my girlfriend. She has been an anchor of sanity as I approach the end
of my PhD. Danielle: thank you, from the bottom of my heart, for being
so kind and generous through this time.

Friends and labmates occasionally pulled me away from my comput-
er/books/whiteboard to have some fun. These included Mark Mansi, Sam
Gelman, Ben Kaufman, Akhil Guliani, and Danny McNeela among oth-
ers. The bike rides, SACM events, rooftop barbeques, and evenings at the
Terrace lifted my spirits.

Am I allowed to acknowledge a city? Madison has been an ideal setting
for my graduate studies. I grew a lot during my years here. I will always
regard Madison as home.

I can trace the credit for this dissertation much farther back in time
than grad school, though. Specific people opened doors of opportunity
for me when I was young—educators and other mentors. It may surprise
some of those people to find their names here, but I want to mention them
anyway.

Debbie Luoma taught me to read, write, and sail by ash breeze. I’ve
been sailing that way ever since. If my writing has any quality, I have Mrs.
Luoma to thank.

Russell Lee and Marlene Dwyer awakened me to the challenge and

iii

beauty of physics and mathematics. I would not have found my way to
science, mathematics or computing without their thoughtful teaching and
encouragement.

I worked with Jeff Christian, Lynn Wood, Allen Robinson, Chris Mou-
ton, and Jia Xu during internships and other employment prior to graduate
school. Each of these people gave me the freedom to tackle challenging,
meaningful projects in a self-directed fashion. Those experiences molded
my professional interests and served as crucial stepping stones in my
career.

Finally, I’ll emphasize the credit due to my parents. My dad has been
a constant source of wisdom and advice. Beyond merely keeping me
alive and raising me out of childhood, my mom educated me and culti-
vated my interest in math, science and engineering. I can’t summarize her
contributions here. That would take another book.

iv

contents

Contents iv

List of Tables vi

List of Figures viii

Abstract xvii

1 Introduction 1
1.1 Motivation 1
1.2 Scope 2
1.3 Biological background 5
1.4 Unique challenges for machine learning on omics data 15

2 Inferring the structure of a signaling pathway from phosphopro-
teomic time series 19
2.1 Introduction 19
2.2 Materials and methods 21
2.3 Results 37
2.4 Discussion 45

3 Viewing multiomic data through the lens of matrix factorization
and gene sets 60
3.1 Introduction 60
3.2 Proposed method 69
3.3 Evaluation 95
3.4 Discussion 130

4 Discussion and closing remarks 136

v

4.1 Parting thoughts on SSPS, PathMatFac, and biological prior
knowledge 136

4.2 Research practices and methodology 140
4.3 Prospects for machine learning on omics data 145

Colophon 148

References 149

vi

list of tables

2.1 A coarse comparison of noteworthy PPLs. Gen provides ex-
pressiveness but requires the user to implement an inference
program for their model. Cont’s vars: continuous variables;
HMC: Hamiltonian Monte Carlo. 31

2.2 These parameters define the grid of simulated datasets in our
simulation study. There are 3×4×4=48 distinct grid points. For
each one, we generateK=5 replicates for a total of 240 simulated
datasets. The graph corruption parameters, r and a, range from
very little error (0.1) to total corruption (1.0). 32

2.3 Computational expense of SSPS as a function of problem size
|V |. N is the number of iterations completed by a Markov chain.
Neff accounts for burnin and autocorrelation in the Markov
chains, giving a more accurate sense of the method’s progress.
The last column gives the approximate memory footprint of
each chain. The non-monotonic memory usage is an artifact
of the chain termination conditions (N>100,000 or time >12
hours). 37

2.4 Computational expense of the exact DBN method of Hill et al.
(2012) measured in CPU-seconds, as a function of problem
size |V | and various parameter settings. The method imposes
an in-degree constraint on each vertex, shown in the “max
indeg” column. The columns “linear” and “full” correspond
to different regression modes, i.e., which interaction terms are
included in the DBN’s conditional probability distributions.
“OOM” (Out Of Memory) indicates that the method exceeded
a 32GB memory limit. “TIMEOUT” indicates that the method
failed to complete within 12 hours. 38

vii

3.1 Comparison of PathMatFac against closely related techniques.
PathMatFac occupies a unique niche and combines many of
the strengths of existing techniques. 66

3.2 The omics modalities used in this chapter, with their assumed
distributions, loss functions, and link functions. 73

3.3 Computational expense of PathMatFac for varying problem
sizes. We provide total execution time and peak memory usage.
In each test, PathMatFac is configured with K=25 and 1,000
training iterations. Each test used a single Intel i7 3.00 GHZ
CPU. 104

3.4 Factor interpretations by FSARD, for the TCGA subset. Each
row represents a nonzero entry in an FSARD assignment ma-
trix, A. Rows are sorted by factor, view, and regression coef-
ficient (i.e., the entry in A). Factor 1 captures variance in the
methylation and RNA-seq features, but the curated gene sets
summarize it poorly. In contrast, Factor 2 captures variance in
the CNA features and is very neatly summarized by locational
gene sets. Coefficients may be compared within a view, but not
between views or factors. For reference, FSARD used a collec-
tion of 239 gene sets to summarize RNA-seq and methylation
views in these results. 124

3.5 PathMatFac’s FSARD interpretation for selected factors, fit-
ted on the pan-cancer TCGA dataset. This table is structured
analogously to Table 3.4. 131

viii

list of figures

1.1 The central dogma. DNA is transcribed into mRNA, which is
then translated into protein. Epigenetics affects the accessibility
of DNA, exerting downstream effects on mRNA and protein.
The epigenome is not usually included in diagrams of the cen-
tral dogma, but I include it with dashed lines since epigenetic
data appears in this dissertation. 6

1.2 Example of a curated biological pathway from the WikiPath-
ways database. This depicts the EGF/EGFR signaling pathway,
known to be disregulated in many cancers. Nodes represent
proteins (boxes) and small molecules (circles). Edges represent
causal dependencies via phosphorylation (blue) or protein-
protein interactions (green). Credit Pandey et al. (2023). . . 13

1.3 A cartoon of some challenges posed by machine learning on
omics data. The underlying biological phenomena are only
partially understood. Data are less abundant and harder for
a human to interpret. The data are less directly connected
to the phenomenon of interest, and are confounded by other
phenomena. Models are usually designed to yield insight about
the phenomenon of interest, rather than merely accomplishing
some task (e.g., prediction). 16

ix

2.1 The generative model for SSPS. (top) Plate notation. DBN
parameters βj and σ2

j have been marginalized out. (bottom)
Full probabilistic specification. We usually set λmin ' 3 and
λmax=15. If λmin>0 is too small, Markov chains will occasion-
ally be initialized with very large numbers of edges, causing
computational issues. The method is insensitive to λmax as long
as it’s sufficiently large. Notice the improper prior 1/σ2

j . In this
specification Bj denotes X−,paZ(j); that is, the parents of vertex j
depend on edge existence variables Z. 25

2.2 Action probabilities as a function of parent set size. The ref-
erence size ŝ is determined from prior knowledge. It approxi-
mates the size of a “typical” parent set. When s<ŝ, add-parent
is most probable; when s>ŝ, remove-parent is most probable;
and when s=ŝ, all actions have equal probability. 28

2.3 Heatmap of AUCPR values from the simulation study. Both
DBN-based techniques (SSPS and the exact method) score well
on this, since the data is generated by a DBN. On large prob-
lems the exact DBN method needs strict in-degree constraints,
leading to poor prediction quality. LASSO and FunChisq both
perform relatively weakly. See Figure 2.7 for representative
ROC and PR curves. 41

2.4 Heatmap of differential performance against the prior knowl-
edge, measured by AUCPR paired t-statistics. SSPS consis-
tently outperforms the prior knowledge across problem sizes
and shows robustness to errors in the prior knowledge. . . . 43

x

2.5 Methods’ performances across contexts in the HPN-DREAM
Challenge. MCMC is stochastic, so we run SSPS 5 times; the er-
ror bars show the range of AUCROC scores. The other methods
are all deterministic and require no error bars. See Figure 2.8
for example predicted networks, Figure 2.9 for AUCPR scores,
and Figure 2.10 for representative ROC and PR curves. . . . 44

2.6 A schematic of the simulation study. We randomly generate
a true network (upper left) and use it to simulate a time se-
ries dataset (upper right). We corrupt the true network by
adding and removing edges (lower left); solid red edges have
been added, dashed red edges have been removed, and black
edges are original. This corrupted network serves as partially
inaccurate prior knowledge for the inference techniques. Each
technique produces a predicted network (lower right) by as-
signing a score to each possible edge. The predicted network is
evaluated with respect to the true network. 53

2.7 Representative ROC curves (top) and PR curves (bottom) from
the simulation study. We show curves for three different sim-
ulations: |V | = 40, 100, and 200 (left, middle, right respec-
tively). Each of these simulations used corruption parameters
r = a = 0.5. 54

2.8 Prior and predicted pathways from the HPN-DREAM chal-
lenge. We show pathways from two contexts: cell lines BT549
(top row) and MCF7 (bottom row). The stimulus is EGF for
both contexts. SSPS attained the best AUCROC of all methods
in the (BT549, EGF) context and the worst in the (MCF7, EGF)
context. The yellow node is mTOR; red nodes are the experi-
mentally generated (“ground truth”) descendants of mTOR.

. 56

xi

2.9 A bar chart similar to Figure 2.5 except that it shows AUCPR
rather than AUCROC. See Figure 2.5 for details about the layout. 58

2.10 ROC curves (top) and PR curves (bottom) from the HPN-
DREAM challenge. We show results for two contexts: cell
line BT549 (left) and MCF7 (right). The stimulus is EGF for
both contexts. Since SSPS is stochastic, we show all 5 of its
curves in each plot. The other methods are all deterministic,
and therefore only have one curve in each plot. 59

3.1 A visualization of the TCGA dataset used in this work. Each
row is a sample; each column is an omic feature. Rows are
grouped by cancer type, indicated by the black-and-white bar
on the left. Columns are grouped by omics type (i.e., modal-
ity). Gray entries indicate missing data. There are important
distributional differences between the modalities. Somatic mu-
tation data are binarized; methylation and RNA-seq data are
assumed Gaussian; and CNA is ordinalized with three levels.
Notice how little RPPA data exists in comparison to the other
modalities. We visualize RPPA here, but exclude it from our
analyses since it has (i) few features, (ii) many missing entries,
and (iii) potential quality issues (Upadhya and Ryan, 2023). 64

3.2 Illustration of a basic matrix factorization model. D is the
dataset, anM×N array where rows are samples and columns
are features. The model assumesD ∼ X>Y . Rows of Y are linear
factors; X contains a K-dimensional embedding of the data. Path-
MatFac adds several parameters to this model to accommodate
multiomic datasets. 70

xii

3.3 A plot of different loss functions for Bernoulli data (when d=1).
Cross-entropy with a logistic link has a linear asymptote, result-
ing in weak gradients. In contrast, a probit link produces gradi-
ents that increase in magnitude as the model becomes less cor-
rect. Squared hinge loss shares this property with probit/cross-
entropy, but is much simpler and entails less computational
expense. 75

3.4 Visualization of (A) batch labels in a multiomic dataset and
(B) the batch parameters constructed by PathMatFac for that
dataset. In reality the situation may be slightly more compli-
cated: the batches of rows need not be contiguous. Two sets of
batch parameters are constructed: batch shifts and batch scales.
PathMatFac only constructs batch parameters for views of
Gaussian data. 77

3.5 Diagram of the PathMatFac model, updated to include column
and batch effect parameters. Parameters µ and σ are column
shifts and scales. Parameters θ and δ account for batch shifts
and scales. 80

3.6 Plots of different regularizer losses. After marginalizing τ, ARD
may be regarded as a regularizer on the model parameters. As
a regularizer, marginalized ARD induces sparsity but is not
convex. 83

3.7 Diagram of Feature Set Automatic Relevance Determination
(FSARD). See Equations 3.7 for the full specification. S is a
sparse matrix that encodes gene sets provided by the user; and
A is a nonnegative matrix of inferred assignments from gene
sets to factors. Matrix B is generated fromA>S. Each entry βk,j

in B serves as the β parameter for an ARD prior on yk,j. The
goal is to “explain” the entries of Y by estimatingA. The matrix
τ is marginalized away, so we give it a dashed outline. . . . 84

xiii

3.8 Full diagram of the PathMatFac data and model parameters.
For Feature Set ARD (FSARD), each view vmay have its own
gene sets Sv and assignments Av. 87

3.9 Sensitivity of PathMatFac parameter recovery to misspecified
K, on simulated data. Each grid shows how a score varies
with true K and modeled K, indicated by shade. “Span sim.”:
span similarity. Annotations report the mean value from 5
simulations, with the standard deviation in parentheses. The
fidelity of fitted parameters noticeably degrades when K is
misspecified. 99

3.10 Robustness of PathMatFac’s parameter recovery to early stop-
ping. Each line reports the mean from 5 simulations; error bars
show the standard deviation. Notice the nonlinear scale of the
horizontal axis. 100

3.11 Plots of PathMatFac’s training losses from five simulations.
Recall that X and Y are fit in two stages: a first stage with L2

regularization and another with ARD regularization. The top
and bottom plots show losses from those stages, respectively.
The step-like decreases during stage 2 result from the adaptive
learning rate described in Section 3.2. Losses during stage 2
are larger since the ARD regularizer loss takes higher numeric
values. 101

3.12 PathMatFac’s parameter recovery scores on simulated data, as
the fraction of missing values in the dataset increases. 103

3.13 Sensitivity of PathMatFac to problem size. Each grid shows
a parameter recovery score as in 3.9. However, in this case
the horizontal axis scans across numbers of features and the
vertical axis scans across numbers of samples. 104

xiv

3.14 Comparison of true and estimated batch parameters from a
representative simulation. Left column shows estimates for θ;
right column shows the logarithm of the estimates for δ. Colors
indicate batch membership (with some colors repeated due
to a limited color palette). Estimates would ideally lay on the
diagonal. 106

3.15 Comparison of batch shift (θ) estimation performance on sim-
ulated data, between the expectation-maximization (EM) pro-
cedure and simple least-squares estimates (LSQ). Performance
is measured by coefficient of determination R2 between the
estimated (θFitted) and simulated (θTrue) values. Simulations
differ by the amount of within-batch standard deviation and
between-batch standard deviation used to generate θTrue, corre-
sponding to the rows and columns in this figure. Each boxplot
summarizes five simulations. “b.b.std”: between-batch stan-
dard deviation; “w.b.std”: within-batch standard deviation.

. 107
3.16 Comparison of multiomic embeddings produced by differ-

ent techniques on the {HNSC, CESC, ESCA, STAD} subset
of TCGA. Only PathMatFac, MOFA+, and the PCA baseline
can be readily applied to multiomic data. The embeddings
are 25-dimensional; this figure uses UMAP to visualize them
in 2D. Each column colors the scatterplot with labels from a
different prediction task. The key takeaway: in some cases the
embeddings clearly separate the labels, but not in others. . . 109

xv

3.17 Predictive performance for different multiomic embedding
techniques, relative to a trivial predictor. Higher is better except
in the case of pathologic stage, which compares mean-squared
error (MSE). Prediction on the raw data outperforms predic-
tion on dimension-reduced data on most tasks, suggesting that
each of these embeddings is lossy. 114

3.18 Predictive performance for different embedding techniques on
RNA-seq and CNA multiomic features, analogous to figure
3.17. PARADIGM is a competitive baseline, though it still lags
prediction on the raw data in most tasks. 116

3.19 Comparison of predictive performance for RNA-seq embed-
ding techniques. “P.M.F. (batch)”: PathMatFac, with batch
effect modeling; “P.M.F. (no batch)”: PathMatFac, without
batch effect modeling. Batch effects contain (non-biological)
predictive signal, so PathMatFac’s performance lags other tech-
niques’ when it models them away. However, the performance
gap decreases when PathMatFac does not account for batch
effects. 116

3.20 Heatmap of the matrix Y, estimated from the {HNSC, CESC,
ESCA, STAD} TCGA subset. Recall that each row is a linear
factor. Rows are ordered from largest norm (at the bottom)
to smallest norm (at the top). Bear in mind that in matrix
factorization, the signs of factors do not matter. 119

3.21 Scree plot for the same factors shown in Figure 3.20. The plot
shows contributions from different data modalities. Most fac-
tors explain variance in a single modality, though there are
notable exceptions. 120

3.22 Line plots of some linear factors from the TCGA subset. . . 121
3.23 Heatmap of the embedding, X, estimated from the TCGA sub-

set. 122

xvi

3.24 Visualization of column parameters µ and σ, estimated from
the TCGA subset. 123

3.25 Visualization of batch parameters θ, δ, estimated from the
TCGA subset. Color indicates batch (sometimes colors are
reused due to the limited color palette). 125

3.26 Linear factors (Y) and embedding (X), fit on the pan-cancer
TCGA dataset. PathMatFac used K=50 factors in this run. As
before, factors are ordered from largest norm (at the bottom of
each heatmap) to smallest norm (at the top). 127

xvii

abstract

Modern biological research requires sophisticated analysis of omics data.
For the purposes of this dissertation, “omics data” includes many commonly-
used modalities collected in biological experiments. These include ge-
nomic, transcriptomic, proteomic, epigenomic, and other kinds of data.
Omics datasets can be high-dimensional and complex. For instance, RNA-
seq datasets with tens of thousands of dimensions are common. Datasets
may be multimodal, with measurements collected by distinct assay tech-
nologies. Furthermore, samples are not usually independent and identi-
cally distributed (i.i.d.). Nuisance factors or experimental conditions may
cause distributional differences between groups of samples. Samples may
come from a time series, or different points in space. Missing values are
common, but not necessarily random. These issues can lead to incorrect
conclusions if they aren’t modeled correctly.

We do not analyze biological data in a vacuum, though. Biologists have
spent decades accumulating insights about biological systems. In prin-
ciple, this prior knowledge has the potential to strengthen data analyses
by (i) biasing inferences toward more probable solutions and (ii) making
the solutions more interpretable. Biological pathways are a particularly rich
form of prior knowledge. Pathways encode well-studied molecular pro-
cesses that govern cells. Public databases like Reactome and KEGG curate
these pathways in forms that are computationally accessible—formal on-
tologies, networks, or gene sets. However, biological prior knowledge also
poses challenges. It may be too incomplete or context-specific to be useful in
analyzing new data.

Probabilistic models provide a natural framework for extracting in-
sights from data and prior knowledge. Data can be modeled as observed
variables and prior knowledge can be encoded in a prior distribution. We
can then estimate quantities of interest via posterior inference.

xviii

A central question motivating this dissertation is what value, if any, can
biological prior knowledge provide in omics data analysis? To that end, this
dissertation presents two probabilistic models that combine omics data
and pathway prior knowledge. Chapter 2 presents a method to infer the
structure of a signaling pathway from time series phosphoproteomic data
and prior knowledge about signaling pathways. Chapter 3 proposes a
matrix factorization model for multiomic data. The method uses biological
prior knowledge to generate an interpretation of its outputs.

These models also entail the design of inference procedures that are
principled and computationally efficient. The performance of each model
is evaluated on simulated and real datasets. Their code is distributed on
GitHub, and care is taken to make the analyses reproducible via workflow
managers.

Biological prior knowledge is found to be a mixed blessing. In par-
ticular: while pathways are a useful tool for biologists to organize their
knowledge, their utility as a Bayesian prior is found to be questionable.

1

1 introduction

1.1 Motivation

Modern biological research involves (i) collecting large amounts of exper-
imental data and (ii) extracting useful insights from it via computational
tools. There are many kinds of data a biologist might collect, depending on
the phenomenon they’re investigating. These include genomic, transcrip-
tomic, proteomic, and epigenomic data, among others. Biologists refer to
these kinds of data generically as “omics data.”

Extracting insight from omics datasets can be statistically challenging
for several reasons. Omics data is typically high-dimensional. For instance,
RNA-seq datasets with tens of thousands of features are commonplace.
Moreover, the number of samples is often much smaller than the number
of features. Omics data can also be multimodal—i.e., features may repre-
sent different views of a biological system, measured by totally different
technologies.

Additional challenges come from the fact that samples in biological
data are not usually i.i.d.. Some distributional differences arise from tech-
nical effects during data collection. For example, data collected on different
machines, at different times, or in different laboratories, will generally con-
tain systematic differences. These effects may account for a large fraction of
the variation in a dataset. Other distributional differences have a biological
source. Samples may belong to different conditions: treatment vs. control,
healthy vs. diseased, etc. They may represent points in a time series, or
measurements at different spatial locations in a tissue sample. Careful
modeling must discern between (i) nuisance effects and (ii) scientifically
interesting variation.

Omics data can be challenging to model. However, omics data is not
analyzed in a vacuum. Biologists have already spent decades accumulating

2

knowledge about biological systems. In principle, this prior knowledge has
the potential to strengthen data analyses by (i) biasing inferences toward
probable solutions and (ii) interpreting the outputs in biologically familiar
terms. Biological prior knowledge poses its own challenges, though. It
may be too incomplete or context-specific to be useful for the task at hand.

Ideally, a bioinformatician would have computational tools that make
the most of available data and prior knowledge. This dissertation docu-
ments my work building and evaluating tools of that kind.

1.2 Scope

The work in this dissertation stems from a simple idea: that probabilistic
models are a natural way to extract signal from complicated datasets and
prior knowledge. In particular, this dissertation describes probabilistic
models for two different settings involving omics data and biological prior
knowledge.

• Chapter 2 presents a model that infers the structure of a signaling
pathway from time series phosphoproteomic data and a prior net-
work.

• Chapter 3 demonstrates a matrix factorization model for multiomic
data. The model uses curated gene sets to interpret the outputs in a
biologically meaningful way.

I find that probabilistic models are a powerful tool for addressing the
challenges of omics datasets. However, I also arrive at some nuanced
conclusions about the value of biological prior knowledge.

Abstractly, both models in this dissertation use the typical Bayesian
formulation to combine data and priors in a posterior distribution:

P(Z | X,B) ∝ P(X | Z)·P(Z | B)

3

where Z is an unknown quantity of interest, X is the data, and B is the
biological prior knowledge. However, they apply this abstraction in very
different fashions, highlighting the flexibility and creativity afforded by a
Bayesian perspective.

A model is only the beginning of a solution, though—inference pro-
cedures present the bulk of the creative work in probabilistic modeling.
Both projects in this dissertation required the design of bespoke inference
techniques. For example, the model in Chapter 2 uses a specially tailored
Markov Chain Monte Carlo algorithm (MCMC) (Gilks, 2005) to sample
from the posterior distribution much more efficiently than off-the-shelf
solutions. Meanwhile, the model in Chapter 3 employs a combination of
(i) Expectation-Maximization (Dempster et al., 1977) and (ii) gradient-
based optimization to obtain a point estimate maximizing the posterior
density. In both cases I highlight helpful computational frameworks that
aid algorithm development.

The models in this dissertation are useful for some purposes, but not
others. They are best understood as tools for exploratory data analysis. In the
parlance of machine learning, they are unsupervised learners. In a scientific
setting this class of tool is valuable for summarizing and interpreting data,
detecting patterns, and generating hypotheses. For example, principal
component analysis (PCA) (Hotelling, 1933) and hierarchical clustering
(Murtagh and Contreras, 2012) are standard tools in a bioinformatician’s
kit. I imagine the models in this dissertation playing a similar role to those
classic techniques.

It’s also worth specifying some topics not in the scope of this disser-
tation. Parts of my PhD research will not be discussed—I exclude them
because they have no relation to omics data or biological priors. My work
in the design of adaptive clinical trials (Merrell et al., 2023) falls into this
category. This dissertation also elides my earlier research at the intersec-
tion of probabilistic inference and formal logic (Merrell et al., 2017).

4

This dissertation will not focus on hypothesis testing. The models are
not constructed to test hypotheses. So they do not come equipped with
ways to e.g., compute p-values for model outputs. A p-value is only as
good as its null hypothesis. These models may be applied in a variety
of contexts, without an obvious choice of null hypothesis. This is by
intention—it is not necessarily a shortcoming. Scientists need tools to help
them interpret complicated datasets and form hypotheses. Then, given a
hypothesis, biostatisticians are free to apply context-appropriate statistical
tests as they see fit.

Neural networks do not show up anywhere in this dissertation. There
are practical and principled reasons for this. Interpretability is important
in scientific settings. There exist many techniques to interpret neural net-
works and their inferences, but it can be difficult to choose one suitable
for a given model. For example, a recent review by Chen et al. (2023)
describes 24 distinct techniques based on Shapley values alone, and iden-
tifies important differences between them. In contrast, the methods in this
dissertation are interpretable by construction, and in terms that a biologist
would find familiar.

Issues related to data provide another reason to avoid neural networks.
Not all laboratories produce the quantity of data necessary to fit neural
networks. Furthermore, the data produced in different experiments con-
tains technical variation—i.e., non-biological distributional differences. This
creates a challenge for combining datasets or sharing pretrained models
between experiments.

Computational expense is yet another consideration. Not all labs
have the computational resources to fit competitive neural networks on
their data. In contrast, the methods in this dissertation are comparatively
lightweight. They can be run in minutes or hours on a consumer-grade
workstation. This is an important niche to fill—productive biologists rely
on such methods to interpret their data and generate hypotheses. I suspect

5

deep learning is a valuable tool for analyzing omics data in the largest, best-
resourced laboratories. But the need for flexible, inexpensive techniques
on modest datasets will not disappear soon.

1.3 Biological background

This is a Computer Sciences dissertation, but it relies on a fair amount
of biological background. A brief primer on the relevant biology seems
appropriate, in order to make this self-contained and accessible to a mul-
tidisciplinary audience. Biologists may take issue with the coverage of
some topics, but this section targets a broader “data scientist” audience.

Omics data

Anyone who begins working with biological data quickly comes into
contact with the “-ome/-omic” suffix (Baker, 2013). Bioinformaticians
use this jargon to denote a collection of items that form a whole. For
instance, the set of all genes in a cell forms its genome, and the set of all
proteins forms its proteome. Since biology is complicated, a large number of
measurements are necessary to accurately capture the state of a biological
system. Measuring all items in an “-ome” has appeal, since it offers the
most complete view of a system.

Many -omes have been widely studied. One useful way to map them
out and understand their relationships is through the central dogma of
molecular biology. Every cell contains genes encoded in DNA. The central
dogma says that genes are transcribed into mRNA, which is then translated
into protein. In other words, there is a flow of information from DNA to
mRNA, and from mRNA to protein. The protein ultimately determines
the behavior and structure of the cell. See Figure 1.1 for illustration. We
call the set of all genes the genome; the set of all mRNA the transcriptome;
and the set of all proteins the proteome.

6

Figure 1.1: The central dogma. DNA is transcribed into mRNA, which is
then translated into protein. Epigenetics affects the accessibility of DNA,
exerting downstream effects on mRNA and protein. The epigenome is not
usually included in diagrams of the central dogma, but I include it with
dashed lines since epigenetic data appears in this dissertation.

An important related phenomenon is epigenetics, which involves certain
chemical modifications to the DNA. These modifications do not change the
genetic code itself; however, in some cases they make the DNA inaccessible
for transcription (and, in other cases, make it more accessible). Hence,
epigenetics has a downstream effect on mRNA (the transcriptome) and
protein (the proteome). The set of all epigenetic modifications is some-
times referred to as the epigenome. Epigenetics is not usually included
in the central dogma, but it bears mentioning here since epigenomic data
will play a role in Chapter 3.

Several kinds of omics data appear in this dissertation—genomic, tran-
scriptomic, proteomic, and epigenomic. I provide brief descriptions of
them for the benefit of non-biologist readers. Perhaps the most important
takeaway is that omics datasets come from complicated laboratory proce-
dures. There are many points where inconsistencies may be introduced
between datasets. Data scientists can easily draw incorrect conclusions

7

from omics data if they don’t understand these issues at a basic level.

Genomic data. Genomic data captures a biological system’s genetic code,
i.e., its DNA. In its most complete form, genomic data comprises the entire
sequence of nucleotide bases (“characters” A, T, G, and C) for the system
in question. For example, the human genome is a sequence of 3.2 billion
bases.

However, for many analyses the full genomic sequence is unneces-
sary; a higher-level summary of the genome suffices. For instance, one
may be interested in a genome’s differences with respect to some reference
genome. Genomic differences can be summarized in terms of insertions,
deletions, and substitutions of nucleotides with respect to the reference
genome. Chapter 3 employs somatic mutation data, which represents ge-
nomic differences between a cancer patient’s tumor and healthy tissue.
That somatic mutation data comes from The Cancer Genome Atlas; see
their documentation for details about their data collection and processing
(Documentation, 2022b).

Copy number alteration (CNA) gives an even coarser summary of ge-
nomic state. The human genome contains roughly 20,000 genes—sequences
known to encode proteins or have some other function. A human genome
normally possesses two copies of each gene, inherited from the mother
and father. However, errors in DNA replication and repair can cause entire
sections of the genome to be deleted or copied within a cell. As a result,
the cell will no longer have two copies of the affected genes; it may have
greater or fewer. Copy number alteration data summarizes these changes
in a biological sample. The analyses in Chapter 3 use CNA data from a
patient’s tumor, relative to healthy tissue. See The Cancer Genome Atlas
documentation for details about their CNA data preparation (Documen-
tation, 2022a).

Other kinds of genomic data exist and are widely used, but will not
appear in this dissertation. Single Nucleotide Polymorphism (SNP) arrays

8

identify the nucleotides at predefined locations in the genome (LaFram-
boise, 2009) that are known to vary between individuals. SNP arrays
are widely used in Genome-Wide Association Studies (GWAS) and con-
sumer genetic tests such as 23andMe (23andMe, 2013). Whole-genome
sequencing is less common, though its cost continues to decrease.

Transcriptomic data. Cells transcribe DNA into messenger RNA (mRNA).
mRNA plays a key role in cellular processes, especially the creation of
protein. The transcriptome refers to the collection of all RNA transcripts in
a biological sample. Hence, the transcriptome provides a highly informa-
tive view of the state of a biological sample. Transcriptomic data aims to
summarize the transcriptome in a useful, quantitative way.

Gene expression refers to the amount of mRNA transcribed from a given
gene. We say a gene is highly expressed if its transcripts are highly abundant.
Increased expression suggests that a gene is actively playing a role in the
biological system’s molecular processes. RNA-sequencing (RNA-seq) is
a widely used transcriptomic assay that quantifies the gene expression
in a biological sample. RNA-seq produces a vector of numeric values for
each biological sample, having dimension equal to the number of genes.
In a correctly-prepared RNA-seq dataset, higher numeric values indicate
higher gene expression.

Importantly, each biological sample typically contains many cells. A
small tissue or blood sample, for instance, may contain thousands of cells.
Hence, the gene expression vector for a sample—measured by RNA-seq—
represents an aggregate across all the cells in that sample. For that reason,
bioinformaticians frequently refer to this kind of data as bulk RNA-seq.
Conesa et al. provide a detailed survey of best practices for collecting
and processing RNA-seq data (Conesa et al., 2016). Chapter 3 in this
dissertation uses bulk RNA-seq data from The Cancer Genome Atlas;
See TCGA’s documentation for more details about their assay protocols
(Documentation, 2022d).

9

Transcriptomic assays are an area of rapid technological progress. A
full survey of recent developments is not appropriate for this dissertation.
However, I briefly describe two of them in order to provide a sense of the
emerging opportunities in this area, especially for data scientists.

Single-Cell RNA-seq (scRNA-seq) has gained widespread adoption in
very recent years. Given a biological sample, scRNA-seq measures the gene
expression for each cell in the sample, revealing its cell-level heterogeneity.
For that reason, scRNA-seq can be much more informative than bulk RNA-
seq. However, scRNA-seq also poses new challenges for data analysis.
Samples can exhibit greater noise and more missing values than bulk RNA-
seq. Luecken and Theis provide a helpful overview of the opportunities
and challenges posed by scRNA-seq (Luecken and Theis, 2019).

Spatial transcriptomics improves on RNA-seq by introducing spatial
context to transcriptomic measurements. Real biological systems—e.g.,
tissues—occupy three-dimensional space, and their spatial organization
carries important biological information. Spatial transcriptomics aims to
measure gene expression as a function of location in a biological sample.
As a result, machine learning on spatial transcriptomics entails methods
similar to those in computer vision. A review by Zhuang describes some
of these developments, with particular emphasis on the Multiplexed Error-
Robust Fluorescence in situ Hybridization (MERFISH) assay (Zhuang,
2021; Chen et al., 2015).

Despite these exciting developments in transcriptomics, only bulk RNA-
seq makes an appearance in this dissertation. The model described in
Chapter 3 could be used with scRNA-seq data, but this document does
not explore that possibility.

Proteomic data. The proteome refers to the set of all proteins in a biolog-
ical sample. Proteins serve as the building material for all living things.
Proteins also carry out the complex molecular processes that govern cells.
Hence, proteomic data can provide rich insights about the structure and

10

function of cells.
Many assays exist for collecting proteomic data. A full survey is far

beyond the scope of this dissertation. However, Reverse Phase Protein
Array (RPPA) data is worth discussing since it appears in both Chapters 2
and 3. I will also describe mass spectrometry, since it has overtaken RPPA
to become the dominant proteomics assay technology—I would be remiss
not to mention it.

RPPA is a widely-used assay with many applications in proteomics.
RPPA exposes a biological sample to specially-designed antibodies that (i)
bind to specific proteins in the sample and (ii) emit light of a particular
frequency via fluorescence. The assay apparatus quantifies the abundance
of a protein via imaging, by measuring the intensity of fluorescence for
the corresponding antibody. A recent paper by Coarfa et al. provides
a helpful description of RPPA best practices in a cancer research setting
(Coarfa et al., 2021).

RPPA has some notable limitations. While the human body contains
roughly 20,000 unique proteins, the typical RPPA assay can only quantify
tens or hundreds of proteins. Correctly prepared RPPA data is normalized
in a relative fashion, such that comparisons are valid within an experiment.
However, comparisons are not generally valid between experiments. For
the work in Chapter 3 of this dissertation, I considered modeling RPPA
data from The Cancer Genome Atlas (Documentation, 2023). However,
concerns about the relative quantity and quality (Upadhya and Ryan,
2023) of TCGA’s RPPA data led us to ignore it in favor of more informative
omics modalities.

Beyond quantifying the abundance of a protein, RPPA can also mea-
sure the proportion of a protein that has been modified in some fashion.
An important class of protein modification is phosphorylation, in which a
phosphoryl molecular group binds to a protein. Phosphorylation plays a
vital role in cellular function. It controls much of the communication—i.e.,

11

signaling—between cells and within cells. Phosphorylation in many cases
“switches on” signaling proteins (e.g., kinases) that would otherwise be
inactive. Phosphoproteomics aims to shed light on cell signaling by quanti-
fying the phosphorylation of proteins in a biological sample. RPPA can
measure phosphoproteomics by employing antibodies that specifically
bind to phosphorylated proteins (Coarfa et al., 2021). The resulting data
allows comparison of protein phosphorylation levels between samples or
biological conditions. With adequate statistical modeling, this can yield
insight about signaling processes in the samples.

In this dissertation, Chapter 2 describes a probabilistic model that infers
the structure of a signaling network from phosphoproteomic time series
data. The model is evaluated using RPPA phosphoproteomic data from
a DREAM challenge (Hill et al., 2016). The challenge website provides
other details about their RPPA experimental protocols (info@sagebase.org,
2013).

It’s also worth mentioning mass spectrometry (“mass spec”), the dom-
inant proteomics assay technology (Aebersold and Mann, 2003). Broadly
speaking, a mass spectrometer is an instrument that identifies molecules
by (i) converting them to an ionized gas, (ii) emitting them at high velocity
through an electric (or magnetic) field, and (iii) observing their mass-to-
charge ratio. This can be applied to the proteins in a biological sample.
Proteins are broken down into smaller pieces called peptides, and then
passed through a mass spectrometer. The peptides’ mass-to-charge ratios
provide a remarkably specific signature, allowing software to identify and
quantify proteins in the sample. Mass spec is a flexible and highly sensitive
technology, allowing it to be used in a variety of proteomic applications.
For instance, it can detect phosphorylation or other minute changes to pro-
teins (Grimsrud et al., 2010). It can also be used to identify protein-protein
interactions via cross-linking (O’Reilly and Rappsilber, 2018).

12

Epigenomic data. Abstractly, DNA is a sequence of nucleotide “charac-
ters” drawn from {A, T ,G,C}. However, in reality it exists as chromatin
molecules in three-dimensional space, and possesses a complex, coiled
structure. This structure implies that a given gene may or may not be ac-
cessible for transcription, depending on the physical context. In particular,
a gene is only accessible if its portion of the chromatin uncoils, exposing
the gene for transcription.

Epigenetics encompasses mechanisms that govern the accessibility of
DNA. Epigenomic data quantifies the epigenetics of a biological system,
and can be a useful complement to other omics. Many epigenomic assays
exist, but I restrict this discussion to methylation bisulfite sequencing data,
since it appears in Chapter 3. Methylation is an epigenetic mechanism
wherein a methyl group binds to the chromatin, almost always on a C
(cytosine). In many cases methylation acts on the chromatin in a way that
renders the the DNA inaccessible (Moore et al., 2013). Bisulfite sequencing
exposes the DNA to sodium bisulfite. This causes the unmethylated Cs in
the DNA to convert to a different molecule (uracil); but has no effect on the
methylated Cs. After many additional steps (elided for brevity), software
deduces the locations of methylated Cs by comparing the sequence of
the DNA exposed to sodium bisulfite against the sequence of the original
DNA (Rauluseviciute et al., 2019).

At this point the methylation can be quantified in various ways. For
instance, the data used in Chapter 3 consist of numeric values for each
gene, indicating the extent to which that gene (and regions related to it)
was methylated in a given sample. That particular data comes from The
Cancer Genome Atlas; see their documentation (Documentation, 2022c)
and the review by Dedeurwaerder et al. (2014) for additional details.

13

Figure 1.2: Example of a curated biological pathway from the WikiPath-
ways database. This depicts the EGF/EGFR signaling pathway, known
to be disregulated in many cancers. Nodes represent proteins (boxes)
and small molecules (circles). Edges represent causal dependencies via
phosphorylation (blue) or protein-protein interactions (green). Credit
Pandey et al. (2023).

14

Biological pathways

For the purposes of this document, a biological pathway is a molecular
process that performs some recognizable function in a cell. Biologists have
mapped out thousands of pathways that carry out diverse roles, such
as (i) regulating gene expression; (ii) processing energy, nutrients, and
waste (i.e., metabolism); and (iii) communication (signaling). Biologists
typically depict a pathway as a directed graph, where the vertices are
proteins (or other entities), and edges represent dependencies between
them. See figure 1.2 for illustration.

Biologists have accumulated increasingly detailed knowledge of path-
ways through decades of careful experimentation. This knowledge is
curated in several publicly available pathway databases, such as Reactome
(Gillespie et al., 2022), MSigDB (Liberzon et al., 2015) NCIPID (Schaefer
et al., 2009), Wikipathways (Pico et al., 2008), and KEGG (Kanehisa and
Goto, 2000). Clearly, pathway databases are a rich form of prior knowl-
edge. They encode hard-won scientific insights gathered by armies of
scientists. It seems wasteful to ignore this information when analyzing
biological data.

In fact, numerous techniques do exist for analyzing biological data in
a pathway-informed fashion. Chapters 2 and 3 list many of them. These
techniques vary (i) in their modeling assumptions and (ii) in the way they
represent pathways. Some representations are quite complicated: hyper-
graphs (Ritz et al., 2014), process algebras (Regev et al., 2000), or systems
of differential equations (Smolen et al., 2000). Others are much simpler:
undirected graphs, or even simply gene sets. An old (but thorough) review
by de Jong (2002) describes many of the computational and mathematical
representations used to describe pathways and incorporate them into data
analysis.

Despite their detail and breadth of coverage, curated pathways do have
important limitations that should be kept in mind—especially when using

15

pathways to analyze data. Given the complicated nature of biological
systems, one can be confident that curated pathways are incomplete. Even
worse, it’s well-understood that pathway databases don’t capture the
full set of interactions known to biologists (Hanspers et al., 2020). One
can also wager that the molecular processes governing cells are highly
interconnected and lack well-defined boundaries, implying that the notion
of a distinct pathway is not well-defined, strictly speaking.

It is also well-understood that the structure of a pathway can vary
between contexts—e.g., between diseased and healthy cells (Hill et al.,
2017). This implies that in some situations, curated pathways may match
the true molecular processes quite poorly. These issues suggest that sim-
pler pathway representations could be more practical for data analysis,
since they would be less sensitive to context dependence. I pursue these
questions to a limited degree in Chapters 3 and 4.

1.4 Unique challenges for machine learning on
omics data

Machine learning on omics data involves some unique challenges that may
be unfamiliar to practitioners from other areas, such as text and images.
I sketch out some of them here, to benefit a broader machine learning
audience.

Section 1.1 already lists several difficulties posed by the data. There
are additional data-related issues, though. Omics data may be high-
dimensional, but there aren’t necessarily many samples. In fact, the typical
dataset has far more features than samples. This results from the relatively
high cost of omics data—additional samples cost material, time, and labor.
Data may also be constrained by the availability of human or animal sub-
jects. Contrast this with the abundance of text and image data available
on the internet.

16

Figure 1.3: A cartoon of some challenges posed by machine learning on
omics data. The underlying biological phenomena are only partially un-
derstood. Data are less abundant and harder for a human to interpret. The
data are less directly connected to the phenomenon of interest, and are
confounded by other phenomena. Models are usually designed to yield in-
sight about the phenomenon of interest, rather than merely accomplishing
some task (e.g., prediction).

17

The typical omics dataset is highly context-specific. Biologists usually
collect data to shed light on a specific scientific question. This informs
their choice of (i) omics assay, (ii) species and model system (i.e., cells in a
dish; mice; humans), and (iii) experimental interventions on the samples.
This targeted approach to data collection helps the biologist answer their
immediate question, but reduces the dataset’s utility for other contexts.
Furthermore, omics datasets are not annotated in a consistent way that
could, hypothetically, allow a model to fully account for experimental
context.

Omics data can hardly be interpreted by the human eye—one of the
motivations for this dissertation. In contrast, text and images have an
inherent interpretability that aids model development. For example, a
human can easily look at an image and recognize that it’s a cat in grayscale.
On the other hand, most bioinformaticians can’t look at a sample of RNA-
seq data and discern whether it comes from healthy or diseased tissue.

Other difficulties are related to model evaluation. Many scientifi-
cally interesting problems cannot be framed as supervised learning tasks.
Open-ended biological research does not always involve predicting well-
understood labels from omics data. Instead, tasks are frequently unsuper-
vised.

At the same time, biologists want models to reveal something true about
the biology. For example, causal relationships or reliable biomarkers. Of
course, this is in a scientific setting where the ground truth is unknown.
Hence, validating a model requires costly, error-prone experiments. For
these reasons, the feedback loop between modeling and experimentation
can be very slow in biological applications.

Some of these evaluation difficulties show up in Chapter 2. I use
experimental results from a DREAM challenge (Hill et al., 2016) to evaluate
a model, but find that the validation is too imprecise to reliably discern
between competing models.

18

Evaluation issues also appear in Chapter 3. The model in that chapter
produces a biological interpretation for its outputs. However, it’s difficult
to judge the accuracy of that interpretation in the absence of experimental
validation.

Structure of this dissertation

The background and motivation for this dissertation have been firmly
established. The remainder of this document is organized as follows:

• Chapter 2 details Sparse Signaling Pathway Sampling, a probabilistic
model that infers the structure of a signaling pathway from phos-
phoproteomics time series data.

• Chapter 3 describes PathMatFac, a matrix factorization model for
multiomic datasets.

• Lastly, Chapter 4 reflects on these projects and offers some parting
observations about this field of work.

19

2 inferring the structure of a signaling
pathway from phosphoproteomic time series

2.1 Introduction

Signaling pathways enable cells to process information rapidly in response
to external environmental changes or intracellular cues. One of the core
signaling mechanisms is protein phosphorylation. Kinases add phos-
phate groups to substrate proteins and phosphatases remove them. These
changes in phosphorylation state can act as switches, controlling pro-
teins’ activity and function. A protein’s phosphorylation status affects its
localization, stability, and interaction partners (Newman et al., 2014). Ulti-
mately, phosphorylation changes regulate important biological processes
such as transcription and cell growth, death, and differentiation (Hunter,
2009; Kholodenko et al., 2010).

Pathway databases characterize the signaling relationships among
groups of proteins but are not tailored to individual biological contexts.
Even for well-studied pathways such as epidermal growth factor receptor-
mediated signaling, the proteins significantly phosphorylated during a
biological response can differ greatly from those in the curated pathway
(Köksal et al., 2018). The discrepancy can be due to context-specific signal-
ing (Hill et al., 2017), cell type-specific protein abundances, or signaling
rewiring in disease (Pawson and Warner, 2007). Therefore, there is a need
to learn context-specific signaling pathway representations from observed
phosphorylation changes. In the clinical setting, patient-specific signal-
ing pathway representations may eventually be able to guide therapeutic
decisions (Drake et al., 2016; Halasz et al., 2016; Eduati et al., 2020).

Diverse classes of techniques have been developed to model and in-
fer signaling pathways (Kholodenko et al., 2012). They take approaches
including Granger causality (Shojaie and Michailidis, 2010; Carlin et al.,

20

2017), information theory (Cheong et al., 2011; Krishnaswamy et al., 2014),
logic models (Eker et al., 2002; Guziolowski et al., 2013; Gjerga et al., 2020),
differential equations (Schoeberl et al., 2002; Molinelli et al., 2013; Hen-
riques et al., 2017), non-parametric statistical tests (Zhang and Song, 2013),
and probabilistic graphical models (Sachs et al., 2005) among others. Some
signaling pathway reconstruction algorithms take advantage of perturba-
tions such as receptor stimulation or kinase inhibition. Although perturb-
ing individual pathway members can causally link them to downstream
phosphorylation changes, characterizing a complex pathway can require
a large number of perturbation experiments. Inferring pathway structure
from temporal phosphorylation data presents an attractive alternative. A
single time series phosphorylation dataset can reveal important dynamics
without perturbing individual pathway members. For instance, a kinase
cannot phosphorylate substrates before it is activated.

An alternative approach to pathway reconstruction selects a context-
specific subnetwork from a general background network. These algorithms
can use phosphorylation data to assign scores to protein nodes in a protein-
protein interaction network. They then select edges that connect the high-
scoring nodes, generating a subnetwork that may explain how the induced
phosphorylation changes arise from the source of stimulation. Extensions
accommodate temporal scores on the nodes (Patil et al., 2013; Budak et al.,
2015; Köksal et al., 2018; Norman and Cicek, 2019).

Our present work builds on past techniques that formulate signaling
pathway inference as a Dynamic Bayesian Network (DBN) structure esti-
mation problem. This family of techniques relies on two core ideas: (i)
we can use a DBN to model phosphorylation time series data; and (ii) the
DBN’s structure translates directly to a directed graph representing the
signaling pathway. Rather than identifying a single DBN that best fits the
data, these techniques take a Bayesian approach—they yield a posterior
distribution over possible DBN structures. Some techniques use Markov

21

Chain Monte Carlo (MCMC) to sample from the posterior (Werhli and
Husmeier, 2007; Gregorczyk, 2010). Others use exact, enumerative infer-
ence to compute posterior probabilities (Hill et al., 2012; Oates et al., 2014;
Spencer et al., 2015).

We present a new Bayesian DBN-based technique, Sparse Signaling
Pathway Sampling (SSPS). It improves on past MCMC methods by us-
ing a novel proposal distribution specially tailored for the large, sparse
graphs prevalent in biological applications. Furthermore, SSPS makes
weaker modeling assumptions than other DBN approaches. As a result,
SSPS scales to larger problem sizes and yields superior predictions in
comparison to other DBN techniques.

We implement SSPS using the Gen probabilistic programming language
(PPL). Probabilistic programming is a powerful methodology for building
statistical models. It enables the programmer to build models in a legible,
modular, reusable fashion. This flexibility was important for prototyping
and developing the current form of SSPS and readily supports future
improvements or extensions.

2.2 Materials and methods

Model formulation

SSPS makes specific modeling assumptions. We start with the DBN model
of Hill et al. (2012), relax some assumptions, and modify it in other ways
to be better-suited for MCMC inference.

Preliminary definitions. We first define some notation for clarity’s sake.
LetG denote a directed graph with vertices V and edges E(G). GraphGwill
represent a signaling pathway, with vertices V corresponding to proteins
and edges E(G) indicating their influence relationships. We use paG(i) to
denote the parents of vertex i in G.

22

Let X denote our time series data, consisting of |V | variables measured
at T timepoints. X is a T×|V | matrix where the jth column corresponds to
the jth variable and the jth graph vertex. As a convenient shorthand, let
X+ denote the latest T−1 timepoints in X, and let X− denote the earliest T−1
timepoints in X. Lastly, define Bj ≡ X−,paG(j). In other words, Bj contains
the values of variable j’s parents at the T−1 earliest timepoints. In general,
Bj may also include columns of nonlinear interactions between the parents.
We will only include linear terms, unless stated otherwise.

Model derivation. In our setting, we aim to infer G from X. In particu-
lar, Bayesian approaches seek a posterior distribution P(G|X) over possible
graphs. From Bayes’s rule we know P(G|X) ∝ P(X|G) · P(G). That is, a
Bayesian model is fully specified by its choice of prior distribution P(G) and
likelihood function P(X|G).

We derive our model from the one used by Hill et al. (2012). They
choose a prior distribution of the form

P(G | G′, λ) ∝ exp (−λ|E(G) \ E(G′)|) (2.1)

parameterized by a reference graph G′ and inverse temperature λ. This prior
gives uniform probability to all subgraphs of G′ and “penalizes” edges
not contained in E(G′). λ controls the “importance” given to the reference
graph.

Hill et al. choose a Gaussian DBN for their likelihood function. In-
tuitively, they assume linear relationships between variables and their
parents: X+,j ∼ N(Bjβj,σ2

j) ∀j ∈ {1 . . . |V |}.

A suitable prior over the regression coefficients βj and noise parameters σ2
j

(Figure 2.1) allows us to integrate them out, yielding this marginal likelihood

23

function:

P(X|G) ∝
|V |∏
j=1

T−
|paG(j)|

2

(
X>+,jX+,j −

T−1
T
X>+,j(Bjβ̂ols)

)− T−1
2

(2.2)

where β̂ols = (B>j Bj)
−1B>j X+,j is the ordinary least squares estimate of

βj. For notational simplicity, Equation 2.2 assumes we have a single time
course of length T . In general, there may be multiple time course replicates
with differing lengths. The marginal likelihood generalizes to that case in
a straightforward way.

In SSPS we use the same marginal likelihood function (Equation 2.2),
but a different prior distribution P(G). We obtain our prior distribution by
decomposing Equation 2.1 into a product of independent Bernoulli trials
over graph edges. This decomposition in turn allows us to make some
useful generalizations. Define edge existence variables zij ≡ 1[(i, j) ∈ E(G)].
Let Z be the |V |×|V | matrix of all zij. Then we can rewrite Equation 2.1 as
follows:

P(G|G′, λ) ≡ P(Z|G′, λ) ∝
∏

(i,j)/∈E(G′)

e−zijλ

=
∏

(i,j)∈E(G′)

(
1
2

)zij(1
2

)1−zij ∏
(i,j)/∈E(G′)

(
e−λ

1+e−λ

)zij(1
1+e−λ

)1−zij

where the last line is a true equality—it gives a normalized probability
measure. We see that the original prior is simply a product of Bernoulli
variables parameterized by a shared inverse temperature, λ. See Appendix
2.4 for a more detailed derivation.

Rewriting the prior in this form opens the door to generalizations. First,
we address a shortcoming in the way reference graph G′ expresses prior
knowledge. The original prior assigns equal probability to every edge of
G′. However, in practice we may have differing levels of prior confidence
in the edges. We address this by allowing a real-valued prior confidence

24

cij for each edge:

P(Z|C, λ) =
∏
(i,j)

(
e−λ

e−cijλ+e−λ

)zij(e−cijλ

e−cijλ+e−λ

)1−zij
(2.3)

where C is the matrix of all prior confidences cij, replacing G′. Notice that
if every cij∈{0, 1}, then Equation 2.3 is equivalent to the original prior. In
effect, Equation 2.3 interpolates the original prior, permitting a continuum
of confidences on the interval [0, 1].

We make one additional change to the prior by replacing the shared λ
inverse temperature variable with a collection of variables, Λ = {λj | j =

1, . . ., |V |}, one for each vertex of the graph. Recall that the original λ
variable determined the importance of the reference graph. In the new
formulation, each λj controls the importance of the prior knowledge for
vertex j and its parents:

P(Z|C,Λ) =
∏
(i,j)

(
e−λj

e−cijλj+e−λj

)zij(e−cijλj

e−cijλj+e−λj

)1−zij
(2.4)

We introduced Λ primarily to help MCMC converge more efficiently. Ex-
periments with the shared λ revealed a multimodal posterior that tended
to trap λ in high or low values. The introduction of vertex-specific λj vari-
ables yielded faster convergence with weaker modeling assumptions—an
improvement in both respects.

We implicitly relax the model assumptions further via our inference
procedure. For sake of tractability, the original exact method of Hill et al.
(2012) imposes a hard constraint on the in-degree of each vertex. In
contrast, we use a MCMC inference strategy with no in-degree constraints.

In summary, our model departs from that of Hill et al. (2012) in three
important respects. It permits real-valued prior confidences C, introduces
vertex-specific inverse temperature variables Λ, and places no constraints

25

λj ∼ Uniform(λmin, λmax) ∀j ∈ {1 . . . |V |}

zij | cij, λj ∼ Bernoulli
(

e−λj

e−cijλj + e−λj

)
∀i, j ∈ {1 . . . |V |}

σ2
j ∝

1
σ2
j

∀j ∈ {1 . . . |V |}

βj | σ
2
j ∼ N

(
0, Tσ2

j(B
>
j Bj)

−1) ∀j ∈ {1 . . . |V |}

X+,j | Bj,βj,σ2
j ∼ N

(
Bjβj,σ2

jI
)

∀j ∈ {1 . . . |V |}

Figure 2.1: The generative model for SSPS. (top) Plate notation. DBN
parameters βj and σ2

j have been marginalized out. (bottom) Full prob-
abilistic specification. We usually set λmin ' 3 and λmax=15. If λmin>0 is
too small, Markov chains will occasionally be initialized with very large
numbers of edges, causing computational issues. The method is insen-
sitive to λmax as long as it’s sufficiently large. Notice the improper prior
1/σ2

j . In this specification Bj denotes X−,paZ(j); that is, the parents of vertex
j depend on edge existence variables Z.

on vertices’ in-degrees. See the full model in Figure 2.1 and Appendix 2.4
for additional details.

Inference procedure

Our method uses MCMC to infer posterior edge existence probabilities.
As described in Section 2.2, our model contains two classes of unobserved
random variables: (i) the edge existence variables Z and (ii) the inverse
temperature variables Λ. For each step of MCMC, we loop through these

26

variables and update them in a Metropolis-Hastings fashion.

Main loop. At a high level, our MCMC procedure consists of a loop over
the graph vertices, V . For each vertex j, we update its inverse temperature
variable λj and then update its parent set paG(j). All of these updates are
Metropolis-Hastings steps; the proposal distributions are described below.
Each completion of this loop yields one iteration of the Markov chain.

Proposal distributions. For the inverse temperature variables we use a
symmetric Gaussian proposal: λ′j ∼ N(λj, ξ2). In practice the method is
insensitive to ξ; we typically set ξ=3.

The parent set proposal distribution is more complicated. There are two
principles at work when we design a graph proposal distribution: (i) the
proposal should efficiently traverse the space of directed graphs, and (ii)
it should favor graphs with higher posterior probability. The most widely
used graph proposal distribution selects a neighboring graph uniformly
from the set of possible “add-edge,” “remove-edge,” and “reverse-edge”
actions (Werhli and Husmeier, 2007; Gregorczyk, 2010). We’ll refer to
this traditional proposal distribution as the uniform graph proposal. In
our setting, we expect sparse graphs to be much more probable than
dense ones—notice how the marginal likelihood function (Equation 2.2)
strongly penalizes |paG(j)|. However, the uniform graph proposal exhibits
a preference toward dense graphs. It proposes “add-edge” actions too often.
This motivates us to design a new proposal distribution tailored for sparse
graphs—one that operates on our sparse parent set graph representation.

For a given graph vertex j ∈ V , the parent set proposal distribution
updates paG(j) by choosing from the following actions:

• add-parent. Select one of vertex j’s non-parents uniformly at ran-
dom, and add it to paG(j).

27

• remove-parent. Select one of vertex j’s parents uniformly at random,
and remove it from paG(j).

• swap-parent. A simultaneous application of add-parent and remove-parent.
Perhaps surprisingly, this action is not made redundant by the other
two. It plays an important role by yielding updates that maintain
the size of the parent set. Because the marginal likelihood (Equation
2.2) changes steeply with |paG(j)|, Metropolis-Hastings acceptance
probabilities will be higher for actions that keep |paG(j)| constant.

These three actions are sufficient to explore the space of directed graphs,
but we need another mechanism to bias the exploration toward sparse
graphs. We introduce this preference via the probability assigned to each
action. Intuitively, we craft the action probabilities so that when |paG(j)| is
too small, add-parent moves are most probable. When |paG(j)| is too big,
remove-parent moves are most probable. When |paG(j)| is about right, all
moves are equally probable.

We formulate the action probabilities for vertex j as follows. As a
shorthand, let sj = |paG(j)| and define the reference size ŝj =

∑|V |

i=1 cij.
That is, ŝj uses the prior edge confidences C to estimate an appropriate
reference size for the parent set. Then, the action probabilities are

p(add-parent|sj, ŝj) ∝ 1 −

(
sj

|V |

)γ(ŝj)
p(remove-parent|sj, ŝj) ∝

(
sj

|V |

)γ(ŝj)
p(swap-parent|sj, ŝj) ∝ 2

(
sj

|V |

)γ(ŝj)
·

(
1 −

(
sj

|V |

)γ(ŝj))

where γ(ŝj) = 1/ log2(|V |/ŝj). We use these functional forms only because
they have certain useful properties: (i) when sj=0, the probability of
add-parent is 1; (ii) when sj=|V |, the probability of remove-parent is 1;
and (iii) when sj=ŝj, all actions have equal probability (Figure 2.2). Be-

28

Figure 2.2: Action probabilities as a function of parent set size. The ref-
erence size ŝ is determined from prior knowledge. It approximates the
size of a “typical” parent set. When s<ŝ, add-parent is most probable;
when s>ŝ, remove-parent is most probable; and when s=ŝ, all actions
have equal probability.

yond that, these probabilities have no particular justification. We provide
additional information about the parent set proposal in Appendix 2.4.

Recall that Metropolis-Hastings requires us to compute the reverse tran-
sition probability for any proposal we make. This could pose a challenge
given our relatively complicated parent set proposal distribution. However,
Gen provides a helpful interface for computing reverse probabilities. The
user can provide an involution function that returns the reverse of a given
action. Gen then manages the reverse probabilities without further inter-
vention. This makes it relatively easy to implement Metropolis-Hastings
updates with unusual proposal distributions.

Termination, convergence, and inference. We follow the basic MCMC
protocols described by Gelman et al. (2014). This entails running multiple
(i.e., 4) Markov chains and discarding the first half of each chain as burnin.
In all of our analyses, we terminate each Markov chain when it either (i)

29

reaches a length of 100,000 iterations or (ii) the execution time exceeds 12
hours. These termination conditions are arbitrary but emulate a real-world
setting where it may be acceptable to let the method run overnight.

Upon termination, we assess convergence with two diagnostics: Poten-
tial Scale Reduction Factor (PSRF) and effective number of samples (Neff).
PSRF identifies cases where the Markov chains fail to mix or achieve sta-
tionarity. Neff provides a sense of “sample size” for our inferred quantities.
It adjusts the number of MCMC samples by accounting for autocorrelation
in each chain. For our purposes, we say a quantity has failed to converge
if its PSRF > 1.01 or Neff<10. Note that satisfying these criteria does not
guarantee convergence. However, failure to satisfy them is a reliable flag
for non-convergence.

Assuming a quantity hasn’t failed to converge, we estimate it by simply
taking its sample mean from all samples remaining after burnin. In our
setting we are primarily interested in edge existence probabilities; i.e., we
compute the fraction of samples containing each edge.

Probabilistic programming implementation

We implemented SSPS using the Gen PPL. We briefly describe the proba-
bilistic programming methodology and its advantages in our setting.

Probabilistic programming. Probabilistic programming is a methodol-
ogy for building statistical models. It’s based on the idea that statistical
models are generative processes—sequences of operations on random vari-
ables. In probabilistic programming, we express the generative process as
a program written in a PPL. This program is then compiled to produce
a log-probability function, which can be used in inference tasks. Proba-
bilistic programming systems typically provide a set of generic inference
methods for performing those tasks—e.g., MCMC or Variational Bayes.

30

Compare this with a more traditional approach, where the user must
(i) derive and implement the log-probability function and (ii) implement
an inference method that operates on the log-probability function. This
process of manual derivation and implementation is error-prone and re-
quires a high degree of expertise from the user. In contrast, probabilistic
programming only requires the user to express their model in a PPL. The
probabilistic programming system manages other details.

Probabilistic programming also tends to promote good software en-
gineering principles such as abstraction, modularity, and legibility. Most
PPLs organize code into functions, which can be reused by multiple statis-
tical models.

Probabilistic programming languages. Several PPLs have emerged in
recent years. Examples include Stan (Carpenter et al., 2017), Edward2
(Dillon et al., 2017), Pyro (Bingham et al., 2018), PyMC3 (Salvatier et al.,
2016), and Gen (Cusumano-Towner et al., 2019). PPLs differ in how they
balance expressive power and ease of use. For example, Stan makes it easy to
build hierarchical statistical models with continuous variables but caters
poorly to other model classes. At the other extreme, Gen can readily express
a large class of models—discrete and continuous variables with complex
relationships—but requires the user to design a customized inference
procedure.

Implementation in Gen. We use the Gen PPL precisely for its expressive
power and customizable inference. While implementing SSPS, the cus-
tomizability of Gen allowed us to begin with simple prototypes and then
make successive improvements. For example, our model initially used
a dense adjacency matrix representation for G, but subsequent optimiza-
tions led us to use a sparse parent set representation instead. Similarly,
our MCMC method started with a naïve “add or remove edge” proposal
distribution; we arrived at our sparse proposal distribution (Section 2.2)

31

PPL Host
language

Primary
model class

Primary inference
method

Stan custom
language hierarchical, cont’s vars Black-box HMC

Edward2
Python/
Tensor-
Flow

“deep”, cont’s vars Black-box varia-
tional

PyMC3 Python/
Theano “deep”, cont’s vars Black-box HMC

Pyro Python/
PyTorch “deep”, cont’s vars Black-box varia-

tional

Gen Julia discrete and cont’s vars;
highly flexible

Customizable
MCMC

Table 2.1: A coarse comparison of noteworthy PPLs. Gen provides ex-
pressiveness but requires the user to implement an inference program for
their model. Cont’s vars: continuous variables; HMC: Hamiltonian Monte
Carlo.

after multiple refinements. Other PPLs do not allow this level of control
(Table 2.1).

Simulation study evaluation

We use a simulation study to answer important questions about SSPS:
How does its computational expense grow with problem size? Is it able
to correctly identify true edges? What is its sensitivity to errors in the
prior knowledge? Simulations allow us to answer these questions in a
controlled setting where we have access to ground truth.

Data simulation process. We generate each simulated dataset as follows:

1. Sample a random adjacency matrix A ∈ {0, 1}|V |×|V |, where each
entry is the outcome of a Bernoulli(p) trial. A specifies the structure
of a DBN. We choose p=5/|V | so that each vertex has an average of 5

32

Parameter Meaning Values
|V | Number of variables 40, 100, 200
T Time course length 8
M Number of time courses 4

r
Fraction of original edges
removed 0.1, 0.5, 0.75, 1.0

a
Fraction of spurious edges
added 0.1, 0.5, 0.75, 1.0

Table 2.2: These parameters define the grid of simulated datasets in our
simulation study. There are 3×4×4=48 distinct grid points. For each one,
we generate K=5 replicates for a total of 240 simulated datasets. The graph
corruption parameters, r and a, range from very little error (0.1) to total
corruption (1.0).

parents. This approximates the sparsity we might see in signaling
pathways. We denote the size of the original edge set as |E0|.

2. Let the weights β for this DBN be drawn from a normal distribu-
tion N(0, 1/

√
|V |). We noticed empirically that the 1/

√
|V | scale pre-

vented the simulated time series from diverging to infinity.

3. Use the DBN defined byA,β to simulateM time courses of length T .
We imitate the real datasets in Section 2.2 by generatingM=4 time
courses, each of length T=8.

4. Corrupt the adjacency matrix A in two steps: (i) remove r · |E0| of
the edges from A; (ii) add a · |E0| spurious edges to the adjacency
matrix. This corrupted graph simulates the imperfect prior knowledge
encountered in reality. The parameters r and a control the “false
negatives” and “false positives” in the prior knowledge, respectively.

We use a range of values for parameters |V |, r, and a, yielding a grid of
simulations summarized in Table 2.2. See Appendix 2.4 and Figure 2.6 for
additional details.

33

Performance metrics. We are primarily interested in SSPS’s ability to
correctly recover the structure of the underlying signaling pathway. The
simulation study allows us to measure this in a setting where we have
access to ground truth. We treat this as a probabilistic binary classification
task, where the method assigns an existence confidence to each possible edge.
We measure classification performance using area under the precision-
recall curve (AUCPR). We use average precision to estimate AUCPR, as
opposed to the trapezoidal rule (which tends to be overly-optimistic, see
Davis and Goadrich (2006); Flach and Kull (2015)).

Our decision to use AUCPR is motivated by the sparseness of the
graphs. For sparse graphs the number of edges grows linearly with |V |

while the number of possible edges grows quadratically. Hence, as |V |

grows, the proportion of positive instances decreases and the classification
task increasingly becomes a “needle-in-haystack” scenario.

Performance measurements on simulated data come with many caveats.
It’s most instructive to think of simulated performance as a sanity check.
Since our data simulator closely follows our modeling assumptions, poor
performance would suggest serious shortcomings in our method.

HPN-DREAM network inference challenge evaluation

We measure SSPS’s performance on experimental data by following the
evaluation outlined by the HPN-DREAM Breast Cancer Network Inference
Challenge (Hill et al., 2016). Signaling pathways differ across contexts—
e.g., cell type and environmental conditions. The challenge is to infer these
context-specific signaling pathways from time course data.

Dataset. The HPN-DREAM challenge provides phosphorylation time
course data from 32 biological contexts. These contexts arise from exposing
4 cell lines (BT20, BT549, MCF7, UACC812) to 8 stimuli. For each context,
there are approximatelyM=4 time courses, each about T=7 time points

34

in length. Cell lines have differing numbers of phosphosite measurements
(i.e., differing |V |), ranging from 39 (MCF7) to 46 (BT20).

Prior knowledge. Participants in the original challenge were free to ex-
tract prior knowledge from any existing data sources. As part of their
analysis, the challenge organizers combined participants’ prior graphs
into a set of edge probabilities. These aggregate priors summarize the par-
ticipants’ collective knowledge. They were not available to participants in
the original challenge, but we use them in our analyses of HPN-DREAM
data. We provide them to each of the baseline methods (see Section 2.2),
so the resulting performance comparisons are fair. We do not compare any
of our scores to those listed by Hill et al. (2016) in the original challenge
results.

Performance metrics. The HPN-DREAM challenge aims to score meth-
ods by their ability to capture causal relationships between pairs of vari-
ables. It estimates this by comparing predicted descendant sets against
experimentally generated descendant sets. More specifically, the challenge
organizers exposed cells to AZD8055, an mTOR inhibitor, and observed
the effects on other phosphosites. From this they determined a set of phos-
phosites downstream of mTOR in the signaling pathway. These include
direct substrates of the mTOR kinase as well as indirect targets.

Comparing predicted descendants of mTOR against experimentally
generated descendants of mTOR gives us a notion of false positives and
false negatives. As we vary a threshold on edge probabilities, the predicted
mTOR descendants change, which allows us to make a receiver operating
characteristic (ROC) curve. We calculate the resulting area under the ROC
curve (AUCROC) with the trapezoidal rule to score methods’ performance
on the HPN-DREAM challenge. Hill et al. (2016) provide more details for
this descendant set AUCROC scoring metric. AUCROC is sensible for this

35

setting since each descendant set contains a large fraction of the variables.
Sparsity is not an issue.

Because SSPS is stochastic we run it K=5 times per context, yielding
5 AUCROC scores per context. Meanwhile the baseline methods are all
deterministic, requiring only one execution per context. We use a simple
terminology to compare SSPS’s scores against those of other methods. In
a given context, we say SSPS dominates another method if its minimum
score exceeds that of the other method. Conversely, we say the other
method dominates SSPS if its score exceeds SSPS’s maximum score. This
dominance comparison has flaws—e.g., its results depend on the sample
size K. However, it errs on the side of strictness and suffices as an aid for
summarizing the HPN-DREAM evaluation results.

Baseline pathway inference algorithms

Our evaluations compare SSPS against a diverse set of baseline methods.

Exact DBN (Hill et al., 2012). This method was an early inspiration for
SSPS and is most similar to SSPS. However, the exact DBN method encoun-
ters unique practical issues when we run it on real or simulated data. The
method’s computational expense increases rapidly with problem size |V |

and becomes intractable unless the “max-indegree” parameter is set to a
small value. For example, we found that the method used more than 32GB
of RAM on problems of size |V |=100, unless max-indegree was set 63.
Furthermore, the exact DBN method only admits prior knowledge in the
form of Boolean reference edges, rather than continuous-valued edge confi-
dences. We overcame this by using a threshold to map edge confidences
to 1 or 0. We chose a threshold of 0.25 for the HPN-DREAM challenge
evaluation because it yielded a reasonable number of prior edges. We ran
Hill et al.’s implementation using MATLAB 2018a.

36

FunChisq (Zhang and Song, 2013). This method is based on the notion
that two variables X, Y have a causal relationship if there exists a functional
dependence Y=f(X) between them. It detects these dependencies using
a chi-square test against the “no functional dependence” null hypothe-
sis. FunChisq was a strong competitor in the HPN-DREAM challenge,
despite the fact that it uses no prior knowledge. In order to use FunChisq,
one must first discretize their time course data. We followed Zhang and
Song’s recommendation to use 1D k-means clustering for discretization.
Detailed instructions are given in the HPN-DREAM challenge supplemen-
tary materials (Hill et al., 2016). We used the FunChisq (v2.4.9.1) and
Ckmeans.1d.dp (v4.3.0) R packages.

LASSO. We included a variant of LASSO regression as a simple baseline.
It incorporates prior knowledge into the typical primal formulation:

β̂j = argminβ

{
‖X+,j − Bjβ‖2

2 + α

V∑
i=1

e−cij |βi|

}

where cij is the prior confidence (either Boolean or real-valued) for edge
(i, j). That is, the method uses penalty factors e−cij to discourage edges with
low prior confidence. The method selects LASSO parameters, α, using
the Bayesian Information Criterion described by Zou et al. (2007). We use
GLMNet (Friedman et al., 2010) via the GLMNet.jl Julia wrapper (v0.4.2).

Prior knowledge baseline. Our most straightforward baseline simply
reports the prior edge probabilities, performing no inference at all. Ideally,
a Bayesian method should do no worse than the prior—new time course
data should only improve our knowledge of the true graph. In reality, this
improvement is subject to caveats about data quality and model fit.

37

|V | N/cpu-hr Neff/cpu-hr MB per chain
40 70000 400 500
100 9000 140 1200
200 3000 60 1000

Table 2.3: Computational expense of SSPS as a function of problem size
|V |. N is the number of iterations completed by a Markov chain. Neff
accounts for burnin and autocorrelation in the Markov chains, giving a
more accurate sense of the method’s progress. The last column gives the
approximate memory footprint of each chain. The non-monotonic memory
usage is an artifact of the chain termination conditions (N>100,000 or time
>12 hours).

SSPS software availability

We provide the SSPS code, distributed under a MIT license, via GitHub
(https://github.com/gitter-lab/ssps) and archive it on Zenodo
(https://doi.org/10.5281/zenodo.3939287). It includes a Snakemake work-
flow (Koster and Rahmann, 2012) for our full evaluation pipeline, enabling
the reader to reproduce our results. The code used in this manuscript
corresponds to SSPS v0.1.1.

2.3 Results

We describe evaluation results from the simulation study and HPN-DREAM
network inference challenge. SSPS competes well against the baselines,
with superior scalability to other DBN-based approaches.

Simulation study results

We compare our method to the baselines listed in Section 2.2. We focus
especially on the exact DBN method of Hill et al. (2012), as SSPS shares
many modeling assumptions with it.

https://github.com/gitter-lab/ssps
https://doi.org/10.5281/zenodo.3939287

38

|V | max indeg “linear” “full”

40

4 66s 210s
5 770s 3900s
6 6700s TIMEOUT
7 OOM OOM

100 3 250s 520s
4 OOM OOM

200 2 53s 140s
3 OOM OOM

Table 2.4: Computational expense of the exact DBN method of Hill et al.
(2012) measured in CPU-seconds, as a function of problem size |V | and
various parameter settings. The method imposes an in-degree constraint
on each vertex, shown in the “max indeg” column. The columns “linear”
and “full” correspond to different regression modes, i.e., which interaction
terms are included in the DBN’s conditional probability distributions.
“OOM” (Out Of Memory) indicates that the method exceeded a 32GB
memory limit. “TIMEOUT” indicates that the method failed to complete
within 12 hours.

Computational expense. Because SSPS uses MCMC, the user may allow
it to run for an arbitrary amount of time. With this in mind, we summarize
SSPS’s timing with two numbers: (i) N/cpu-hr, the number of MCMC
samples per CPU-hour; and (ii) Neff/cpu-hr, the effective number of sam-
ples per CPU-hour. We also measure the memory footprint per Markov
chain, subject to our termination conditions. We measured these numbers
for each simulation in our grid (see Table 2.2).

Table 2.3 reports average values ofN/cpu-hr,Neff/cpu-hr, and memory
footprint for each problem size. As we expect, N/cpu-hr and Neff/cpu-hr
both decrease approximately with the inverse of |V |. In contrast, the non-
monotonic memory usage requires more explanation. It results from two
causes: (i) our termination condition and (ii) the sparse data structures
we use to store samples. On small problems (|V |=40), the Markov chain
terminates at a length of 100,000—well within the 12-hour limit. On

39

larger problems (|V |=100 or 200) the Markov chain terminates at the 12-
hour timeout. This accounts for the 500MB gap between small and large
problems. The decrease in memory usage between |V |=100 and 200 results
from our sparse representations for samples. Roughly speaking, the sparse
format only stores changes in the variables. So the memory consumption
of a Markov chain depends not only on |V |, but also on the acceptance rate
of the Metropolis-Hastings proposals. The acceptance rate is smaller for
|V |=200, yielding a net decrease in memory usage.

Recall that SSPS differs from more traditional MCMC approaches by
nature of its parent set proposal distribution, which is specially designed
for sparse graphs (see Section 2.2). When we modify SSPS to instead use a
naïve uniform graph proposal, we see a striking difference in sampling effi-
ciency. The uniform graph proposal distribution attainsNeff/cpu-hr of 100,
10, and 0.2 for |V |=40, 100, and 200, respectively—drastically smaller than
those listed in Table 2.3 for the parent set proposal. It’s possible that the
traditional proposal could achieve higher Neff/cpu-hr by simply running
faster. However, the more important consideration is how Neff/cpu-hr
changes with |V |. Our parent set proposal distribution’s Neff/cpu-hr de-
cays approximately likeO(1/|V |). This is better than what we might expect
from a simple analysis (Appendix 2.4). Meanwhile, the traditional pro-
posal distribution’s Neff/cpu-hr decays faster than O(1/|V |4). This gap
betweenO(1/|V |) andO(1/|V |4) sampling efficiencies makes an enormous
difference on large problems.

Table 2.4 summarizes the computational expense of the exact DBN
method (Hill et al., 2012). The method quickly becomes impractical as
the problem size grows, unless we enforce increasingly strict in-degree
restrictions. In particular, the exact DBN method’s memory cost grows
exponentially with its “max in-degree” parameter. The growth becomes
increasingly sharp with problem size. When |V |=200, increasing the maxi-
mum in-degree from 2 to 3 makes the difference between terminating in

40

<1 minute and exceeding 32GB of memory. Such low bounds on in-degree
are unrealistic, and will likely result in poor inference quality. In compari-
son, SSPS makes no constraints on in-degree, and its memory usage scales
well with problem size.

The other baseline methods—FunChisq and LASSO—are much less
computationally expensive. Both finish in seconds and require less than
100MB of memory for each simulated task. This highlights the computa-
tionally intense nature of Bayesian approaches. Not every scenario calls for
Bayesian inference. However, Bayesian inference is valuable in scientific
settings where we’re concerned with uncertainty quantification.

Predictive performance. The simulation study provides a setting where
we have access to “ground truth”—the true simulated graph. We use
AUCPR to score each method’s ability to recover the true graph’s edges.

Figure 2.3 shows the AUCPR scores for our grid of simulations. Each
heat map shows AUCPR as a function of graph corruption parameters,
r and a. The heat maps are arranged by method and problem size |V |.
Each AUCPR value is an average over 5 replicates. SSPS maintains fairly
consistent performance across problem sizes. In contrast, the other meth-
ods’ scores decrease with problem size. For the exact DBN method, this
is partially due to the small in-degree constraints imposed on the large
problems. It is forced to trade model accuracy for tractability.

Figure 2.4 reveals further insights into these results. It plots differential
performance with respect to the prior knowledge, in a layout analogous
to Figure 2.3. Specifically, it plots the t-statistic of each method’s AUCPR,
paired with the prior baseline’s AUCPR. Whenever the prior graph has
some informative edges, SSPS outperforms the prior. On the other hand,
SSPS’s performance deteriorates whenever the prior contains no true edges
(i.e., r=1). Under those circumstances FunChisq may be a better choice.
Since it doesn’t rely on prior knowledge at all, it outperforms the other
methods when the prior is totally corrupted. However, we expect that in

41

Figure 2.3: Heatmap of AUCPR values from the simulation study. Both
DBN-based techniques (SSPS and the exact method) score well on this,
since the data is generated by a DBN. On large problems the exact DBN
method needs strict in-degree constraints, leading to poor prediction qual-
ity. LASSO and FunChisq both perform relatively weakly. See Figure 2.7
for representative ROC and PR curves.

42

most realistic settings there exists partially-accurate prior knowledge, in
which case we expect FunChisq to perform worse than SSPS.

These results confirm SSPS’s ability to identify the true network, given
partially-accurate prior knowledge and time series data consistent with
the modeling assumptions. SSPS is fairly robust with respect to the prior’s
quality and has consistent performance across different problem sizes.

HPN-DREAM challenge results

We evaluated SSPS on experimental data from the HPN-DREAM challenge.
The challenge includes time series phosphorylation data from 32 biological
contexts: 8 stimuli applied to 4 breast cancer cell lines. Methods are
scored on their ability to correctly identify the experimentally derived
descendants of mTOR. Figure 2.5 shows bar charts comparing the methods’
AUCROC scores in each context. Appendix 2.4 provides additional details.

SSPS performs satisfactorily on this task overall. Employing termi-
nology from Section 2.2, SSPS dominates the exact DBN method in 18 of
the 32 contexts, whereas the exact DBN method dominates SSPS in only
9 contexts. Meanwhile, SSPS dominates FunChisq in 11 contexts and is
dominated by FunChisq in 15. This is not surprising because FunChisq
was among the top competitors in the original challenge. LASSO, on the
other hand, performs poorly. SSPS dominates LASSO in 18 contexts and
is dominated in only 6.

More puzzling is the strong performance of the prior knowledge base-
line. SSPS dominates the aggregate prior in only 9 contexts and is dom-
inated in 21. This is not isolated to our method. FunChisq outperforms
and is outperformed by the prior knowledge in 11 and 21 contexts, respec-
tively. The aggregate prior’s strong performance is consistent with the
results from the original HPN-DREAM challenge; this prior outperformed
all individual challenge submissions (Hill et al., 2016). Even though the
aggregate prior gives identical predictions for each context and totally ig-

43

Figure 2.4: Heatmap of differential performance against the prior knowl-
edge, measured by AUCPR paired t-statistics. SSPS consistently outper-
forms the prior knowledge across problem sizes and shows robustness to
errors in the prior knowledge.

44

Fi
gu

re
2.

5:
M

et
ho

ds
’p

er
fo

rm
an

ce
sa

cr
os

sc
on

te
xt

si
n

th
e

H
PN

-D
RE

A
M

C
ha

lle
ng

e.
M

C
M

C
is

st
oc

ha
st

ic
,

so
w

e
ru

n
SS

PS
5

tim
es

;t
he

er
ro

rb
ar

s
sh

ow
th

e
ra

ng
e

of
A

U
C

RO
C

sc
or

es
.T

he
ot

he
rm

et
ho

ds
ar

e
al

l
de

te
rm

in
is

tic
an

d
re

qu
ir

e
no

er
ro

rb
ar

s.
Se

e
Fi

gu
re

2.
8

fo
re

xa
m

pl
e

pr
ed

ic
te

d
ne

tw
or

ks
,F

ig
ur

e
2.

9
fo

r
A

U
C

PR
sc

or
es

,a
nd

Fi
gu

re
2.

10
fo

rr
ep

re
se

nt
at

iv
e

RO
C

an
d

PR
cu

rv
es

.

45

nores the time course data, it still attains better performance than the other
methods. This suggests either (i) the data is relatively uninformative or
(ii) the evaluation metric based on mTOR’s descendants isn’t sufficiently
precise to measure context-specific performance. We suspect the latter,
because FunChisq uses no prior knowledge but was the top performer
in the HPN-DREAM challenge’s in silico tasks. An evaluation based on
one node’s descendants is not as discriminative as an evaluation of the
directed edges. Many different directed graphs can have equivalent or
similar mTOR descendants. However, it is experimentally impractical
to generate the context-specific gold standard networks that would be
required for a more precise edge-based evaluation.

2.4 Discussion

We presented SSPS, a signaling pathway reconstruction technique based
on DBN structure estimation. It uses MCMC to estimate the posterior prob-
abilities of directed edges, employing a parent set proposal distribution
specially designed for sparse graphs. SSPS is a Bayesian approach. It takes
advantage of prior knowledge with edge-specific confidence scores and
can provide uncertainty estimates on the predicted pathway relationships,
which are valuable for prioritizing experimental validation.

SSPS scales to large problems more efficiently than past DBN-based
techniques. On simulated data, SSPS yields superior edge predictions
with robustness to flaws in the prior knowledge. Our HPN-DREAM
evaluation shows SSPS performs comparably to established techniques on
a community standard task. It is difficult to make stronger statements in
the HPN-DREAM setting because the prior knowledge baseline performs
so well and we can only evaluate the predicted mTOR descendants, not
the entire pathway. However, SSPS’s scalability among Bayesian methods,
strong results in the simulation, and competitive performance in the HPN-

46

DREAM challenge make it an attractive option for further investigation of
real phosphorylation datasets.

There are several potential limitations of SSPS relative to alternative
pathway signaling models. Prior knowledge is not available in some or-
ganisms or biological conditions, reducing one advantage of our Bayesian
approach. Although SSPS is more scalable than related DBN techniques,
it would struggle to scale to proteome-wide phosphoproteomic data mea-
suring thousands of phosphosites. For large datasets, we recommend
running SSPS on a pruned version that includes only the highest intensity
or most variable phosphosites. SSPS, like most DBN techniques, models
only observed variables. It will erroneously exclude important pathway
members, such as scaffold proteins, that are not phosphorylated. Latent
variable models or background network-based algorithms are better suited
for including unphosphorylated proteins in the pathway. Background
network methods can also impose global constraints on the predicted path-
way structure, such as controlling the number of connected components
or proteins’ reachability from relevant receptors (Köksal et al., 2018).

There are many possible ways to improve SSPS. For example, it could
be extended to jointly model related pathways in a hierarchical fashion,
similar to Oates et al. (2014) and Hill et al. (2017). Alternatively, SSPS
could be modified to accommodate causal assumptions via Pearl’s inter-
vention operators; see the model of Spencer et al. (2015) for a relevant
example. Combining temporal and interventional data (Cardner et al.,
2019) is another rich area for future work. On the algorithmic side, we
could improve our MCMC procedure by adaptively tuning the parameters
of its proposal distributions, as described by Gelman et al. (2014). Because
SSPS is a probabilistic program, it is naturally extensible.

47

Appendix

Model formulation details

We provide additional information about our graph prior and marginal
likelihood function. We also describe some implications of SSPS’s model
assumptions.

Derivation of graph prior (Equation 2.4). We step through a more de-
tailed derivation of SSPS’s new graph prior. We begin with the original
graph prior (Equation 2.1) and rewrite it in terms of the edge existence
variables Z:

P(G|G′, λ) ∝ exp (−λ|E(G) \ E(G′)|)

= exp

−λ
∑

(i,j)/∈E(G′)

zij

 (2.5)

=
∏

(i,j)/∈E(G′)

e−λzij

=
∏

(i,j)/∈E(G′)

(
e−λ
)zij

∝
(

1
1 + e−λ

)V2−|E(G′)|

·
∏

(i,j)/∈E(G′)

(
e−λ
)zij

=
∏

(i,j)/∈E(G′)

(
1

1 + e−λ

)(
e−λ
)zij

=
∏

(i,j)/∈E(G′)

(
1

1 + e−λ

)1−zij (e−λ

1 + e−λ

)zij
(2.6)

Equation 2.6 shows the original prior is in fact a product of independent
Bernoulli variables—the edge existence variables zij. Equation 2.6 explic-

48

itly assigns probability to the edges not contained in E(G′). However, it
also implicitly assigns uniform probability to every edge contained in E(G′).
We deduce that they are Bernoulli(0.5) variables, allowing us to write the
prior P(Z | G′, λ) in the following form:

∏
(i,j)∈E(G′)

(
1
2

)zij(1
2

)1−zij ∏
(i,j)/∈E(G′)

(
e−λ

1+e−λ

)zij(1
1+e−λ

)1−zij
(2.7)

just as shown in Section 2.2.
Now we modify the prior to use continuous-valued edge confidences

cij instead of Boolean reference edges E(G′). Intuitively, we want to restate
Equation 2.7 as a single product over all Z variables, rather than two
separate products. Our goal is to find a function q(cij) such that

P(Z | C, λ) =
∏
(i,j)

q(cij)
zij(1 − q(cij))

1−zij .

However, in order to remain consistent with the original prior q(cij) ought
to be monotone-increasing and satisfy these criteria:

q(0) = e−λ/(1 + e−λ) and q(1) = 1/2.

It turns out that choosing

q(cij) =
e−λ

e−cijλ + e−λ

satisfies these requirements. This brings us to Equation 2.3 of Section 2.2.
From there, it is straightforward to replace the single shared λ variable

with a set of vertex-specific Λ variables and arrive at Equation 2.4.

Marginal likelihood function details. Equation 2.2 is obtained by (i)
using a Gaussian DBN as the likelihood function for G, (ii) assuming

49

certain prior distributions for the DBN parameters, and (iii) integrating
the DBN parameters out. Specifically, let βj and σ2

j ∀j ∈ {1 . . . |V |} be the
DBN’s weight and noise parameters, respectively. We assume an improper
prior σ2

j ∝ 1/σ2
j for the noise and a Gaussian prior for the weights:

βj|σ
2
j ∼ N

(
0, Tσ2

j(B
>
j Bj)

−1) .

In other words, SSPS uses an improper joint priorP(βj,σ2
j) = P(βj|σ

2
j)P(σ

2
j)

with P(σ2
j)∝1/σ2

j . This choice allowsβj and σ2
j to be marginalized, yielding

Equation 2.2.
The power −|paG(j)|/2 in Equation 2.2 is correct when the DBN only

uses linear terms. Recall that Bj may in general contain columns of nonlin-
ear interactions between parent variables. When that is true, the quantity
|paG(j)| should be replaced by the width of Bj. We elide this detail in
Section 2.2 for brevity. Our implementation uses the correct exponent.

Our implementation of the marginal likelihood function employs least
recently used caching to reduce redundant computation. Code profil-
ing shows that this yields a substantial improvement to efficiency. For
additional in-depth discussion of Equation 2.2, we recommend the sup-
plementary materials of Hill et al. (2012).

Additional insights about SSPS’s model assumptions. SSPS’s model
has interesting properties that could lead to method improvements. For
example, when we replace the shared λ variable with vertex-specific Λ
variables, the model effectively becomes a set of |V | independent models.
The plate notation in Figure 2.1 makes this clear; X− is the only shared
variable, and it’s fully observed. This has algorithmic implications. For
example, future versions of SSPS could parallelize inference at the vertex
level, allocating more resources to the parent sets that converge slowly.

In the course of deriving Equation 2.6, we showed that our prior is a
log-linear model over edge features. Equation 2.5 shows this most clearly.

50

Future versions of SSPS could use the expressiveness of log-linear den-
sities over higher-order graph features to capture richer forms of prior
knowledge.

Parent set proposal details

A key component of SSPS is its novel parent set proposal distribution. We
motivate its design and discuss its computational complexity in greater
detail.

Parent sets instead of edges. The marginal likelihood (Equation 2.2) is
a function of the graph G. However, it depends on G only via its parent
sets, which are encoded in the matrices Bj. Accordingly, SSPS represents
G by storing a list of parents for each vertex.

It makes sense to use a proposal distribution that operates directly on
SSPS’s internal parent set representation. This motivates our choice of the
add-parent, remove-parent, and swap-parent proposals listed in Section
2.2. There is a natural correspondence between (i) likelihood function, (ii)
data structure, and (iii) proposal distribution.

Sampling efficiency. We provide some intuition for the parent set pro-
posal’s superior sampling efficiency. Let zij be a particular edge existence
variable. The estimate for zij converges quickly if MCMC updates zij
frequently. Hence, as a proxy for sampling efficiency, consider the number
of times zij gets updated per unit time. We decompose this quantity into
three factors:

zij updates
unit time = ε · τ · α

where
ε =

graph proposals
unit time τ =

zij proposals
graph proposal

α = zij acceptance probability

51

In other words, ε is the time efficiency of the proposal distribution. The
factor τ is the probability that a given proposal touches zij. Lastly, α is the
proposal’s Metropolis-Hastings acceptance probability.

For a given proposal distribution, we’re interested in how these factors
depend on |V |. For simplicity of analysis, assume the Markov chain is in a
typical state where the graph is sparse: |E(G)| = O(|V |).

For the parent set proposal, execution time has no dependence on |V |

and hence ε = O(1). Recall that the parent set proposal resides in an
outer loop, which iterates through all |V | vertices. It follows that for any
particular proposal there is a 1/|V | chance that it acts on vertex j. After
choosing vertex j, there is on average a O(1/|V |) chance that the proposal
affects zij. This follows from the sparsity of the graph: vertex i is typically
a non-parent of j and the probability of choosing it via an add-parent
or swap-parent action is O(1/|V |). Hence, the parent set proposal has a
probability τ=O(1/|V |2) of choosing zij. Lastly, the acceptance probability
α has no dependence on |V | and therefore α = O(1). The product of these
factors gives an overall sampling efficiency of O(1/|V |2) for the parent set
proposal.

For the uniform graph proposal, ε’s complexity depends on the par-
ticular implementation. For sake of generosity we assume an efficient
implementation with ε = O(1). The proposal chooses uniformly from
O(|V |2) actions: add-, remove-, or reverse-edge. The probability of choos-
ing one that affects zij is τ = O(1/|V |2). Recall that the marginal likelihood
decreases steeply with parent set size. It follows that add-edge actions
will typically have low acceptance probability. Since the graph is sparse,
add-edge actions are overwhelmingly probable; the probability of not
landing on one is O(1/|V |2). If we assume the acceptance probability is
high for remove-edge and reverse-edge actions, (i.e., they are accepted
whenever they’re proposed), then this suggests α = O(1/|V |2), averaged
over many proposals. The product of these factors suggests a sampling

52

efficiency that decays like O(1/|V |4).
This gap between O(1/|V |2) and O(1/|V |4) sampling efficiencies ex-

plains most of the difference that we saw in Section 2.3. A more detailed
analysis may reveal why the parent set proposal attains sampling efficien-
cies closer to O(1/|V |) in practice.

Simulation study details

We give additional details about the simulation study’s methodology and
results.

Simulation process. The simulation process described in Section 2.2
differs from SSPS’s modeling assumptions in several ways. Recall that the
simulator constructs a DBN to generate time series data. This simulated
DBN employs nonlinear interaction terms. The simulator assumes that
the data at each timepoint is a cubic function of the data at the previous
timestep. In contrast, all of our analyses ran SSPS with an assumption of
linear dependencies. In other words, the data contained complexities that
SSPS was unable to capture. SSPS’s performance in the simulation study
suggests that it has some robustness to modeling assumption mismatches.

We provide an illustration of the simulation process in Figure 2.6. It is
interesting to notice that the simulated networks do not resemble directed
acyclic graphs (DAGs) in any way. They do not have any sense of direc-
tionality. Contrast this with the biological graphs shown in Figure 2.8.
Strictly speaking these are not DAGs, but they do have an overall direction.
Some vertices are source-like, and others are sink-like. Future simulations
and models could be more biologically realistic if they incorporated this
kind of structure.

Simulation study results. Figure 2.7 gives some representative ROC and
PR curves from the simulation study. On problem sizes up to |V | = 100,
SSPS and the exact DBN method yield similar curves in both ROC and

53

Fi
gu

re
2.

6:
A

sc
he

m
at

ic
of

th
e

si
m

ul
at

io
n

st
ud

y.
W

e
ra

nd
om

ly
ge

ne
ra

te
a

tr
ue

ne
tw

or
k

(u
pp

er
le

ft)
an

d
us

ei
tt

o
si

m
ul

at
ea

tim
es

er
ie

sd
at

as
et

(u
pp

er
rig

ht
).

W
ec

or
ru

pt
th

et
ru

en
et

w
or

k
by

ad
di

ng
an

d
re

m
ov

in
g

ed
ge

s
(l

ow
er

le
ft)

;s
ol

id
re

d
ed

ge
s

ha
ve

be
en

ad
de

d,
da

sh
ed

re
d

ed
ge

s
ha

ve
be

en
re

m
ov

ed
,a

nd
bl

ac
k

ed
ge

sa
re

or
ig

in
al

.T
hi

sc
or

ru
pt

ed
ne

tw
or

k
se

rv
es

as
pa

rt
ia

lly
in

ac
cu

ra
te

pr
io

rk
no

w
le

dg
e

fo
rt

he
in

fe
re

nc
e

te
ch

ni
qu

es
.

Ea
ch

te
ch

ni
qu

e
pr

od
uc

es
a

pr
ed

ic
te

d
ne

tw
or

k
(l

ow
er

ri
gh

t)
by

as
si

gn
in

g
a

sc
or

e
to

ea
ch

po
ss

ib
le

ed
ge

.T
he

pr
ed

ic
te

d
ne

tw
or

k
is

ev
al

ua
te

d
w

ith
re

sp
ec

tt
o

th
e

tr
ue

ne
tw

or
k.

54

R
O

C
C

ur
ve

s

PR
C

ur
ve

s

Fi
gu

re
2.

7:
Re

pr
es

en
ta

tiv
e

RO
C

cu
rv

es
(t

op
)a

nd
PR

cu
rv

es
(b

ot
to

m
)f

ro
m

th
e

si
m

ul
at

io
n

st
ud

y.
W

e
sh

ow
cu

rv
es

fo
rt

hr
ee

di
ffe

re
nt

si
m

ul
at

io
ns

:|
V
|
=

40
,1

00
,a

nd
20

0
(l

ef
t,

m
id

dl
e,

ri
gh

tr
es

pe
ct

iv
el

y)
.E

ac
h

of
th

es
e

si
m

ul
at

io
ns

us
ed

co
rr

up
tio

n
pa

ra
m

et
er

sr
=
a
=

0.
5.

55

PR space—though SSPS’s curves clearly dominate. On larger problems
the exact DBN method’s performance quickly deteriorates. Computa-
tional tractability requires the exact method to impose highly restrictive
in-degree constraints. These observations are consistent with the heatmaps
of Figures 2.3 and 2.4 in Section 2.3.

HPN-DREAM challenge details

We provide additional details for the methodology and results of the
HPN-DREAM challenge evaluation.

Data preprocessing. The HPN-DREAM challenge data needed to be
preprocessed before it could be used by the inference methods. The choices
we made during preprocessing most likely affected the inference results.

Many of the time series contain duplicate measurements. We managed
this by simply averaging the duplicates. We log-transformed the time
series since they were strictly positive and some methods (SSPS and exact
DBN) assume normality. This probably made little difference for FunChisq,
which discretizes the data as part of its own preprocessing.

Predicted networks. Figure 2.8 visualizes networks from two biological
contexts in the HPN-DREAM challenge evaluation. This gives a sense of
how the different inference methods’ predictions differ from each other.
All of the predicted networks are fairly different, though the SSPS and
exact DBN predictions are more similar to each other than they are to
FunChisq. FunChisq predicts more self-edges than the other methods.

In the BT549 cell line, the experimentally detected mTOR descendants
include receptor proteins that would traditionally be considered upstream
of mTOR in the pathway. The experimental results are reasonable due to
the influence of feedback loops in signaling pathways. However, the num-
ber and positioning of the mTOR descendants highlights the differences
between the coarse HPN-DREAM challenge evaluation, which is based

56

Fi
gu

re
2.

8:
Pr

io
ra

nd
pr

ed
ic

te
d

pa
th

w
ay

sf
ro

m
th

e
H

PN
-D

RE
A

M
ch

al
le

ng
e.

W
e

sh
ow

pa
th

w
ay

sf
ro

m
tw

o
co

nt
ex

ts
:c

el
ll

in
es

BT
54

9
(t

op
ro

w
)

an
d

M
C

F7
(b

ot
to

m
ro

w
).

Th
e

st
im

ul
us

is
EG

F
fo

rb
ot

h
co

nt
ex

ts
.

SS
PS

at
ta

in
ed

th
e

be
st

A
U

C
RO

C
of

al
lm

et
ho

ds
in

th
e

(B
T5

49
,E

G
F)

co
nt

ex
ta

nd
th

e
w

or
st

in
th

e
(M

C
F7

,
EG

F)
co

nt
ex

t.
Th

e
ye

llo
w

no
de

is
m

TO
R;

re
d

no
de

sa
re

th
e

ex
pe

rim
en

ta
lly

ge
ne

ra
te

d
(“

gr
ou

nd
tr

ut
h”

)
de

sc
en

da
nt

so
fm

TO
R.

57

on reachability in a directed graph, and the more precise evaluation in our
simulation study, where we have the edges in the ground truth network.

HPN-DREAM AUCPR. For completeness, we complement the AUCROC
results of Section 2.3 with the corresponding AUCPR results. Figure 2.9
shows AUCPR in bar charts, with an identical layout to Figure 2.5.

AUCPR leads us to similar conclusions as those from AUCROC. SSPS
dominates the exact DBN method in 19 contexts and is dominated in 10.
Both SSPS and FunChisq dominate each other in 14 contexts. However,
SSPS dominates the prior knowledge in only 9 contexts, and is dominated
in 21. As before, we conclude that SSPS attains similar performance to
established methods on this task.

ROC and PR curves. Figure 2.10 shows ROC and PR curves from our
HPN-DREAM evaluation. We focus on two representative contexts: cell
lines BT549 and MCF7, with EGF as the stimulus.

The bar charts in Figure 2.9 tell us that SSPS was the top performer in
the (BT549, EGF) context. The ROC and PR curves are consistent with
this. SSPS dominates the other methods in ROC and PR space. In contrast,
SSPS was the worst performer in the (MCF7, EGF) context. The curves
show SSPS performing worse than random.

The LASSO ROC and PR curves are interesting. Its ROC curves show
nearly random performance. Its PR curves are straight lines. Manually
inspecting its predictions yields an explanation: (i) LASSO gives nonzero
probability to a very small number of edges; (ii) that small set of edges
results in a very small descendant set for mTOR; (iii) that small descendant
set is incorrect.

58

Fi
gu

re
2.

9:
A

ba
rc

ha
rt

si
m

ila
rt

o
Fi

gu
re

2.
5

ex
ce

pt
th

at
it

sh
ow

sA
U

C
PR

ra
th

er
th

an
AU

C
RO

C
.S

ee
Fi

gu
re

2.
5

fo
rd

et
ai

ls
ab

ou
tt

he
la

yo
ut

.

59
R

O
C

C
ur

ve
s

PR
C

ur
ve

s

Fi
gu

re
2.

10
:

RO
C

cu
rv

es
(t

op
)

an
d

PR
cu

rv
es

(b
ot

to
m

)
fr

om
th

e
H

PN
-D

RE
A

M
ch

al
le

ng
e.

W
e

sh
ow

re
su

lts
fo

rt
w

o
co

nt
ex

ts
:c

el
ll

in
e

BT
54

9
(l

ef
t)

an
d

M
C

F7
(r

ig
ht

).
Th

e
st

im
ul

us
is

EG
F

fo
rb

ot
h

co
nt

ex
ts

.
Si

nc
e

SS
PS

is
st

oc
ha

st
ic

,w
e

sh
ow

al
l5

of
its

cu
rv

es
in

ea
ch

pl
ot

.T
he

ot
he

rm
et

ho
ds

ar
e

al
ld

et
er

m
in

is
tic

,
an

d
th

er
ef

or
e

on
ly

ha
ve

on
e

cu
rv

e
in

ea
ch

pl
ot

.

60

3 viewing multiomic data through the lens of
matrix factorization and gene sets

This chapter describes PathMatFac, a matrix factorization model for mul-
tiomic data. PathMatFac is equipped with a mechanism that interprets the
factorization in terms of curated gene sets. Evaluations on simulated and
real datasets demonstrate that PathMatFac succeeds at (i) obtaining a
unified, informative factorization of multiomic data and (ii) summarizing
the factors in ways a biologist may find helpful.

3.1 Introduction

Motivation

Biological systems are complicated. The state of a cell, tissue sample, or
organism can hardly be captured by any single measurement. Biologists
gain insight into these systems by collecting high-dimensional data from
them. It’s not unusual for an omics datasets to contain thousands of
features.

This situation leads to a perennial challenge in bioinformatics: how do
we summarize high-dimensional data in a way that yields biological insight? An
enormous set of methods exists to solve this problem, for diverse contexts
and kinds of data. One way to understand these tools is to map them onto
a continuum between two extremes: (i) data-centric methods, which aim
only to model the data; and (ii) biology-centric methods, which summarize
the data in terms of existing biological knowledge. The data-centric tech-
niques include many standard tools of data science. For example, principal
components analysis (PCA) and hierarchical clustering appear frequently
in bioinformatics.

In contrast, biology-centric methods use extant biological knowledge as

61

a fixed vocabulary to describe new data. The description is generally lossy,
since modeling the data is not a priority. Gene Set Enrichment Analysis
(GSEA) is a classic example of a biology-centric technique (Subramanian
et al., 2005). GSEA uses prior knowledge in the form of gene sets to identify
differences between populations of samples. Each gene set is curated
such that it contains genes related to a particular phenomenon or process
of interest—for example, a biological pathway. Other enrichment-based
techniques like Gene Ontology (GO) analysis (Young et al., 2010) and
Gene Set Variation Analysis (GSVA) (Hänzelmann et al., 2013) also fall
into this category.

Both classes of method have their uses. Data-centric techniques com-
press and summarize the data with relatively little bias. This makes them
well-suited to explore new phenomena that don’t fit cleanly into exist-
ing knowledge. On the other hand, biology-centric methods produce
summaries that are highly interpretable, especially to subject matter ex-
perts (the biologists). A skilled biologist can readily inspect the output of
GSEA, for instance, and begin to reason and form hypotheses about the
underlying biology.

In addition to its dimensionality, the heterogeneity of omics data poses
other challenges. The samples of an omics dataset may exhibit heterogeneity
in several ways. Datasets may contain samples collected from different
biological conditions. For example, they may come from different cell
types, tissues, or organisms. Samples may possess different disease status,
or be exposed to different drugs. Depending on the scientific context,
these biological differences may be (i) the phenomenon of interest, or (ii)
a nuisance to be modeled away.

Samples may also differ in non-biological ways. The experimental
procedures for collecting omics data are complicated and provide many
opportunities for technical artifacts and inconsistencies to arise between
samples. For instance, omics data is usually collected in batches. Batches of

62

data measured by different laboratories—or machines within a laboratory—
are not typically i.i.d.. It’s common for batch effects to account for a large
fraction of the variation in an omics dataset. Naïvely ignoring these effects
will lead to incorrect analytical conclusions.

The features of an omics dataset may also be heterogeneous. For in-
stance, multiomic datasets contain features from multiple omics modalities.
Multiomic data can be advantageous, since different omics provide com-
plementary views of the underlying biology. However, they also pose a
challenge since different modalities possess distinct distributional proper-
ties. Modeling them jointly requires judgment and creativity.

Furthermore, biological datasets often contain missing values. Some-
times the missingness is a function of the biology, and therefore contains
signal. In other cases it results from randomness, or practical limitations
of the assay technology. Models need to appropriately capture these kinds
of missingness.

Figure 3.1 shows a concrete example of the high-dimensional, hetero-
geneous omics data we’re discussing. This dataset comes from The Cancer
Genome Atlas (TCGA), a series of studies that collected multiomic data
from thousands of tumor samples representing many kinds of cancer (The
Cancer Genome Atlas Network et al., 2013). Most samples in the TCGA
dataset have tens of thousands of features belonging to several omics
modalities: RNA-seq, CNA, somatic mutations, and methylation (among
others). TCGA was a large, collaborative effort from several laboratories
over the span of years. As a result, the samples were collected and pro-
cessed at different times and locations, creating the possibility for nuisance
technical variation. Multiomic datasets like TCGA present difficulties for
modeling. However, they may reveal rich and valuable biological insights,
and are therefore worth the additional modeling effort.

In this chapter we present PathMatFac, a new tool for extracting in-
sights from multiomic datasets. PathMatFac is a matrix factorization

63

model that has the strengths of both data-centric and biology-centric meth-
ods. It achieves this by:

1. obtaining an informative factorization of the multiomic data; and

2. interpreting the linear factors in terms of curated gene sets.

Related works

There are a vast assortment of methods that employ some combination
of (i) multiomic data, (ii) biological prior knowledge; or (iii) matrix fac-
torization. We mention some of them in order to provide context for the
original contributions in this chapter.

Closely related works. We highlight several works as direct inspirations
for PathMatFac. PARADIGM is a tool that uses biological pathways to
construct a factor graph model for multiomic data (Vaske et al., 2010b). It
uses the factor graph to produce smoothed estimates of “activity levels” for
pathway entities (e.g., genes, and proteins). The activity levels can then be
used for downstream analyses. PARADIGM was successful and influential
in its time. The Cancer Genome Atlas thoroughly incorporated it into their
analysis workflows (The Cancer Genome Atlas Network, 2012a,b,c, 2014;
Hoadley et al., 2018). However, PARADIGM has notable shortcomings. It
is designed specifically for RNA-seq and CNA data, and does not readily
incorporate other kinds of omics. PARADIGM contains some dubious
modeling choices; omics data must be discretized, and biological pathways
are translated into factor graphs in a very literal and mechanistic fashion
that assumes full knowledge of the molecular processes. Furthermore, the
software is difficult to acquire and use. An executable binary is available
online, but the source code must be requested by email (Stuart, 2023).
The need for newer, better tools combining multiomic data and biological
pathways was an initial impetus for PathMatFac.

64

Fi
gu

re
3.

1:
A

vi
su

al
iz

at
io

n
of

th
eT

C
G

A
da

ta
se

tu
se

d
in

th
is

w
or

k.
Ea

ch
ro

w
is

a
sa

m
pl

e;
ea

ch
co

lu
m

n
is

an
om

ic
fe

at
ur

e.
Ro

w
sa

re
gr

ou
pe

d
by

ca
nc

er
ty

pe
,i

nd
ic

at
ed

by
th

e
bl

ac
k-

an
d-

w
hi

te
ba

ro
n

th
e

le
ft.

C
ol

um
ns

ar
e

gr
ou

pe
d

by
om

ic
s

ty
pe

(i
.e

.,
m

od
al

ity
).

G
ra

y
en

tr
ie

s
in

di
ca

te
m

is
si

ng
da

ta
.

Th
er

e
ar

e
im

po
rt

an
t

di
st

rib
ut

io
na

ld
iff

er
en

ce
sb

et
w

ee
n

th
e

m
od

al
iti

es
.S

om
at

ic
m

ut
at

io
n

da
ta

ar
e

bi
na

riz
ed

;m
et

hy
la

tio
n

an
d

RN
A

-s
eq

da
ta

ar
e

as
su

m
ed

G
au

ss
ia

n;
an

d
C

N
A

is
or

di
na

liz
ed

w
ith

th
re

e
le

ve
ls

.N
ot

ic
e

ho
w

lit
tle

RP
PA

da
ta

ex
ist

si
n

co
m

pa
ris

on
to

th
eo

th
er

m
od

al
iti

es
.W

ev
is

ua
liz

eR
PP

A
he

re
,b

ut
ex

cl
ud

ei
tf

ro
m

ou
ra

na
ly

se
s

si
nc

e
it

ha
s(

i)
fe

w
fe

at
ur

es
,(

ii)
m

an
y

m
is

si
ng

en
tr

ie
s,

an
d

(i
ii)

po
te

nt
ia

lq
ua

lit
y

is
su

es
(U

pa
dh

ya
an

d
Ry

an
,2

02
3)

.

65

PLIER is a matrix factorization model for omics data (Mao et al., 2019).
It uses curated gene sets to (i) inform and (ii) interpret its linear factors.
This represents a compromise between data-centric and biology-centric
approaches. PLIER fits factors to the data, but seeks to explain those
factors in terms of gene sets. PLIER is only intended to model a single
omics dataset—typically RNA-seq. PathMatFac can be construed as a
multiomic improvement to PLIER, though its probabilistic assumptions
differ from PLIER in other important ways.

MOFA+ is a Bayesian matrix factorization model targeted at multiomic
datasets (Argelaguet et al., 2020). It uses a combination of priors to induce
sparsity on its factorization. MOFA+ employs variational Bayes inference
to fit a mean field approximation of its posterior distribution. The sparsity
of MOFA+’s factors aids interpretation, but does not explicitly link them
to biological prior knowledge (e.g., gene sets or pathways). PathMatFac
is similar to MOFA+, in that it is also a multiomic matrix factorization.
However, PathMatFac’s probabilistic assumptions are somewhat different,
and include dependencies between the factors and user-provided gene
sets. PathMatFac also relies on a simpler MAP estimation procedure that
can easily accommodate future model improvements.

PathMatFac took significant inspiration from the work of Udell (2015)
in Generalized Low Rank Models (GLRMs). GLRMs provide a help-
ful framework for thinking about regularized matrix factorizations with
heterogeneous features. PathMatFac is a GLRM equipped with some
additional machinery for interpreting its linear factors.

ComBat is a widely used tool for modeling and removing batch effects
from omics data (Johnson et al., 2007). It originally targeted assay technolo-
gies like DNA microarrays, which have since become outdated. However,
ComBat continues to prove useful, even for modern single cell RNA-seq
datasets (Luecken and Theis, 2019). PathMatFac borrows probabilistic
ideas from ComBat to account for batch effects.

66

Method attribute PathMatFac MOFA+ PLIER PARADIGM
Provides biological interpretations 3 7 3 7

Accommodates multiomic data 3 3 7 3

GPU-accelerated 3 3 7 7

Models batch effects 3 7 7 7

Table 3.1: Comparison of PathMatFac against closely related techniques.
PathMatFac occupies a unique niche and combines many of the strengths
of existing techniques.

Table 3.1 compares PathMatFac’s capabilities against the most closely-
related methods for embedding omics data. PathMatFac shares many
attributes with these techniques, though it combines them in a unique
way. Its modeling assumptions and inference procedure also differ mean-
ingfully from those of existing methods.

Other related works. For a richer context, we mention some other meth-
ods that utilize (i) multiomic data or (ii) biological prior knowledge to
accomplish related tasks. We focus especially on tools for multiomic data,
since the field is developing at a rapid pace. Methods exist for a variety
of tasks on multiomic data: embedding, clustering, supervised predic-
tion, imputing missing values, and hypothesis testing. The literature
often lumps these tasks together under the umbrella term “multiomic
integration.” We avoid using that term, since it has become clichéd and
uninformative.

Techniques for embedding multiomic data have proliferated in very
recent years. Neural networks, and especially Variational Autoencoders
(VAEs), have gained currency. The Multimodal VAE (MVAE) network
architecture (Wu and Goodman, 2018) is a key influence for many of
them. MVAE uses a product of experts design to combine representations
from different modalities. Cobolt (Gong et al., 2021) adapts MVAE to the
multiomics domain and employs likelihoods tailored to specific omics
modalities. MultiVI (Ashuach et al., 2021) and Multigrate (Lotfollahi et al.,

67

2022) improve on Cobolt by (i) enabling imputation of missing modalities
and (ii) accounting for sources of technical variation, such as batch effect.
TotalVI (Gayoso et al., 2021) has similar goals but is tailored specifically
for CITE-seq data, a joint transcriptomic and proteomic assay technology
(Stoeckius et al., 2017). moETM (Zhou et al., 2023) uses fully-connected
encoders and a linear decoder, in order to promote interpretability. pmVAE
(Gut et al., 2021) uses biological pathways to inform the architecture of a
VAE and make its inferences more interpretable. Finally, SMILE (Xu et al.,
2022) uses a self-supervised neural network with noise-contrastive loss
(as opposed to a VAE) to embed multiomic data.

Linear embedding techniques continue to be relevant in the multiomic
setting. They possess desirable properties such as (i) interpretability, (ii)
suitability for smaller datasets and (iii) modest computational expense.
MOFA+ (Argelaguet et al., 2020), described above, is inspired by Group
Factor Analysis (Klami et al., 2015) and Bayesian CCA (Klami et al., 2013).
Canonical Correlation Analysis (CCA) is itself a classic statistical technique
for multimodal data; CCA finds directions of greatest correlation between
modalities (HOTELLING, 1936). See the review by Hardoon et al. (2004)
for additional details. Integrative nonnegative matrix factorization (iNMF)
(Yang and Michailidis, 2016) is a multimodal extension of nonnegative
matrix factorization.

We also mention one biology-centric embedding technique for omics
data. GSVA (Hänzelmann et al., 2013) scores gene set enrichment for
individual samples, revealing variation between them. GSVA is not usually
described as an embedding, though it amounts to a transformation of the
data. GSVA is intended for a single omics modality, typically RNA-seq.
We employ GSVA as a baseline in Section 3.3.

Clustering is another common task for multiomic data. Multiomic clus-
tering usually consists of (i) an embedding procedure coupled with (ii) a
standard clustering procedure. For example, the iCluster (Shen et al., 2009;

68

Mo et al., 2013, 2018) and moCluster (Meng et al., 2016, 2019) techniques
use matrix factorization to embed the multiomic data, followed by k-means
clustering. LIGER (Welch et al., 2019) employs iNMF to embed multiomic
data, together with a neighbor-graph clustering procedure. See the re-
view by Chauvel et al. (2020) for other examples. Meanwhile, Similarity
Network Fusion (SNF) takes a distinct approach to multiomic clustering
(Wang et al., 2014). SNF uses the multiomic data to produce a similarity
matrix for pairs of samples, and then performs spectral clustering on that
matrix.

Other “multiomic integration” techniques consist of statistical tests ap-
plied to multimodal data from populations of samples. In the terminology
of this chapter, almost all of these techniques fall into the biology-centric cat-
egory. Most of them are multiomic extensions of classic enrichment-based
comparisons, like GSEA (Subramanian et al., 2005). The comprehensive
review by Maghsoudi et al. (2022) provides many examples of these. A
related class of techniques uses multiomic data to identify significant
perturbations in a given biological network. For example, HotNet2 (Leiser-
son et al., 2015) and Conflux (Mezlini and Goldenberg, 2017) use one or
more genomics modalities to identify perturbed subnetworks in a curated
Protein-Protein Interaction (PPI) network.

Finally, many techniques exist for supervised learning on multiomic
data. A recent review by Wysocka et al. (2023) thoroughly explores the
neural networks proposed for that task, with an emphasis on models that
incorporate biological prior knowledge in some fashion. The review also
offers a perspective on the relationships between (i) interpretability, (ii)
biological prior knowledge, and (iii) network architectures.

New contributions in this chapter

We present PathMatFac, a new matrix factorization technique for mul-
tiomic data. The model flexibly accommodates realistic omics datasets

69

containing (i) multiple data modalities with distinct distributional proper-
ties; (ii) batch effects; (iii) multiple biological conditions; and (iv) missing
values.

PathMatFac uses Automatic Relevance Determination (ARD) to regu-
larize its factors. The model’s probabilistic assumptions connect the ARD
regularizer to user-provided gene sets, enabling the model to interpret
the factors in terms of those gene sets. We refer to this new probabilistic
mechanism as Feature Set ARD (FSARD).

We evaluate PathMatFac on simulated and real datasets. Simulations
confirm that the model reliably recovers its true parameters. Tests with
real data from The Cancer Genome Atlas (TCGA) demonstrate that Path-
MatFac yields an informative embedding of multiomic data, competitive
against baseline matrix factorizations. They also show PathMatFac’s abil-
ity to summarize factors in terms of curated gene sets, whenever that is
possible.

We distribute PathMatFac as a Julia package on GitHub:
https://github.com/dpmerrell/PathwayMultiomics.jl

3.2 Proposed method

Probabilistic model

This section lays out PathMatFac’s probabilistic assumptions and model
parameters. An explanation of its inference procedure comes later.

We designed PathMatFac to model a particular class of dataset. Some
notation will clarify this discussion. Let D be anM×N array of numeric
data. Each row i∈[M] represents a sample; each column j∈[N] represents
a feature. For a concrete example see Figure 3.1, which visualizes multi-
omic data from The Cancer Genome Atlas (TCGA). That dataset contains
M=10, 761 samples belonging to 33 different cancer types. Multiple kinds

https://github.com/dpmerrell/PathwayMultiomics.jl

70

Figure 3.2: Illustration of a basic matrix factorization model. D is the
dataset, anM×N array where rows are samples and columns are features.
The model assumes D ∼ X>Y . Rows of Y are linear factors; X contains a K-
dimensional embedding of the data. PathMatFac adds several parameters
to this model to accommodate multiomic datasets.

of omics data were collected for each sample, totalling approximately
N'80, 000 features.

PathMatFac models the dataset D via matrix factorization. That is,
it assumes D is generated by multiplying two much smaller matrices
X∈RK×M and Y∈RK×N:

D = X>Y + ε,

where ε is i.i.d. Gaussian noise (in the case of Gaussian data; analogous
noise models apply for non-Gaussian data).

It can be instructive to write this dependence in some alternative—

71

though equivalent—forms. First, in terms of the rows of X and Y:

D =

K∑
k=1

xky
>
k

+ ε,

where xk is the kth row vector of X.
Or, if we focus on a single entry di,j of the dataset, the dependence can

be written in terms of columns of X and Y:

di,j ∼ x
>
i yj + εi,j ∀i, j

where xi is the ith column vector of X. See Figure 3.2 for an illustration of
the matrix factorization setup.

This formulation is analogous to PCA. In our case, the row vectors
of Y play a similar role to principal components. That is, the rows of Y
ought to span a subspace of greatest variation in the dataset, defining
a K-dimensional linear subspace of RN. We refer to the rows of Y as
linear factors or simply factors. Then, as in PCA, the matrix X contains a
K-dimensional embedding of the dataset on that subspace—the projection
of each sample onto the factors.

The analogy to PCA is exact for simple Gaussian datasets that have
been standardized to zero-mean and unit variance. However, in our case
the data have a much more complicated structure, calling for a somewhat
more complicated probabilistic model. PathMatFac introduces additional
model parameters to accommodate non-Gaussian, multiomic datasets.
Other parameters “model away” nuisance batch effects common in omics
data. PathMatFac employs specially chosen regularizers that encourage
the linear factors to be sparse and statistically robust. Lastly, the model
connects the linear factors to prior knowledge in a way that aids biolog-
ical interpretation. These design choices are all grounded in principled,
probabilistic considerations.

72

Accommodating heterogeneous features. PathMatFac aims to model a
multiomic dataset. By “multiomic,” we mean a multimodal dataset where
features may represent measurements from different omics assays. This
requires modifications to the matrix factorization described above.

Some more notation will aid this discussion. We assume theN features
of data are partitioned into a set of views V = {v1, v2, . . .}. In other words,
each feature j belongs to exactly one v ∈ V . In practice these views rep-
resent different modalities of omics data. For example, there could be a
view of RNA-seq features, a view of methylation features, and so on. We
use v(j) to denote the view containing feature j. We occasionally use v as
a subscript to indicate view-specific quantities. For example, Nv1 = |v1|

is the number of columns belonging to view v1. We use the terms view,
modality and omics assay interchangeably in this chapter.

In general the views of data may have distinct distributional properties.
Data from some omics assays may be treated as Gaussian, while others may
be, e.g., Bernoulli- or Poisson-distributed. PathMatFac accommodates this
heterogeneity by allowing column-specific distributional assumptions:

di,j ∼ Pj
(
d | x>i yj

)
.

That is, the model allows columns of data to have different putative dis-
tributions. At the time of this writing PathMatFac admits Gaussian,
Bernoulli, ordinal, and Poisson features.

PathMatFac maps these distributional assumptions to appropriate
column-specific losses and link functions:

di,j ∼ Pj
(
d | x>i yj

)
→ Lj

(
di,j , x>i yj

)
where Lj represents the composition of an inverse link function and loss
function. For instance, putatively Gaussian features call for a quadratic
loss and an identity link function. Other distributions may admit different

73

Assay Distribution Loss Link
RNA-seq

(log-transformed) Gaussian quadratic identity

Methylation
(logit-transformed) Gaussian quadratic identity

Somatic mutation
(binarized) Bernoulli squared hinge NA

CNA
(ternarized) ordinal ordinal squared hinge NA

Table 3.2: The omics modalities used in this chapter, with their assumed
distributions, loss functions, and link functions.

combinations of loss and link functions. For example, Bernoulli features
may use cross-entropy loss with a probit or logistic link function; or a
totally different loss, like squared hinge loss (without a link function). The
link function terminology originates from Generalized Linear Models; we
recommend the review by Neuhaus and McCulloch (2011) for additional
background. All analyses in this chapter use the distributions, losses, and
link functions given in Table 3.2.

The matrix factorization model’s loss (i.e., negative log-likelihood) is
simply the sum of these losses across the dataset:

L
(
D,X>Y

) def
=
∑
i,j

Lj
(
di,j , x>i yj

)
,

though this will soon be augmented with terms for (i) additional parame-
ters and (ii) regularizer losses on X and Y.

Notice from Table 3.2 that we use squared hinge loss for Bernoulli
features. Earlier versions of the model used cross-entropy loss with a
logistic link. However, we saw empirically that this produced poor fits on
multiomic datasets. Gaussian features tended to overpower the Bernoulli
features, yielding factors that spanned the Gaussian features while ig-

74

noring the Bernoulli ones. We hypothesized that the bounded gradient
of logistic cross-entropy caused this imbalance. In contrast, probit cross-
entropy has an increasing gradient. Squared hinge loss also possesses that
property, but is much simpler and less computationally expensive than
probit cross-entropy. See Figure 3.3 for an illustration of these losses. We
find that squared hinge loss yields improved balance between Bernoulli
and Gaussian features.

To the extent that squared hinge loss approximates probit cross-entropy,
there exists a probabilistic rationale for choosing squared hinge loss. Probit
regression assumes the Bernoulli outcome is weighted by the probability of
a latent Gaussian variable exceeding a threshold. Meanwhile, binarized omics
data (e.g., our somatic mutation data) often arises from thresholding some
numeric score. This suggests probit cross entropy (and hence squared
hinge loss) could be more consistent with the data’s generative process
than logistic cross entropy.

Straightforward analogies hold for losses on ordinal variables; i.e., for
(i) ordinal logistic loss, (ii) ordinal probit loss, and (iii) ordinal squared
hinge loss. We noticed similar issues with ordinal logistic loss and obtained
better fits with ordinal squared hinge loss.

Columns of data will generally have different means and variances.
This poses another form of heterogeneity the model must accommodate.
In the case of Gaussian data we would simply standardize the columns
to have zero mean and unit variance. However, in our setting the dataset
may contain Gaussian, Bernoulli, and ordinal features (among others).
Standardization would be inappropriate for many of these.

A more appropriate strategy is to introduce column-specific shift and
scale parameters, µ and σ, to the model:

di,j ∼ Pj
(
d | x>i yj·σj + µj

)
,

75

Figure 3.3: A plot of different loss functions for Bernoulli data (when d=1).
Cross-entropy with a logistic link has a linear asymptote, resulting in weak
gradients. In contrast, a probit link produces gradients that increase in
magnitude as the model becomes less correct. Squared hinge loss shares
this property with probit/cross-entropy, but is much simpler and entails
less computational expense.

with an analogous modification to the model’s loss:∑
i,j

Lj
(
di,j , x>i yj·σj + µj

)
.

On Gaussian data, µ and σ take the place of means and standard deviations
for standardization, respectively. More generally, the column shifts µ serve
as intercept terms or biases that account for systematic differences between
columns. The column scales σ account for differences in dynamic range
between columns.

Degeneracy exists betweenµ andσ for some kinds of data. For example,
Bernoulli data with a small mean can be modeled equally well by (i) small,

76

negative µ with small σ or (ii) large, negative µ with a commensurate
increase in σ. In these cases—i.e., Bernoulli and ordinal data—we set σ=1
and rely on µ to capture the systematic differences between columns.

Another measure that helps PathMatFac accommodate heterogeneous
features is column loss reweighting. This consists of multiplying each col-
umn’s loss function Lj by a weight wj in a way that makes columns exert
similar “influence” on the factorization. We credit the Generalized Low
Rank Model code of Udell (2015) for inspiring this technique.

Column loss reweighting works as follows. Assume the column shifts
and scales, µ and σ, have already been assigned. One way to quantify
column j’s influence on the factorization is with the norm of the gradient of
Lj with respect to X. Define lj(X), the loss from column j as a function of
X:

lj(X)
def
=
∑
i

Lj(x
>
i yj·σj + µj).

The gradient of lj is

∇Xlj = σj·yj
(
~L′j

)>
where ~L′j is the vector of partial derivatives

[
l′j(x1), · · · , l′j(xM)

]>. We can
compute the norm of the gradient:

‖∇Xlj‖F = σj · ‖yj‖ ·
∥∥∥ ~L′j∥∥∥

(with equality because it’s an outer product).
Hence, we can ensure each column of data exerts a gradient on X of

similar size by multiplying the loss of each column by the following weight:

wj =
1

1√
M
· σj ·

∥∥∥ ~L′j∥∥∥

77

(A) (B)

Figure 3.4: Visualization of (A) batch labels in a multiomic dataset and
(B) the batch parameters constructed by PathMatFac for that dataset. In
reality the situation may be slightly more complicated: the batches of rows
need not be contiguous. Two sets of batch parameters are constructed:
batch shifts and batch scales. PathMatFac only constructs batch parameters
for views of Gaussian data.

Notice that this weight ignores the contribution from ‖yj‖, since columns
of Y are initialized with similar norm and their fitted norms are unknown.
We also introduce a factor of

√
M to remove wj’s dependence on problem

size.

Accounting for batch effects. Up to this point we have described ways
that PathMatFac accounts for heterogeneity in the features of a multiomic
dataset. We now consider sources of heterogeneity between samples of
data, and introduce model parameters to account for them. When biolo-
gists produce an omics dataset, this typically involves processing batches
of samples. Batches processed in different laboratories, or on different
machines, or even at different times, are subject to subtle differences in
protocol or environmental conditions. This manifests itself in the dataset

78

as distributional differences between batches. Nuisance variation of this
kind, termed “batch effect,” can obscure the data’s biological signal if it
isn’t properly modeled away.

PathMatFac models two simple kinds of batch effect: (i) batch shifts
and (ii) batch scales. These represent systematic differences in mean
and variance between batches. PathMatFac currently only models batch
effect for Gaussian features, though that may change in the future. We
define some notation for batches and batch effect parameters. Consider a
particular view of features, v. The rows of data in v are partitioned by a set
of batch labels Bv = {b1,v,b2,v, . . .}. That is, each sample i belongs to exactly
one b ∈ Bv. We sometimes use bv(i) to indicate the batch containing row
i in view v; or b(i), if the view is clear from context.

Batches of samples will generally differ between views. Visually, the
situation resembles a “patchwork quilt” of batch labels covering the dataset.
See Figure 3.4(A) for illustration. PathMatFac relies on these batch labels
to construct a set of batch parameters, θ and δ, modeling batch shift and
batch scale respectively. For each view v and for each batch b ∈ Bv, we
introduce column-specific parameters θb,j and σb,j. In other words, the
model defines a vector of column shifts and a vector of column scales for
each batch in the dataset. Figure 3.4(B) visualizes these parameters and
shows their relationship to the batch labels.

PathMatFac incorporates batch parameters into the generative model
as follows:

di,j ∼ Pj
(
d | x>i yj·σj·δb,j + µj + θb,j

)
.

θ and δ can be regarded as adjustments to the column shifts (µ) and scales
(σ), respectively. Figure 3.5 shows an updated schematic of PathMatFac’s
model parameters that includes θ and δ.

PathMatFac makes generative assumptions for θ and δ similar to those
of ComBat (Johnson et al., 2007), a widely used tool for modeling away

79

batch effect:

δ2
b,j ∼ InvGamma

(
α̂b, β̂b

)
θb,j ∼ N

(
mb, s2

b

)
(3.1)

di,j ∼ N
(
µj + θb,j + Ciwj, σ2

j ·δ2
b,j
)

where C is a matrix of biological conditions and wj is a vector of regression
coefficients against those conditions for column j, fit in a least-squares
fashion. The idea is to disentangle batch effects from biological effects in a
simple way, ensuring θ and δ capture mostly non-biological variation.

The modeling assumptions given in Equations 3.1 have the effect of
sharing information between columns in a batch. Parameters within a batch
tend to take similar values, greatly reducing the variance of the estimates.
PathMatFac uses an Expectation-Maximization (EM) algorithm to fit θ
and δ, similar to the procedure described in ComBat. This is described
later in detail.

Regularizing the factors. PathMatFac employs Automatic Relevance
Determination (ARD) to regularize the factors (Y), making them more
interpretable and statistically robust. ARD is a Bayesian modeling concept
that tends to impose sparsity on model parameters (Neal, 2012). The idea
is to assume a Gaussian prior for the parameter:

y ∼ N(0, ξ2).

However, unlike ridge regression, ARD further assumes the variance ξ2 is
itself an unknown, random variable.

ARD typically parameterizes the Gaussian with a precision, τ = 1
ξ2 and

gives it a Gamma hyperprior:

τ ∼ Gamma(α,β).

80

Figure 3.5: Diagram of the PathMatFac model, updated to include column
and batch effect parameters. Parameters µ and σ are column shifts and
scales. Parameters θ and δ account for batch shifts and scales.

Inference in such a model has the effect of driving τ to large values when-
ever y has little predictive power. This in turn drives y to exceedingly
small values. As a result, only a sparse set of “relevant” model parameters
take magnitudes much larger than zero.

There are different ways to incorporate ARD into a model. For example,
MOFA+ employs a structural ARD, where τ variables are shared by entire
vectors of model parameters (Argelaguet et al., 2020). Other models give
each individual parameter its own independent τ. PathMatFac takes this
latter approach to regularize the matrix Y. That is, each entry yk,j has the
following generative assumptions:

τk,j ∼ Gamma(α,β)

yk,j ∼ N(0, 1/τk,j) (3.2)

81

It can be challenging to fit models with ARD priors. This should
be kept in mind when introducing ARD to a model. One may use the
typical approximate Bayesian inference procedures—e.g., sampling or
variational Bayes. For instance, MOFA+ uses variational Bayes with a
mean-field approximation of the posterior (Argelaguet et al., 2018). Evi-
dence maximization is another common approach. Evidence maximization
first computes point estimates for each τ. Then, holding the estimated τs
fixed, other model parameters are fit to the data (MacKay, 1999).

A less common approach for ARD models is straightforward maxi-
mum a posteriori (MAP) estimation. This involves (i) marginalizing out
the τ variables and then (ii) optimizing the model parameters on the re-
sulting posterior density. In other words, MAP reduces the ARD prior
to a simple regularizer on the model parameters. There are principled
arguments against MAP estimation for ARD models: the posterior is gen-
erally nonconvex and the maximum may not represent the bulk of the
posterior probability mass (MacKay, 1999; Tipping, 2001). Despite these
arguments, we experimented with MAP inference for PathMatFac and
found that it reliably yields good fits on simulated and real datasets. We
speculate that matrix factorization has unusual properties that make ARD
and MAP inference a benign choice. Matrix factorization is already highly
nonconvex; it may be that marginalized ARD regularization introduces
other nonconvexities that are fairly harmless.

Since we employ MAP inference, we can marginalize out the latent
τ variables. The probabilistic assumptions in Equation 3.2 allow us to
integrate τ in closed form:

P(yk,j | α,β) =
∫
P(yk,j | τ) · P(τ | α,β)dτ

∝ βα(
β+

y2
k,j
2

)α+ 1
2
. (3.3)

82

This density is in fact a scaled Student’s t-distribution for yk,j. Under these
assumptions, yk,j has finite variance only if α > 1

Var[yk,j] =
β

α− 1. (3.4)

It follows that choosingα>1 is consistent with factor entries yk,j possessing
finite variance. This is an appropriate choice for PathMatFac, since we
have no reason to expect the entries of Y possess undefined or infinite
variance. Furthermore, choosingα=1+ε andβ=ε for some small ε implies
Var[yk,j]=1 and retains the sparsity-inducing properties of ARD. Contrast
this with the typical practice in ARD, which constructs an uninformative
prior on τ by settingα=β=ε to a small number. Unless otherwise specified,
our marginalized ARD regularization uses α = 1.001 and β = 0.001.

In practice, MAP inference uses the log-density to regularize yk,j:

log P(y | α,β) = −

(
α+

1
2

)
· log

(
β+

y2

2

)
+ const. (3.5)

Figure 3.6 contrasts this marginalized ARD regularizer with more tradi-
tional ones.

Finally, it bears mentioning that PathMatFac imposes L2 regularization
on X, consistent with a Gaussian prior:

X ∼ N(0, I). (3.6)

At various points in the fitting procedure, this assumption is also enforced
by whitening the embedding, such that each row of X has variance 1.

Interpreting factors with FSARD. We propose a probabilistic frame-
work for interpreting the linear factors, called Feature Set Automatic Rel-
evance Determination (FSARD). The goal of FSARD is to interpret the
linear factors in terms of curated gene sets provided by the user. Gene

83

Figure 3.6: Plots of different regularizer losses. After marginalizing τ,
ARD may be regarded as a regularizer on the model parameters. As a
regularizer, marginalized ARD induces sparsity but is not convex.

sets are a commonly-used form of biological prior knowledge. A gene
set is usually constructed to contain genes associated with a specific bi-
ological process or phenomenon. Collections of them can be found in
public databases. A famous example is the Molecular Signatures Database
(MSigDB) (Liberzon et al., 2015), which contains thousands of gene sets
belonging to distinct categories. In this chapter we will use gene set col-
lections from MSigDB based on cancer hallmarks, oncogenic markers, and
genomic locations—and possibly others. In the ideal case, FSARD will iden-

84

Figure 3.7: Diagram of Feature Set Automatic Relevance Determination
(FSARD). See Equations 3.7 for the full specification. S is a sparse matrix
that encodes gene sets provided by the user; andA is a nonnegative matrix
of inferred assignments from gene sets to factors. Matrix B is generated
from A>S. Each entry βk,j in B serves as the β parameter for an ARD
prior on yk,j. The goal is to “explain” the entries of Y by estimating A. The
matrix τ is marginalized away, so we give it a dashed outline.

tify a small number of these gene sets that cover the nonzero entries of
each linear factor.

First we frame the situation mathematically. Suppose the user provides
a collection of L curated gene sets. We encode the gene sets in a sparse
binary matrix S ∈ BL×N, where sl,j = 1 whenever feature j of the data
involves gene set l. Suppose each factor yk is sparse. In the ideal case, we
would identify a small number of gene sets that, in combination, match
the nonzero entries of yk. We frame this mathematically by introducing
a nonnegative matrix of assignments A ∈ RL×K>0 , where al,k > 0 whenever

85

gene set l matches factor k. When this is the case, we say gene set l is
assigned to factor k.

FSARD aims to populate A with assignments in a sparse fashion. The
challenge is to do this in a manner consistent with the probabilistic as-
sumptions of ARD. Recall that ARD is parameterized by α and β, and
that the variance of yk,j is β/(α − 1) (as in Equation 3.4). Hence, large
magnitudes for yk,j are consistent with large β.

With these probabilistic considerations in mind, we modify ARD in
the following ways:

• Allow each entry yk,j to have its ownβk,j variable, rather than having
all of them share a single β hyperparameter. In other words, there
will be a matrix B ∈ RK×N, having the same shape as Y.

• Treat each βk,j as a random variable that depends on matricesA and
S. More precisely, FSARD assumes B depends on A>S.

Making it fully explicit, FSARD employs the following generative assump-
tions:

al,k ∼ Exponential(λk) ∀k ∈ [K], l ∈ [L] (3.7)

βk,j = (α−1)·(γ+ a>k sj) ∀k ∈ [K], j ∈ [N]

τk,j ∼ Gamma(α, βk,j)

yk,j ∼ N(0, 1/τk,j).

Figure 3.7 depicts the new model parameters involved in FSARD, and
their relationships to Y.

There is much to unpack here. Notice that

• The last two lines of Equations 3.7 are essentially the same generative
assumptions as in ARD.

86

• βk,j is larger whenever A assigns gene sets containing feature j to
factor k. This translates to weaker regularization on yk,j.

• βk,j depends on a hyperparameter, γ. The meaning of γ becomes
clear when a>k sj = 0. In that case, βk,j=(α−1)·γ, and the variance
for yk,j implied by the generative process is

βk,j

α−1 = γ.

In other words, γ represents the implicit variance for yk,j when no
assignments are made. Small γ encourages FSARD to assign more
gene sets to factors.

• FSARD assumes the entries of A are exponentially distributed. Dur-
ing inference, this has the effect of L1-regularizing the entries of A.
The exponential distribution has mean λk, a hyperparameter. We
describe a technique for setting λk later on.

Throughout this description of FSARD, we have explained it as though
there were a single assignment matrix A and gene set matrix S. In real-
ity PathMatFac employs view-specific FSARD matrices: Av1 ,Av2 , . . . and
Sv1 ,Sv2 , This gives the model flexibility to use view-specific gene sets
that are appropriate for the omics assay. For example, our analyses use
gene sets based on genome location to interpret factors for copy number
alteration features; and cancer hallmark gene sets to interpret factors for
RNA-seq features. Figure 3.8 depicts PathMatFac’s model parameters in
their full complexity, including FSARD.

Inference procedure

PathMatFac has many parameters. We fit them to a multiomic dataset in
multiple stages. The following coarse-grained steps summarize the fitting
procedure:

87

Figure 3.8: Full diagram of the PathMatFac data and model parameters.
For Feature Set ARD (FSARD), each view vmay have its own gene sets Sv
and assignments Av.

88

1. Fit the column shift and scale parameters, µ and σ.

2. If the user provides batch labels, then estimate the batch parameters
θ and δ.

3. Fit the matrices X and Y via AdaGrad, under a simple quadratic
regularization.

4. Adjust the matrices X and Y, with ARD regularization on Y.

5. Interpret the linear factors, Y, by fitting the FSARD assignment ma-
trices A1, . . . ,A|V |.

These steps amount to (one loop of) block-coordinate ascent on the model’s
posterior density. In the future it may be interesting to consider multiple
loops; this could allow information-sharing between the linear factors and
batch parameters, for instance. However, we do not explore that in this
chapter. The remainder of this section describes the fitting steps in more
detail.

Fitting column parameters. The goal is for each µj to be an intercept term
encoding a “central” value for column j. We initialize each µj with the
sample mean of column j. However, the sample mean isn’t quite the correct
value for all data types (e.g., ordinal data); so we refine the estimate via
AdaGrad. In practice this converges in very few steps.

We set the column scales σ as described in Section 3.2. That is, we use
the sample standard deviation for Gaussian features, and a fixed value
of 1 for others. The fitting procedure will hold µ and σ fixed during the
subsequent steps.

Fitting batch parameters. We devise an Expectation-Maximization (EM)
procedure for θ and δ, holding µ and σ fixed. It employs the probabilistic
assumptions listed in Equations 3.1. For each batch of Gaussian data b,
the procedure initializes θb and δ2

b at their least-squares estimates, θ̃b and

89

δ̃2
b. Then the procedure applies the following updates tomb, s2

b, β̂b, α̂b,
θb, δ2

b until convergence:

mb ← Ej〈θb,j〉

s2
b ← Varj〈θb,j〉

α̂b ← 2 +
Ej〈δ2

b,j〉2

Varj〈δ2
b,j〉

β̂b ← (α̂b − 1)·Ej〈δ2
b,j〉

θb,j ←
|b|·s2

b·θ̃b,j + σ
2
j ·δ2
b,j·mb

|b|·s2
b + σ

2
j ·δ2
b,j

δ2
b,j ←

βb +
1
2
∑
i∈b

(di,j−µj−θb,j−Ciwj)
2

σ2
j

αb +
1
2 |b|− 1

,

where Ej〈· · · 〉 and Varj〈· · · 〉 represent sample means and variances over
index j, respectively.

Note that the updates formb, s2
b, α̂b, β̂b are Method of Moments (MoM)

estimates, so this isn’t strictly an EM procedure. Meanwhile, θb and δ2
b

are updated to their posterior means. Experiments with simulated data
confirm that this yields better estimates than naïve least squares estimates
in many cases; see Section 3.3 for details.

Fitting the matrices X and Y: stage 1. We fit X and Y in two stages. The
first stage imposes a simple L2 regularizer on the factors and fits them via
AdaGrad.

The weight of the L2 regularizer is set in a simple, empirical fashion
based on the variance in the dataset. Suppose di,j is a Gaussian entry in
the dataset. By assumption,

di,j = x
>
i yj·σj + µj + εi,j

90

⇒ di,j − εi,j = x
>
i yj·σj + µj,

where we have ignored batch effects. It follows that

Var[di,j − εi,j] = σ2
j ·
∑
k

Var[xk,i]·Var[yk,j],

where σ and µ are regarded as constants. Assume Var[xk,i]=1 (as in Equa-
tion 3.6) and that Var[yk,j]=ξ

2, ∀k, j. Then we have

Var[di,j] + Var[εi,j] = σ2
j ·K·ξ2

⇒ ξ2 =
Var[di,j] + Var[εi,j]

σ2
j ·K

,

which implies a regularizer weight of 1/ξ2 = σ2
j ·K/Vari〈di,j〉 for yj. We

derived this weight under Gaussian assumptions, but empirically we
observe it also works well for Bernoulli and ordinal data. That is, it prevents
overfitting during this stage of training.

We fitX and Y via AdaGrad with a simple adaptive rule for the learning
rate, η. The optimizer begins with η=1. Then, if the loss increases for some
number of steps, we update η← η/2. This proceeds until we either reach
a maximum number of steps or we meet a tolerance threshold for the
loss decrease. The rule aims to (i) quickly find a basin in the loss and (ii)
“slow down” to the extent necessary to approach a minimum. AdaGrad
provides an additional measure of adaptivity to poorly-conditioned min-
ima. Empirically we observe that the rule robustly minimizes loss across
a variety of datasets and configurations for PathMatFac.

Matrix factorization is famously nonconvex; under L2 regularization
it has infinitely many solutions that are equally valid. We take some
measures to address non-uniqueness at this point in the fitting process.
The L2 regularization at this stage ensures uniqueness of the norms of X
and Y. Furthermore, we apply whitening to the factorization, which forces

91

each row of X to have unit variance.
However, at this point we still only have uniqueness up to an orthogonal

transformation. This poses an opportunity: can we pick an advantageous
transformation from the infinite possibilities?

There are several commonly-used rules for applying orthogonal trans-
formations in linear factor analysis. These include the varimax and quarti-
max transformations, among others (Abdi, 2003). We choose a transfor-
mation consistent with principal component analysis, defined as follows.
Let Y = UΣVT be the singular value decomposition (SVD) of Y. Then we
transform X and Y by U:

X← XU Y ← U>Y

For standardized Gaussian data, this is equivalent to using the (truncated)
SVD of the dataset. More generally, this endows the factors with properties
similar to PCA: it greedily aligns the factors with the directions of greatest
variance in RN. This is desirable—we would rather have a small number
of informative factors than a long tail of weakly informative ones. This is
especially true since ARD regularization will prune away uninformative
factors later on.

Fitting the matrices X and Y: stage 2. The next stage re-fits X and Y, this
time with marginalized ARD regularization on Y and L2 regularization on
X. This amounts to MAP estimation of the factors, given an ARD prior on
Y and a N(0, I) prior on X. The non-convex ARD regularizer has a steep
gradient at small values and a gentle gradient at large ones. This tends to
drive small values to zero, leaving a sparse set of large values. The adaptive
AdaGrad rule described above is particularly useful for minimizing this
loss, since the marginalized ARD produces large gradients. It employs
similar termination conditions as in the previous stage. In practice, the
optimizer can stop quite early and still yield a good factorization; see

92

Section 3.3 for a demonstration.

Interpreting the factors via FSARD. At this point we have fit the linear
factors Y. Now our task is to assign gene sets to the factors, yielding
biological interpretations for them. In other words, we need to fit the
matrix of assignments A.

For clarity of exposition we will describe the procedure as though there
were a singleAmatrix and Smatrix. Recall, however, that FSARD employs
view-specific S and A matrices. Accordingly, the following algorithm is
applied to each view of Y with its corresponding Sv and Av matrices.

We fit A in a MAP fashion, holding Y fixed. The probabilistic assump-
tions in Equations 3.7 yield the following loss function (i.e., negative
log-density) for A:

LFSARD(A) =
∑
k,j

[
α log(β·(γ+ a>k sj)) (3.8)

−(α+
1
2) log(β·(γ+ a>k sj) +

y2
k,j

2)
]

+
∑
k

1
λk
·‖ak‖1 (3.9)

s.t. A > 0.

The first summation (3.8) results from the density of the marginalized
ARD prior (i.e., scaled Student’s t-distribution). Each term encourages
a>k sj to take larger values as y2

k,j increases, attaining a minimum loss when

a>k sj = max
(

0, α
β
·y2
k,j − γ

)
.

As a consequence, this loss pushes a>k sj toward zero whenever

y2
k,j < γ·

β

α
.

93

The second summation (3.9) and nonnegativity constraint come from
the exponential prior for A. This encourages sparsity in A and enforces
its intended semantics: large al,k indicates high confidence that gene set l
matches factor k.

Notice that each column ak (and hence each row of Y) has its own
regularizer weight, 1/λk. We use the variance of the entries of Y to set
each λk in a principled and inexpensive fashion.

Var[yk,j | ak, sj] =
βk,j

α0 − 1
= γ+ a>k sj.

By the law of total variance we have

Var[yk,j] = E [Var[yk,j|ak, sj]] + Var [E[yk,j|ak, sj]]

= E
[
γ+ a>k sj

]
+ 0

= γ+ L·E[al,k]·E[sl,j]

= γ+ L·λk·E[sj].

From these observations we derive the following rule for setting λk:

λk ← max
(
ε, Vark,j〈yk,j〉− γ

L·El,j〈sl,j〉

)
(3.10)

for some small ε > 0. This rule has some intuitive properties. The L1

regularizer weight 1/λk increases as the sample variance of Y decreases.
It also increases with the number of gene sets (L) and the density of the
gene set matrix, S.

At this point we have the loss function (Equation 3.8) and regularizer
weights 1/λk∀k. We minimize this constrained, L1-regularized loss via
an Iterative Shrinkage and Thresholding Algorithm (ISTA) (Beck and
Teboulle, 2009). ISTA is a simple and effective procedure for minimiz-

94

ing L1-regularized losses. It wraps a gradient-based optimizer with an
additional rule that (i) adjusts parameters toward zero, consistent with
the regularization and then (ii) sets them to zero whenever they would
otherwise cross the origin.

We choose ISTA over alternatives like coordinate descent for its simplic-
ity, especially for GPU acceleration. We modify ISTA to (i) wrap AdaGrad
rather than gradient descent and (ii) project the update into the feasible
region (i.e., nonnegative values). It uses similar termination conditions as
before. In practice ISTA yields useful parameter estimates in a very short
time—the time expense is dwarfed by that of fitting X and Y.

PathMatFac’s fitting procedure terminates once A has converged. On
the other hand it is possible to continue alternating between fitting A and
Y, in the fashion of Expectation-Maximization or block-coordinate ascent.
This allows the gene sets to inform the linear factors, rather than merely
interpret them. However, we see in practice that this severely distorts the
factors and results in a poor fit to data. We recommend using gene sets
only to interpret Y, rather than to bias the inference.

Notes about software implementation

PathMatFac is written in the Julia programming language and distributed
as a package on GitHub:

https://github.com/dpmerrell/PathwayMultiomics.jl
It makes heavy use of Julia’s automatic differentiation packages, namely
ChainRules.jl, Zygote.jl, and Flux.jl (White et al., 2023; Innes, 2018; Innes
et al., 2018). PathMatFac also enjoys GPU acceleration thanks to the
CUDA.jl package (Besard et al., 2018).

Despite the merits of probabilistic programming described in Chapter
2, we chose not to use it for PathMatFac since (i) prominent probabilistic
programming languages had limited support for automatic differentiation
and (ii) we wanted the freedom to consider model choices not necessarily

https://github.com/dpmerrell/PathwayMultiomics.jl

95

grounded in probability—e.g., squared hinge loss. We considered several
model concepts prior to the one described in this chapter; it wasn’t clear
whether probabilistic programming would be the right tool for this job.

We built some additional software as a byproduct, in the course of im-
plementing PathMatFac. MatFac.jl is a general-purpose, GPU-accelerated
matrix factorization package written in Julia:

https://github.com/dpmerrell/MatFac.jl
To a large extent, PathMatFac is simply a wrapper around MatFac.jl.

We also built an automated Snakemake workflow to download, pre-
process, and tabulate omics data from TCGA; we distribute the workflow
on GitHub:

https://github.com/dpmerrell/tcga-pipeline
and provide the processed data on Zenodo (Merrell, 2022).

3.3 Evaluation

We test PathMatFac’s capabilities in a suite of experiments on (i) sim-
ulated and (ii) real data. Simulations show that PathMatFac reliably
estimates its parameters, and that FSARD assigns gene sets to linear fac-
tors with high precision. Runs on real multiomic data from TCGA show
that PathMatFac and FSARD yield informative factors with biologically
plausible interpretations.

Simulations

Some properties of PathMatFac are best demonstrated on simulated data,
where we have access to ground truth. In each of the following experi-
ments, we generate data consistent with the modeling assumptions out-
lined in Section 3.2. That is, we (i) generate true parameters, XTrue, YTrue,
µTrue, σTrue, θTrue, and δTrue; (ii) use them to simulate a dataset resembling
real multiomic data, and (iii) fit PathMatFac to the simulated data. Then

https://github.com/dpmerrell/MatFac.jl
https://github.com/dpmerrell/tcga-pipeline

96

we compare its estimated parameters XFitted, YFitted, µFitted, σFitted, θFitted, and
δFitted against the true parameters, and score their agreement.

Measuring performance. Measuring the performance of matrix factor-
ization on simulated data requires a careful choice of scores. We take
a moment to define the scores used in our simulation study. At a mini-
mum, PathMatFac should correctly fit the factors X and Y. However, the
non-uniqueness of matrix factorization creates a challenge for scoring fit-
ted factors—naïve approaches may unfairly penalize a valid factorization.
What really matters is that the fitted factors span the same space as the
true factors and assign magnitudes (i.e., singular values) to them in a
consistent way.

We define a new score to capture this notion of correctness, called span
similarity:

spansim(YTrue, YFitted) =
‖YTrueY

>
Fitted‖2

F∑
k σ

2
True,kσ

2
Fitted,k

(3.11)

where ‖ · ‖F is the Frobenius norm and σTrue,k is the kth singular value of
YTrue (with the analogous definition for σFitted,k). In cases where YTrue and
YFitted have different numbers of rows, the denominator sums over the top
Kmin of them—whichever number is fewer.

Span-similarity measures the agreement between the rowspaces of
YTrue and YFitted. Its rationale becomes more apparent when we substitute
the SVDs of both YTrue and YFitted into the numerator:

‖YTrueY
>
Fitted‖2

F = ‖UTΣTV>T VFΣFU>F ‖2
F

= ‖ΣTV>T VFΣF‖2
F

=
∑
i,j

σ2
True,i · σ2

Fitted,j · (v>T ,ivF,i)
2.

I.e., the numerator is maximized when YFitted and YTrue have the same

97

row space and assign magnitudes to their basis vectors in a consistent
way. The denominator represents the maximal value of the numerator,
attained when the row spaces agree exactly. So span similarity takes
values between 0 (the row spaces are fully orthogonal) and 1 (the row
spaces fully agree). Span-similarity can be regarded as a generalization
of (squared) cosine-similarity. Whenever we compute span similarity we
also compute a simple empirical p-value for it, in order to check whether
the score is better than random. We sample 10,000 times from a simple null
distribution by randomly permuting each row of YFitted. We observe that
in almost all cases, none of the null samples attain a higher span similarity
than YFitted, implying p < 10−4. We will report whenever this is not true.

Span-similarity is also an appropriate score for the embedding matrix,
X. We want to score agreement between the true embedding XTrue and
fitted embedding XFitted, in a way that ignores orthogonal transformations.
This is exactly the rationale for span-similarity, so we use it to score X in
our simulations.

Furthermore, we need to measure PathMatFac’s ability to correctly
interpret factors via gene sets. The data simulation process assigns a small
number of gene sets to each linear factor, informing the factors’ nonzero
entries. Ideally, PathMatFac and FSARD would recover these gene sets
with high fidelity. We adopt the following strategy to score this:

1. Compute the squared cosine similarity between every pair (yTrue,k,yFitted,k);
that is, every row of YTrue with every row of YFitted.

2. Solve the linear assignment from rows of YTrue to rows of YFitted, max-
imizing the sum of squared cosine similarities (computed in step
1). This naïvely matches fitted linear factors to true linear factors.
When there are different numbers of true and fitted factors, the lin-
ear assignment will leave “left-over” factors which are ignored in
the subsequent steps.

98

3. The match between true and fitted factors implies a match between
the columns of true and fitted FSARD matrices, ATrue and AFitted.
Given that matching, we compute the AUCPR (area under the precision-
recall curve—or, more accurately, the average precision) for each pair
of columns aTrue,k and aFitted,k. This scores FSARD’s ability to cor-
rectly recover ATrue.

We take care to ensure this strategy does not artificially inflate scores.
The criterion used to match rows of YTrue and YFitted (i.e., cosine similarity)
differs from the score used to measure agreement betweenATrue andAFitted

(AUCPR). Furthermore, recall that each view of data has its own ATrue and
AFitted matrices. We use the same linear assignment to match ATrue and
AFitted for every view of data. Then we report the AUCPR, averaged across
views.

The non-uniqueness of matrix factorization and the non-convexity of
ARD suggest that recovering the assignments, ATrue, could be a futile in-
ference task. Perhaps surprisingly, the simulation results will demonstrate
otherwise.

Other model parameters can be evaluated in simpler ways. We focus
particularly on the batch effect parameters, since their inference procedure
is relatively complicated. Plots of θ and δ allow us to judge whether the EM
procedure fits them correctly. We also score the fit of θ via its coefficient
of determination R2 with the true (simulated) values. On the other hand,
column shifts and scales (µ and σ) are estimated in straightforward ways
and tend to fit well in practice.

Sensitivity to method hyperparameters. PathMatFac has free hyper-
parameters that need to be specified at training time. The most notable
hyperparameters are K, the number of latent factors; and the number of
training iterations. Simulations provide some insight into PathMatFac’s
sensitivity to these hyperparameters.

99

Figure 3.9: Sensitivity of PathMatFac parameter recovery to misspecified
K, on simulated data. Each grid shows how a score varies with true K and
modeled K, indicated by shade. “Span sim.”: span similarity. Annotations
report the mean value from 5 simulations, with the standard deviation in
parentheses. The fidelity of fitted parameters noticeably degrades when K
is misspecified.

Simulations demonstrate that PathMatFac has some sensitivity to the
choice of K. Our first set of simulations varies (i) the true (simulated)
value of K and (ii) the modeled value of K; fits the models, and then scores
the resulting parameters. Other attributes of the problem are held fixed:
the problems have sizeM=1,463 and N=4,108 with roughly equal num-
bers of features emulating somatic mutation, methylation, RNA-seq, and
CNA modalities. The data simulator operates by mimicking a given real
dataset—hence theM and N that are not clean, round numbers. We use
this particular problem configuration because it resembles a real subset of
the TCGA data that will be employed later in the evaluations.

Figure 3.9 shows the results. Whenever the modeled K does not match
the trueK, we see some degradation in the faithfulness of fitted parameters.

100

Figure 3.10: Robustness of PathMatFac’s parameter recovery to early
stopping. Each line reports the mean from 5 simulations; error bars show
the standard deviation. Notice the nonlinear scale of the horizontal axis.

For Y, this is especially true when the modeled K is smaller than the true K.
The degradation is roughly symmetric forX andA; that is, the degradation
is roughly equal when K is too large or too small.

Despite this degradation, the scores are convincingly better than ran-
dom in all cases. We see p<10−4 for the X and Y span similarities in each
of these simulations. For A, the AUCPR of a trivial predictor (i.e., the
baserate) is 0.028 for these problems, far smaller than any scores attained
by PathMatFac.

We conclude that, while the choice of K clearly matters, the output of
PathMatFac may be useful even with incorrect K. Furthermore, the span
similarities for Y suggest that it may be prudent to err on the side of too
many factors in an initial run of PathMatFac.

On the other hand, simulations also show that PathMatFac’s parameter
recovery is remarkably robust to the number of training iterations. We run
a suite of simulations that vary the number of training iterations, holding

101

Figure 3.11: Plots of PathMatFac’s training losses from five simulations.
Recall that X and Y are fit in two stages: a first stage with L2 regularization
and another with ARD regularization. The top and bottom plots show
losses from those stages, respectively. The step-like decreases during stage
2 result from the adaptive learning rate described in Section 3.2. Losses
during stage 2 are larger since the ARD regularizer loss takes higher
numeric values.

other problem attributes fixed; withM=1,463 andN=4,108 as before, and
K=25 (both true and modeled).

Figure 3.10 shows the results for these runs. Parameter recovery scores
do increase with the number of training iterations, but tend to plateau
quickly. The scores degrade strongly only with an unrealistically small
number of training iterations. We say “unrealistic” because, on these
problems, the loss is still rapidly decreasing at 250 iterations. It would
have been unreasonable to expect a good fit any earlier than that. Figure
3.11 demonstrates this with plots of training loss from five simulations.

This experiment provides some useful takeaways. PathMatFac does
not need to meet a tolerance criterion (i.e., absolute or relative decrease
in loss) to achieve a good fit. Instead, the number of iterations can be

102

chosen to satisfy some other consideration, e.g., a time budget, without fear
of a terrible fit. We employ a default of 1,000 training iterations for the
experiments in this chapter, unless specified otherwise. We recommend
increasing the number of iterations for larger datasets.

At this point it’s worth observing that the span similarities for X are
consistently higher than those for Y. We hypothesize that this is caused by
Y’s ARD regularization, in at least two ways. First, since Y is regularized
to be sparse, its rows will be less capable of spanning arbitrary subspaces
of RN. Second, it’s also possible that the nonconvexity of ARD tends to trap
Y at local optima with lower span similarities. We also observe that the
variances for Y’s span similarities are higher than those ofX. This, too, could
be explained by the nonconvexity of ARD; different local optima could
yield distinct span similarities, resulting in greater variance. However, any
disadvantage posed by nonconvexity is sufficiently innocuous that X is
recovered with high fidelity—PathMatFac embeds the data correctly.

Robustness to missing values. PathMatFac is highly robust to missing
values in the data. Figure 3.12 shows results from simulations with varying
fractions of missing values. The data simulator imposes missing values
in each view by selecting entire batches of samples and setting them to
NaN. This resembles patterns of missing values in real data more faithfully
than, for example, selecting individual entries uniformly at random. It
also creates a more challenging inference task for PathMatFac, since it
causes entire modalities of data to go missing for each sample.

The recovery of X, Y, and A shows very little degradation between
(i) scenarios with no missing values and (ii) scenarios with half of the
entries missing. The simulations are limited to fractions up to 0.5 only for
technical reasons related to the data simulator. Namely, the current scheme
for imposing missing values tends to produce entire rows of missing values
when the fraction exceeds 0.5. A more sophisticated scheme would allow
us to explore higher fractions.

103

Figure 3.12: PathMatFac’s parameter recovery scores on simulated data,
as the fraction of missing values in the dataset increases.

Dependence on problem size. We can also use simulations to explore
how PathMatFac’s performance varies with (i) the number of samples
and (ii) the number of features. Figure 3.13 shows results from a suite
of simulated problems of different sizes. In these simulations, we hold
K=25 fixed, both true and modeled. Each of the scores degrade noticeably
when M becomes very small. Recovery of X improves as N increases.
Recovery of A appears to improve as bothM andN increase. Beyond that,
patterns become less clear. It seems plausible that the recovery scores for
X and Y tend to plateau when M and N become sufficiently large. With
obvious caveats about the validity of simulations, it seems adviseable to
use PathMatFac on datasets with M in the low hundreds. For smaller
problems, PathMatFac should be run with smallerK and its output should
be considered less reliable.

104

Figure 3.13: Sensitivity of PathMatFac to problem size. Each grid shows
a parameter recovery score as in 3.9. However, in this case the horizontal
axis scans across numbers of features and the vertical axis scans across
numbers of samples.

N=2, 060 N=4, 124
M=1, 463 750s 1,623s

3.8GB 3.3GB
M=528 291s 534s

2.34GB 2.7GB

Table 3.3: Computational expense of PathMatFac for varying problem
sizes. We provide total execution time and peak memory usage. In each
test, PathMatFac is configured with K=25 and 1,000 training iterations.
Each test used a single Intel i7 3.00 GHZ CPU.

105

Computational expense. PathMatFac entails moderate computational
expense when run on CPU. Table 3.3 shows total training time and peak
memory usage for several problem sizes. PathMatFac uses K=25 factors
and 1,000 training iterations in each of these tests. The tests use a single
CPU with no multithreading. A factorization problem with ∼4,000 multi-
omic features and ∼1,400 samples requires ∼27 minutes of execution time.
Holding the number of training iterations fixed, time expense scales with
the size of the problemM·N to a reasonable approximation. Peak memory
usage is more puzzling. The top row of the table shows that it is not always
monotonic with problem size. This likely results from internal details of
Julia’s memory management.

This computational expense is low enough to be practical. However,
it’s possible that additional code optimizations and multithreading would
yield improved time and memory costs. Code profiling shows that batch
parameters and ordinal loss functions create much of the time expense.

Batch effect estimation. Simulations demonstrate that the EM procedure
outlined in Section 3.2 is quite effective at estimating shift (θ) and scale
(δ) batch effects consistent with the model. Figure 3.14 shows results from
a representative simulation, configured with M and N as above. Batch
effects were only introduced and modeled for (simulated) methylation
and RNA-seq features. Each scatter plot compares true parameter values
(horizontal axis) against estimated parameter values (vertical axis).

Estimates for θ tend to lie near the diagonal, exhibiting a strong cor-
relation with the true values. Estimates for δ tend to be ordered correctly,
though they exhibit a noticeable bias toward 1. The EM procedure visi-
bly squeezes estimates within a batch toward each other, producing the
horizontal banding patterns. This is especially clear for the δ estimates.
Exceptions exist, though. In Figure 3.14, the EM procedure fails to reduce
the variance of one batch in the RNA-seq data (shaded pink).

We quantify PathMatFac’s performance at estimating θ via the coeffi-

106

Figure 3.14: Comparison of true and estimated batch parameters from
a representative simulation. Left column shows estimates for θ; right
column shows the logarithm of the estimates for δ. Colors indicate batch
membership (with some colors repeated due to a limited color palette).
Estimates would ideally lay on the diagonal.

107

Figure 3.15: Comparison of batch shift (θ) estimation performance on
simulated data, between the expectation-maximization (EM) procedure
and simple least-squares estimates (LSQ). Performance is measured by
coefficient of determination R2 between the estimated (θFitted) and sim-
ulated (θTrue) values. Simulations differ by the amount of within-batch
standard deviation and between-batch standard deviation used to gener-
ate θTrue, corresponding to the rows and columns in this figure. Each
boxplot summarizes five simulations. “b.b.std”: between-batch standard
deviation; “w.b.std”: within-batch standard deviation.

108

cient of determination (R2) between simulated and fitted values. Figure
3.15 shows the results from a grid of simulations. The simulations differ
in the amount of within-batch standard deviation and between-batch stan-
dard deviation used when sampling θTrue. We use simple least-squares
estimates as a baseline of comparison. The EM procedure yields a modest
though reliable improvement over least-squares in these simulations. The
improvement is most noticeable when the within-batch and between-batch
standard deviations are both small.

Quantifying embedding quality via prediction tasks

Simulations serve as a helpful sanity check. However, the more interesting
question is whether PathMatFac does anything useful with real datasets.

PathMatFac aims to embed multiomic data in an informative fash-
ion. We want to measure PathMatFac’s performance as an embedding
technique on real data; however, directly quantifying the performance
of a dimension reduction can be challenging. Instead, we score Path-
MatFac by applying it to supervised prediction tasks. The idea is to use
PathMatFac as a dimension reduction technique in conjunction with a
strong supervised learner (e.g., a random forest), to predict labels from
the multiomic features. If the labels are grounded in biology, then a better
dimension reduction (i.e., embedding of the data) should yield better
predictive performance. This is a somewhat indirect evaluation, but it
allows quantitative comparisons between PathMatFac and other omics
embedding techniques.

We emphasize that the goal of this evaluation is not to find the best
supervised method for multiomic datasets. Many supervised models
already exist for multiomic data, and PathMatFac does not aim to compete
with them. Instead, the goal is to evaluate the quality of embeddings. An
informative embedding can be used for a variety purposes—clustering,
statistical comparisons, or other analyses—in addition to predictions.

109

M
ul

ti
om

ic
em

be
dd

in
gs

(U
M

A
P

vi
su

al
iz

at
io

n)

Fi
gu

re
3.

16
:C

om
pa

ri
so

n
of

m
ul

tio
m

ic
em

be
dd

in
gs

pr
od

uc
ed

by
di

ffe
re

nt
te

ch
ni

qu
es

on
th

e
{H

N
SC

,
C

ES
C

,E
SC

A
,S

TA
D

}s
ub

se
to

fT
C

G
A

.O
nl

y
Pa

th
M
at
Fa

c,
M

O
FA

+
,a

nd
th

e
PC

A
ba

se
lin

e
ca

n
be

re
ad

ily
ap

pl
ie

d
to

m
ul

tio
m

ic
da

ta
.T

he
em

be
dd

in
gs

ar
e

25
-d

im
en

si
on

al
;t

hi
sfi

gu
re

us
es

U
M

A
P

to
vi

su
al

iz
e

th
em

in
2D

.E
ac

h
co

lu
m

n
co

lo
rs

th
e

sc
at

te
rp

lo
tw

ith
la

be
ls

fr
om

a
di

ffe
re

nt
pr

ed
ic

tio
n

ta
sk

.T
he

ke
y

ta
ke

aw
ay

:
in

so
m

e
ca

se
st

he
em

be
dd

in
gs

cl
ea

rly
se

pa
ra

te
th

e
la

be
ls

,b
ut

no
ti

n
ot

he
rs

.

110

Prediction tasks. The prediction tasks use a subset of the full TCGA
dataset shown in Figure 3.1—specifically, tumors belonging to head and
neck (HNSC), cervical (CESC), esophageal (ESCA), and stomach (STAD)
cancers, for a total ofM=1,463 samples. We are restricted to the {HNSC,
CESC, ESCA, STAD} subset because those samples possess prediction
labels of interest. Samples from TCGA are labeled with a variety of clinical
indications, but many of the samples are missing labels. We identified four
clinical labels that seemed plausibly correlated with omics measurements
from tumor samples: cancer type, survival, pathologic stage, and HPV
infection status. In contrast, labels like age or sex seemed less credible or
interesting as prediction targets. Our evaluations use the {HNSC, CESC,
ESCA, STAD} subset precisely because those samples possess all four of
these labels.

The experiments include scenarios with differing sets of features. These
comprise (i) a full multiomic scenario that uses somatic mutation, methy-
lation, RNA-seq, and CNA features; (ii) a partial multiomic scenario that
keeps RNA-seq and CNA features; and (iii) a scenario that uses only RNA-
seq features. Only a small fraction of the available features are used in
each scenario. Features are selected by (i) discarding columns without
a sufficient number of observations; (ii) computing the variances of the
remaining columns; and (iii) for each omic assay, selecting the top-p%
highest-variance features. The value of p varies between scenarios, such
that the total number of features remains approximately the same: 5% for
the full multiomic scenario; 10% for the RNA-seq/CNA scenario; and 20%
for the RNA-seq scenario, for a total of ' 4,000 features in each scenario.

Different labels call for different scores. We treat HPV status prediction
as a binary classification task, and score it with AUCROC. Cancer type
prediction is multi-class classification with a reasonably balanced class
distribution, so classification accuracy is an informative metric. Pathologic
stage is treated as a regression task; stages (i) through (iv) are encoded

111

as integers, and performance is measured by mean squared error (MSE).
Survival prediction uses concordance as a performance metric. Concor-
dance is a ranking metric closely related to AUCROC, capable of handling
censored observations in survival data (Terry M. Therneau and Patricia
M. Grambsch, 2000). As in AUCROC, trivial predictors have concordance
0.5 and perfect predictors attain concordance 1.0.

All prediction tasks use five-fold cross-validation to estimate predictive
performance. For each prediction task we prepare five splits of the dataset.
Splits are stratified by the label, and grouped by batches in the RNA-seq
data.

All tasks use random forests with 500 trees for prediction. Classification
and regression tasks use scikit-learn’s random forest implementations
(Pedregosa et al., 2011). Survival tasks rely on the R package random-
ForestSRC (Ishwaran and Kogalur, 2007).

Baselines of comparison. Many techniques already exist to summarize
or reduce the dimension of omics data. We compare PathMatFac’s di-
mension reduction performance against several baseline methods: PCA,
MOFA+, PLIER, PARADIGM, and GSVA. We also compare against the
original raw omics features, filtered by variance but with no other dimen-
sion reduction.

Principal components analysis (PCA) (Hotelling, 1933). PCA is widely
used for summarizing and visualizing omics data. For supervised tasks
on omics data, PCA is known to be a strong baseline dimension reduction
despite its simplicity (Makrodimitris et al., 2023). We apply PCA to mul-
tiomic data by (i) computing principal components separately for each
modality and (ii) concatenating the resulting view-specific embeddings.
We let each modality contribute an equal number of dimensions to the
combined embedding. This is not generally optimal, but it is a simple
rule that allows straightforward comparisons to other techniques. That
is, it lets us compare a K-dimensional PCA embedding of multiomic data

112

against a K-dimensional PathMatFac embedding of multiomic data.
Multi-Omic Factor Analysis 2 (MOFA+) (Argelaguet et al., 2020). MOFA+

is the latest in a family of Bayesian matrix factorization methods intended
for multiomic data. MOFA+ uses variational inference and a combination
of priors to infer sparse linear factors for a multiomic dataset. This sparsity
helps make the factors interpetable—each factor has a small number of
nonzero entries which can be visually inspected. It’s important to mention
that the MOFA+ software does not include a method to embed (i.e., trans-
form) new samples of data. For the purposes of our evaluation, we use a
naïve least-squares procedure to project test-set samples on to MOFA+’s
fitted factors. Anything more sophisticated would be beyond the scope
of this project. However, it’s worth noting MOFA+’s performance in this
evaluation is, to some degree, hampered by its lack of a transform function.
Its scores do not necessarily capture the quality of its embeddings.

Pathway Level Information ExtractoR (PLIER) (Mao et al., 2019). PLIER
is a matrix factorization technique intended for Gaussian datasets (espe-
cially log-transformed RNA-seq). It uses curated gene sets to inform and
interpret the factorization. Specifically, PLIER (i) assumes the factors are
themselves generated from linear combinations of gene sets; and (ii) alter-
nates between fitting the factors and updating the gene set combinations
until convergence. PLIER is a primary inspiration for PathMatFac. Path-
MatFac can be regarded as a multiomic improvement of PLIER—though
their probabilistic assumptions do differ in meaningful ways. We only
compare against PLIER on RNA-seq prediction tasks, since PLIER is not
suited for multiomic datasets.

PARADIGM (Vaske et al., 2010a). PARADIGM uses biological path-
ways to construct a factor graph model for multiomic data. Then, for each
sample, it uses this factor graph to produce smoothed estimates of “activity
levels” for pathway entities (e.g., genes, and proteins). The activity levels
can then be used for downstream analyses. TCGA made extensive use of

113

PARADIGM for its analyses of multiomic data. The PARADIGM software
is somewhat difficult to acquire and use; instead, we use the precomputed
outputs provided by Hoadley et al. (2018). Their outputs were computed
from RNA-seq and CNA data. Accordingly, our experiments only compare
against PARADIGM on the partial multiomic RNA-seq/CNA tasks.

Gene Set Variation Analysis (GSVA) (Hänzelmann et al., 2013). GSVA
is a gene set enrichment technique similar to GSEA. However, it differs
from GSEA in that it produces enrichment scores for individual samples
in a dataset, rather than making population-level comparisons. In the
parlance of Section 3.1, GSVA represents the biology-centric methods. Our
experiments only compare against GSVA on the single-omic RNA-seq
tasks, since it’s not intended for multiomic datasets. GSVA employs cancer
hallmark and oncogenic gene sets curated by MSigDB in this evaluation.

Recall that we aim to measure PathMatFac’s ability to produce an
informative embedding of multiomic data. In order to create fair com-
parisons between techniques, in every task we configure each technique
to yield an embedding of equal dimension K=25. This is consistent with
recommended settings for PLIER and MOFA+ (Mao et al., 2019; Arge-
laguet et al., 2020). PARADIGM and GSVA are not designed to produce
embeddings of a given dimension, so we use them in conjunction with
PCA to attain the desired K=25 embedding dimension.

Results from multiomic prediction tasks. Prediction tasks on multi-
omic data confirm that PathMatFac produces informative embeddings.
Figure 3.16 visualizes examples of embeddings produced by PathMat-
Fac, MOFA+, and PCA on multiomic data in these tasks. The K=25-
dimensional embeddings are visualized via UMAP. Colors indicate labels
for the prediction tasks. The most important takeaway from Figure 3.16 is
that, in some cases, the embeddings visibly capture variation related to the
prediction labels. For example, PathMatFac and MOFA+ both produce
embeddings that contain information about cancer type and HPV infec-

114

Full multiomic prediction tasks

Figure 3.17: Predictive performance for different multiomic embedding
techniques, relative to a trivial predictor. Higher is better except in the
case of pathologic stage, which compares mean-squared error (MSE).
Prediction on the raw data outperforms prediction on dimension-reduced
data on most tasks, suggesting that each of these embeddings is lossy.

tion status, visible to the eye. Other cases are less obvious, like survival.
MOFA+ appears to separate pathologic stages in this figure but performs
poorly in the evaluation; this could be a result of its ad-hoc method for
transforming test samples.

Figure 3.17 shows prediction performance in the full multiomic sce-
nario for PathMatFac, MOFA+, and PCA for all four prediction labels. It
also shows prediction performance using the raw, untransformed multi-
omic data. Predictions on the raw data tend to score better than predictions
on the embedded data, suggesting that each of these dimension reductions
is lossy. A possible exception is HPV infection status, where PathMatFac
attains slightly higher average AUCROC with much lower variance.

PathMatFac tends to yield better average scores than the other dimen-
sion reduction techniques, though the magnitude of improvement differs
between tasks. For instance, PathMatFac attains similar scores to the other
methods on survival prediction, but clearly dominates them on cancer

115

type prediction. We also see that the prediction tasks vary in difficulty.
None of the dimension reductions yield strong predictions for survival or
pathologic stage, but all of them predict cancer type and HPV status much
better than random. We mention in passing that the ability to predict can-
cer type and HPV status from multiomic data is not clinically useful, since
reliable (and inexpensive) diagnostics already exist for those indications.
These tasks only serve to create quantitative comparisons of embedding
quality.

An informative embedding suggests that PathMatFac’s linear factors
capture predictive signals in the multiomic data. We can safely conclude
that PathMatFac succeeds at factorizing multiomic data in an informative
way.

PathMatFac’s performance as a multiomic dimension reduction, rel-
ative to other matrix factorizations, suggests that its factors are more
predictive than theirs. Of course, this is subject to caveats about MOFA+
lacking a transform method. In any case, we can confidently claim that
PathMatFac competes strongly among multiomic matrix factorizations.

Results from (RNA-seq, CNA) prediction tasks. Figure 3.18 shows re-
sults from an analogous set of prediction tasks, this time using only RNA-
seq and CNA omics modalities. This allows us to make comparisons
against PARADIGM, a classic technique that only accommodates those
modalities. We see that dimension-reduction via PARADIGM competes
very strongly in all of these tasks, outperforming the other dimension
reductions (though still lagging predictions on raw data).

This comparison against PARADIGM may not be completely fair. Re-
call that we employ a variance-filtering feature selection step prior to
dimension reduction. In contrast, the archived PARADIGM outputs are
generated from all available RNA-seq and CNA features. Hence, the
PARADIGM-based embedding is informed by more features than the
other embeddings.

116

(RNA-seq, CNA) prediction tasks

Figure 3.18: Predictive performance for different embedding techniques
on RNA-seq and CNA multiomic features, analogous to figure 3.17.
PARADIGM is a competitive baseline, though it still lags prediction on
the raw data in most tasks.

RNA-seq prediction tasks

Figure 3.19: Comparison of predictive performance for RNA-seq embed-
ding techniques. “P.M.F. (batch)”: PathMatFac, with batch effect mod-
eling; “P.M.F. (no batch)”: PathMatFac, without batch effect modeling.
Batch effects contain (non-biological) predictive signal, so PathMatFac’s
performance lags other techniques’ when it models them away. However,
the performance gap decreases when PathMatFac does not account for
batch effects.

117

Results from RNA-seq prediction tasks. Prediction tasks on RNA-seq
data tell a more subtle story. Batch effects are an especially important
phenomenon in RNA-seq data. In the TCGA dataset, batches depend
on cancer type, which correlates with the prediction labels. It follows
that batch effects contain artificial predictive signal in this task; when
PathMatFac models them away, then it loses predictive power. Figure 3.19
compares prediction scores between PathMatFac and baseline techniques,
similar to Figure 3.17. PathMatFac’s predictive performance noticeably
lags other techniques when it models away batch effects. However, its
performance is on par with the others’ when, like the rest, it exploits the
predictive signal in batch effect.

Comparisons between the multiomic and RNA-seq scenarios (i.e., Fig-
ures 3.17 and 3.19) are also instructive. The total number of omic features
is approximately the same for the multiomic scenario and the RNA-seq
scenario. However, PathMatFac (with batch effect modeling) attains bet-
ter predictive performance in the multiomic scenario—this is especially
apparent for cancer type and pathologic stage prediction. This suggests
that modalities other than RNA-seq contain important predictive signal
for those labels, and that PathMatFac can exploit that signal better than
other techniques.

GSVA is worth highlighting since it’s the only biology-centric technique
in these experiments. Recall that this evaluation uses GSVA in conjunction
with PCA to (i) compute gene set enrichments and (ii) reduce dimension to
K=25. GSVA attains scores roughly on par with PCA—with the exception
of survival prediction, where it attains a higher average concordance. This
suggests GSVA’s gene set enrichments probably do not expose additional
predictive signal beyond that available in the RNA-seq data.

PathMatFac is an effective dimension reduction for RNA-seq data.
However, it doesn’t necessarily outperform existing RNA-seq factorization
techniques. PathMatFac does stand out when applied to multiomic data,

118

which was its intended purpose.

Exploring multiomic TCGA data with PathMatFac

We illustrate PathMatFac’s utility for exploring multiomic datasets by
applying it to data from TCGA and examining its outputs. PathMatFac
identifies linear factors that explain variance in (i) individual modalities
and (ii) combinations of modalities. Its FSARD mechanism then summa-
rizes the linear factors in terms of curated gene sets, to the extent possible.

Exploring the {HNSC,ESCA,CESC,STAD} subset. We first inspect Path-
MatFac’s outputs for the same multiomic dataset used in the supervised
tasks. The supervised tasks show that PathMatFac learns informative
representations of the data. However, we have yet to see if the model
parameters offer any human-interpretable insights.

A full discussion of the linear factors’ biological plausibility is out
of scope for this chapter—biologists are better-equipped to assess them.
Instead, we highlight some of the factors’ interesting properties and hy-
pothesize about their biological basis.

Figure 3.20 shows the matrix Y, fitted on the {HNSC, CESC, ESCA,
STAD} TCGA samples. PathMatFac employs the same model configura-
tion as before, with K=25 and 1,000 training iterations. The factors clearly
possess structure and exhibit sparsity. Many factors explain variance in
a single omics modality, while others span dimensions from multiple
modalities. For example, factor 1 has notable components belonging to
mutation, methylation, and RNA-seq modalities. The scree plot in figure
3.21 visualizes this another way, by showing the squared norms of linear
factors and decomposing them into modality-specific contributions.

Some linear factors are mostly devoted to variation in CNA features. A
close examination of factors 2, 5, 7, and so on, reveals that their nonzero
entries partition the CNA features. Since copy number alteration tends

119

Figure 3.20: Heatmap of the matrix Y, estimated from the {HNSC, CESC,
ESCA, STAD} TCGA subset. Recall that each row is a linear factor. Rows
are ordered from largest norm (at the bottom) to smallest norm (at the
top). Bear in mind that in matrix factorization, the signs of factors do not
matter.

to simultaneously affect contiguous portions of the genome, we might
expect CNA to be highly correlated between genes neighboring each other
on chromosomes. Later, we will see this confirmed by FSARD’s factor
interpretations.

Figure 3.20 also highlights other details. TP53 is perhaps the most well-
known tumor suppressor gene, with mutations occurring in many cancers
(Olivier et al., 2010). Several of PathMatFac’s linear factors (e.g., factors
1, 5, 6, and 8) possess a TP53 component and show joint variation with
other omics modalities.

Gene expression (i.e., RNA-seq features) for ribosomal proteins ex-
hibits some of the greatest variation in this dataset. However, factor 13

120

Figure 3.21: Scree plot for the same factors shown in Figure 3.20. The plot
shows contributions from different data modalities. Most factors explain
variance in a single modality, though there are notable exceptions.

captures nearly all of that variation and shows that the ribosomal protein
gene expression varies together. Since a complete ribosome is composed of
these proteins, we would expect their abundances to be strongly correlated.
Gene expression variation for these genes may be of biological interest, or
it may be regarded as a nuisance to ignore. In either case, the phenomenon
is almost completely captured in a single factor.

Figure 3.22 visualizes six of the linear factors in greater detail and
highlights other interesting properties. Factor 4 is unique in that it focuses
almost entirely on somatic mutation features. Its mutation components
all have the same sign, suggesting that it encodes widespread mutational
burden in the biological samples. Factor 4’s largest “spike” is on TTN,
the largest known protein-coding gene in the human genome (Chau-
veau et al., 2014). This would be consistent with a “mutational burden”
interpretation—we expect longer genes to be mutated more often, by ran-
dom chance. Figure 3.23 shows X, the embedding matrix. Inspecting its

121

Figure 3.22: Line plots of some linear factors from the TCGA subset.

122

Figure 3.23: Heatmap of the embedding, X, estimated from the TCGA
subset.

4th row reveals that most samples have very little contribution from factor
4, with notable exceptions in the STAD samples. This is consistent with
other observations that stomach adenocarcinomas exhibit relatively high
mutation frequencies in the TCGA dataset (Lawrence et al., 2013).

Figure 3.24 shows the fitted column shift and scale parameters, µ and σ.
For the most part, these do not have interesting biological interpretations.
However, column shifts for Bernoulli features do reveal the columns with
higher rates of positive outcomes. I.e., peaks in µ for somatic mutation
data show the genes that are most frequently mutated in the dataset. In
Figure 3.24, these are TP53 and TTN.

Figure 3.25 shows the estimated batch shift and scale parameters. Recall
that batch parameters are only estimated for Gaussian features, in this case
the methylation and RNA-seq features. The batch shift parameters (θ)
tend to take values grouped near zero, though in some batches of RNA-seq
they vary much more. Most of the batch scale parameters (δ) are grouped

123

Figure 3.24: Visualization of column parameters µ and σ, estimated from
the TCGA subset.

near one. However, in some batches of methylation data the estimated δs
take much larger values. Likewise, in a small number of RNA-seq batches
the estimated δs are quite distant from one. We also see the δ estimates
group together much more tightly within batches for the RNA-seq data,
than for the methylation data.

Finally, we inspect FSARD’s interpretations of the linear factors in Table
3.4. The PathMatFac software outputs a table of interpretations; each row
of the table indicates the assignment of a gene set to a factor. Table 3.4
shows an abbreviated summary of that output, for this problem instance.

The quality of FSARD’s interpretations depends in part on the choice of
gene sets. It’s instructive to look at the first two factors from this example.
For factor 1, FSARD assigns (i) 19 gene sets to the methylation view and
(ii) 125 gene sets to the RNA-seq view. The weights of these assignments
(shown in the right-most column) decrease in a gradual fashion, without

124

Factor View Gene set Coeff.
1 Methylation STK33_DN 0.67

STK33_NOMO_DN 0.59
JNK_DN.V1_UP 0.47
PRC2_EED_DN.V1_DN 0.45
HALLMARK_PI3K_AKT_MTOR_SIGNALING 0.43
(14 more rows)

RNA-seq HALLMARK_MYC_TARGETS_V1 1.83
HALLMARK_MITOTIC_SPINDLE 1.77
HALLMARK_APICAL_JUNCTION 1.68
HALLMARK_MTORC1_SIGNALING 1.57
CAMP_UP.V1_DN 1.51
HALLMARK_P53_PATHWAY 1.46
(119 more rows)

2 CNA chr3q26 2.61
chr3q25 2.57
chr3q27 2.55
chr3q29 2.53
chr3q23 2.27
chr3q24 2.08
chr3q28 2.02

3 Methylation HALLMARK_E2F_TARGETS 1.43
ERBB2_UP.V1_DN 1.40
HALLMARK_UNFOLDED_PROTEIN_RESPONSE 1.26
HALLMARK_GLYCOLYSIS 1.19
RB_P107_DN.V1_DN 1.14
(34 more rows)

...
8 RNA-seq HALLMARK_INTERFERON_GAMMA_RESPONSE 1.97

HALLMARK_INTERFERON_ALPHA_RESPONSE 1.71
PKCA_DN.V1_UP 0.77
PTEN_DN.V1_DN 0.44
BCAT.100_UP.V1_UP 0.11
(2 more rows)

...
25 RNA-seq GCNP_SHH_UP_EARLY.V1_UP 0.96

HALLMARK_DNA_REPAIR 0.86
HALLMARK_PANCREAS_BETA_CELLS 0.60
HALLMARK_MYC_TARGETS_V1 0.58
NRL_DN.V1_DN 0.49
(5 more rows)

Table 3.4: Factor interpretations by FSARD, for the TCGA subset. Each
row represents a nonzero entry in an FSARD assignment matrix, A. Rows
are sorted by factor, view, and regression coefficient (i.e., the entry in A).
Factor 1 captures variance in the methylation and RNA-seq features, but
the curated gene sets summarize it poorly. In contrast, Factor 2 captures
variance in the CNA features and is very neatly summarized by locational
gene sets. Coefficients may be compared within a view, but not between
views or factors. For reference, FSARD used a collection of 239 gene sets
to summarize RNA-seq and methylation views in these results.

125

Figure 3.25: Visualization of batch parameters θ, δ, estimated from the
TCGA subset. Color indicates batch (sometimes colors are reused due to
the limited color palette).

a clear threshold. This suggests that the gene sets provided to FSARD
were unable to explain factor 1 in a parsimonious fashion. Of course, it’s
also possible that factor 1 is too dense for any small number of sparse gene
sets to summarize it.

In contrast, FSARD summarizes factor 2 with a total of 7 gene sets,
all with similar weight. The fact that factor 2 can be neatly summarized
with a small number of gene sets suggests that the gene sets were well-
chosen. Furthermore, the assigned gene sets have a biologically plausible
relationship to each other; namely, they represent copy number alterations
of a neighborhood on chromosome 3 of the human genome. For these

126

reasons, we put greater confidence on factor 2’s interpretation than on
that of factor 1.

The full table of FSARD interpretations for this dataset contains ad-
ditional lessons. The case of factor 2 is not unique; in fact, every factor
explaining variation in the CNA data is summarized parsimoniously by
genomic-location gene sets. In contrast, most factors devoted to RNA-seq
or methylation features are poorly captured by the provided gene sets.
There are exceptions, though. For example, the RNA-seq components
of factor 8 are well-summarized by two cancer hallmark gene sets from
MSigDB:
HALLMARK_INTERFERON_ALPHA_RESPONSE and
HALLMARK_INTERFERON_GAMMA_RESPONSE.

Future versions of FSARD could use statistical hypothesis testing to
filter out insignificant gene set assignments. This would be especially
valuable when FSARD fails to produce a parsimonious interpretation.
Simple permutation tests could accomplish this, though they would entail
additional computational expense. The improved utility of FSARD’s inter-
pretations would likely be worth the added computational cost, though.

Exploring a large pan-cancer TCGA dataset. We now emphasize Path-
MatFac’s ability to model large datasets by applying it to a much more
comprehensive body of TCGA data. The following analyses employ a
pan-cancer dataset of 9,369 samples belonging to 31 different cancer types.
Each sample is represented by 16,459 features belonging to four distinct
omic assays (somatic mutation, methylation, RNA-seq, and CNA). Con-
trast this against the {HNSC, CESC, ESCA, STAD} subset, which includes
only 1,462 samples and 4,123 features. As before, missing values appear
frequently.

This pan-cancer dataset contains the majority of tumor samples from
TCGA, though we do exclude the glioblastoma multiforme (GBM) and
ovarian carcinoma (OV) cohorts. At first we tried to include GBM and OV

127

Fi
gu

re
3.

26
:L

in
ea

rf
ac

to
rs

(Y
)

an
d

em
be

dd
in

g
(X

),
fit

on
th

e
pa

n-
ca

nc
er

TC
G

A
da

ta
se

t.
Pa

th
M
at
Fa

c
us

ed
K
=

50
fa

ct
or

s
in

th
is

ru
n.

A
s

be
fo

re
,f

ac
to

rs
ar

e
or

de
re

d
fr

om
la

rg
es

tn
or

m
(a

tt
he

bo
tto

m
of

ea
ch

he
at

m
ap

)
to

sm
al

le
st

no
rm

(a
tt

he
to

p)
.

128

in the factorization, but their variance tended to dominate that of the other
samples. Visual inspection of the data (as in Figure 3.1) reveals that the
GBM and OV samples have many missing values in their RNA-seq features;
and their methylation features differ from those of other subpopulations
in noticeable, systematic ways. Given these issues around data quality, we
choose to hold out the GBM and OV samples from this factorization.

We fit PathMatFac on this pan-cancer dataset for 3,000 training itera-
tions, using K=50 linear factors. This takes approximately 5.5 hours on
a consumer-grade NVIDIA RTX 2080 Ti GPU, possessing 11GB of mem-
ory. This modest computational expense is well within reach for many
bioinformaticians.

As before, we configure FSARD to use genomic-location gene sets for
CNA features. However, in this run we provide gene ontology: biological
process gene sets to explain the other features; these gene sets also come
from MSigDB (Liberzon et al., 2015). We also set a higher value of γ=2 for
FSARD’s hyperparameter. This penalizes spurious gene set assignments
more strongly, ensuring that FSARD assigns a smaller number of better-
fitting gene sets to the linear factors.

Figure 3.26 shows the results from running PathMatFac on the pan-
cancer TCGA dataset. We focus especially on matrix Y, the linear factors.
These bear some similarities to the factors fitted on the {HNSC, CESC,
ESCA, STAD} subset. However, the inclusion of more features and a
larger, more diverse population of samples does yield patterns not seen
previously.

As before, the factors exhibit great sparsity. Most factors explain varia-
tion in one or two data modalities, with components near zero elsewhere.
The factors are especially sparse for the somatic mutation features. As
before, TP53 mutations stand out prominently—several factors possess
nonzero components for them. However, the pan-cancer results also grant
similar status to PIK3CA mutations. That is, a handful of factors have

129

large nonzero components for PIK3CA, capturing joint variation between
PIK3CA mutations and other features in the data. Similar to before, one
linear factor (in this case factor 33) seems to encode widespread tumor
mutational burden in the samples.

Recall that in the results for {HNSC, CESC, ESCA, STAD} we saw
practically all of the gene expression for the ribosomal protein gene family
captured by a single factor. The results on the pan-cancer dataset recapitu-
late this pattern. Furthermore, they identify a similar pattern in methylation
for another large gene family—the olfactory receptor genes. A single factor,
the 19th, captures nearly all of the variance in methylation for this family
of genes.

PathMatFac’s FSARD mechanism yields interesting interpretations
for many of these linear factors. Table 3.5 shows some of them. As we
saw previously, factors devoted to CNA features are concisely explained
by locations in the human genome. For example, factor 1 explains copy
number alterations in a neighborhood on chromosome 8.

Other factors are not easily summarized by gene sets. Factor 3 explains
variation in RNA-seq features, and FSARD assigns many diverse gene
sets to it. It’s tempting to see a shared a theme related to cell cycle or
metabolism in these gene sets; however, this should be regarded with
some skepticism.

FSARD’s interpretation of factor 19 jives well with our visual observa-
tions of the matrix Y. Most of the gene sets assigned to factor 19 relate to
chemical sensing or detection, consistent with the olfactory receptor gene
family.

FSARD yields biologically plausible interpretations for other linear
factors, as well. Factor 25 may be associated with respiration or metabolism.
Factor 29 appears to have a theme related to collagen and blood vessel
formation (a wound healing gene set is also assigned further down the list).
Factor 33 seems related to antigen presentation. These interpretations are

130

highly suggestive, and could be helpful for a biologist exploring their data.
This pan-cancer setting has allowed us to demonstrate PathMatFac’s

ability to extract insights from large datasets. However, it’s worth not-
ing some biological limitations of this pan-cancer analysis. As a matrix
factorization model, PathMatFac fundamentally aims to explain variation
between samples in a dataset. The samples in this dataset belong to di-
verse kinds of cancer, stemming from diverse tissues. As a result, much
of the variation captured by PathMatFac will simply be differences be-
tween tissues, rather than “interesting” variation that sheds light on cancer
types or their treatment. In practice, one should thoughtfully curate their
samples in a way that ensures PathMatFac will illuminate meaningful
variation. For example, the dataset could include samples from closely
related cancers; or tumor-normal pairs collected from the same patients.

3.4 Discussion

We have presented PathMatFac, a matrix factorization model for multi-
omic data. PathMatFac (i) effectively reduces the dimension of a multi-
omic dataset, and (ii) uses a new technique, FSARD, to summarize the
linear factors in terms of curated gene sets.

PathMatFac entails moderate computational expense, and is capable
of learning from small or large datasets. The method flexibly accommo-
dates realistic data containing batch effects and missing values. Tests on
simulated data show that PathMatFac reliably recovers its true parame-
ters. When we apply PathMatFac as a dimension reduction in supervised
learning tasks, we find that it outperforms other linear embeddings, such
as MOFA+ or PCA. When we use PathMatFac to explore a real dataset
from TCGA, we observe biologically plausible patterns in its linear factors,
by visual inspection. We also find that FSARD succeeds at interpreting
some linear factors via curated gene sets, though many factors are not easily

131

Factor View Gene set Coeff.
1 CNA chr8q21 2.28

chr8q22 2.27
chr8q12 1.95
chr8q13 1.91
chr8q11 1.69
(3 more rows)

...
3 RNA-seq POSITIVE_REGULATION_OF_MACROMOLECULE... 0.87

CELL_CYCLE 0.71
POSITIVE_REGULATION_OF_RNA_METABOLIC_PROCESS 0.67
REGULATION_OF_CELL_POPULATION_PROLIFERATION 0.58
CYTOSKELETON_ORGANIZATION 0.56
(36 more rows)

...
19 Methylation GOBP_SENSORY_PERCEPTION_OF_SMELL 1.71

DETECTION_OF_CHEMICAL_STIMULUS 1.64
SENSORY_PERCEPTION_OF_CHEMICAL_STIMULUS 1.64
DETECTION_OF_STIMULUS_INVOLVED_IN_SENSORY_PERCEPTION 1.58
DETECTION_OF_STIMULUS 1.56
(6 more rows)

...
25 RNA-seq CELLULAR_RESPIRATION 0.64

ELECTRON_TRANSPORT_CHAIN 0.50
AEROBIC_RESPIRATION 0.49
RESPIRATORY_ELECTRON_TRANSPORT_CHAIN 0.37
ENERGY_DERIVATION_BY_OXIDATION_OF_ORGANIC_COMPOUNDS 0.31
(2 more rows)

...
29 RNA-seq EXTERNAL_ENCAPSULATING_STRUCTURE_ORGANIZATION 1.46

COLLAGEN_FIBRIL_ORGANIZATION 1.10
BLOOD_VESSEL_MORPHOGENESIS 0.77
CELL_SUBSTRATE_ADHESION 0.46
VASCULATURE_DEVELOPMENT 0.45
(16 more rows)

...
33 RNA-seq PRESENTATION_OF_PEPTIDE_ANTIGEN 0.74

...PRESENTATION_OF_ENDOGENOUS_ANTIGEN 0.62

...PRESENTATION_OF_EXOGENOUS_PEPTIDE_ANTIGEN 0.54

...PRESENTATION_OF_ENDOGENOUS_PEPTIDE_ANTIGEN 0.51

...PRESENTATION_OF_EXOGENOUS_ANTIGEN 0.35
(8 more rows)

...

Table 3.5: PathMatFac’s FSARD interpretation for selected factors, fitted
on the pan-cancer TCGA dataset. This table is structured analogously to
Table 3.4.

132

captured by gene sets.
PathMatFac has important limitations worth keeping in mind. As

a matrix factorization, PathMatFac imposes greater inductive bias than
neural networks. Hence, it will not generally capture as much of the data’s
variation as techniques based on deep learning, e.g., variational autoen-
coders. Unlike other techniques that estimate a posterior distribution for
their parameters (e.g., MOFA+ or VAEs), PathMatFac does not quan-
tify uncertainty in its estimates. As mentioned previously, the quality of
FSARD’s factor interpretations depends strongly on the collection of gene
sets provided to it.

Practical recommendations for usingPathMatFac. Using PathMatFac
requires the user to make a few choices. We present some simple guidance
for properly configuring the method. Selecting an appropriate K is made
slightly easier by the fact that PathMatFac’s ARD regularizer tends to
prune away inconsequential factors. Hence, we recommend erring on the
side of too many factors. Then, if there are many factors with small norm,
the user may (i) ignore them or (ii) rerun PathMatFac with a reduced
number of factors. When we apply PathMatFac to real data, we often
begin with K=50.

The simulation study in Section 3.3 suggests that choosing an appro-
priate value for K can help improve the embedding. In principle one could
use cross-validation or a permutation test to select the number of factors.
Of course, that incurs the computational expense of fitting the model many
times. We do not explore that methodology in this chapter.

As shown in the simulations, PathMatFac is quite robust to the number
of training iterations. For modest datasets withM<5,000 and N<10, 000,
we find that one thousand training iterations is a good rule of thumb.
More iterations may be necessary for larger datasets. PathMatFac records
the loss during training; the user may inspect this and judge whether the
loss decrease per iteration has become sufficiently small.

133

The choice of curated gene sets requires more judgment. MSigDB of-
fers a broad selection of gene sets (Liberzon et al., 2015). Its gene ontology
collection may be a sensible default choice for generic bioinformatics appli-
cations, since it covers many genes. However, specific contexts and omics
assays may call for different ones. For example, MSigDB’s locational gene
sets appear to be an excellent choice for CNA data. The evaluations in
this chapter focus on a cancer application, so collections of cancer hallmark
and oncogenic gene sets seemed like potentially useful choices. However,
they did not always produce clear, unambiguous factor summaries for
RNA-seq, methylation, or somatic mutation data. Other online sources of
gene sets exist and may be worth exploring, such as Pathway Commons
(Cerami et al., 2011).

Potential applications. We imagine PathMatFac could be useful for
other applications not explored in this chapter. Single-cell multiomic assay
technologies are gaining adoption (Lee et al., 2020; Flynn et al., 2023).
These technologies simultaneously collect multiple omics measurements
from individual cells in a biological sample. While none of our evaluations
apply PathMatFac to single-cell data, this could be easily accomplished by
giving PathMatFac appropriate loss functions. For example, loss derived
from a negative-binomial model can yield a better fit on scRNA-seq data
than simpler ones. Extending PathMatFac in this way would require
minimal effort.

Many of the VAE models mentioned in Section 3.1 are designed to
impute missing modalities of data. This is motivated by the fact that multi-
omic datasets are more costly to collect than single-omics datasets (Arge-
laguet et al., 2021). The goal is to get the benefits of multiomic data at
much lower cost, by (i) collecting multiple omics for a small number of
samples; (ii) using inexpensive single-omics assays to collect many more
samples; and then (iii) impute missing modalities for the majority of sam-
ples, which can be used for downstream analyses. PathMatFac could

134

conceivably be applied to this task. However, PathMatFac’s primary goal
is to model the variation in a dataset, and explain it in terms that are
familiar to biologists. Imputation was not a priority in this chapter, but we
may explore it in the future.

PathMatFac is motivated by biological applications, but could easily be
used in other settings. It can be regarded as a flexible and powerful matrix
factorization software package, especially for multimodal data. However,
we don’t imagine many application domains having the equivalent of
curated gene sets, so FSARD in particular may be less useful outside of
biological applications.

Method improvements. PathMatFac, and especially its FSARD mech-
anism, could be improved in several ways. We saw in Section 3.3 that
FSARD tends to assign many gene sets to a factor whenever the factor is
poorly captured by them. In that case we have a problem of high false posi-
tives. The false positives could be addressed by introducing an hypothesis
testing framework that computes p-values for gene set assignments, with
a multiple-testing correction. For instance, FSARD’s assignments could
be recomputed many times with the entries of Y permuted within each
factor and view. The fraction of permutations yielding that assignment
would amount to a p-value; and a Benjamini-Hochberg correction within
each factor and view (Benjamini and Hochberg, 1995) would account for
the fact that we are performing many such tests. Although this approach
would come with increased computational cost, it could be worthwhile in
some scenarios.

Perhaps the best way to improve FSARD is by choosing better gene
sets. Clearly, the selection of gene sets should depend on the biological
setting as well as the omics assay. However, other criteria could inform
the curation of better collections of gene sets. For example, we ought to
prefer collections of gene sets with higher coverage of the genome. We
may also prefer collections that are irredundant, or that have redundancy

135

in a structured fashion that prevents ambiguity in the assignments. A
more careful mathematical formulation of these criteria could inform the
construction of better collections (for the purposes of FSARD).

Other potential improvements relate to PathMatFac’s fundamental
probabilistic assumptions and inference procedure. Despite the successes
shown in this chapter, it is possible that the nonconvexity of PathMatFac’s
ARD regularizer hinders its performance. On one hand, this could be ad-
dressed by improving the inference procedure. For example, an algorithm
based on evidence maximization (MacKay, 1999), or variational Bayes as
in MOFA+ (Argelaguet et al., 2020), could sidestep this issue.

Other strategies to address the nonconvexity of PathMatFac’s loss
would keep the MAP inference, but choose different probabilistic assump-
tions than ARD. For example, a Laplace distribution prior for Y would be
an obvious substitution for ARD. FSARD would be reformulated accord-
ingly, as a hyperprior for that Laplace distribution.

136

4 discussion and closing remarks

When one tugs at a single thing in nature, he finds it is attached to
the rest of the world.

— John Muir

This chapter makes some final comments about the research described
in the previous chapters—some reflections and perspective gained from
time and hindsight.

It also leaves remarks that are broader in scope. I have included some
observations about (i) the value of biological prior knowledge in omics
data analysis, (ii) research practices for modeling omics data, and (iii) the
near-term prospects for machine learning on omics data.

4.1 Parting thoughts on SSPS, PathMatFac, and
biological prior knowledge

SSPS. Over time I have grown increasingly skeptical toward the model-
ing assumptions of SSPS. Real biological signaling operates at a variety of
time scales (seconds, minutes, hours) but SSPS assumes all interactions
occur at a similar timescale. SSPS makes a “closed-world” assumption:
that the behaviors of observed pathway entities are fully explained by
the other observed entities. These issues seem fundamental to the class of
techniques based on Dynamic Bayesian Network structure-learning, e.g.,
those of Spencer et al. (2015), Hill et al. (2012), and Werhli and Husmeier
(2007). The class of techniques could be modified to address those issues,
but only with substantial conceptual changes. For instance, continuous-
time models based on differential equations or Gaussian processes could
address the concerns about time scales. The closed-world assumption is
less tractable, but could be addressed in part by, e.g., modeling changes

137

in the time dynamics In its current state, SSPS could be a valid model for
identifying DBN structures in certain restricted settings. However, it’s not
immediately clear what those settings would be.

Despite this, I do think SSPS has some merit. It represents a legitimate
improvement over past techniques based on DBN structure-learning. It also
contains worthwhile innovations in MCMC sampling for sparse networks
(in the context of DBN structure-learning). The asymmetric parent set
proposal distribution clearly biases the Markov chain in a way that yields
better sampling efficiency.

PathMatFac. A brief story of PathMatFac’s development may help the
reader understand the perspective I’ve reached. The version of PathMat-
Fac described in Chapter 3 is the latest of several attempts at modeling
multiomic data and biological pathways. Earlier versions made much
stronger probabilistic assumptions about pathways and their relationship
to omics data. Ultimately, I found that these versions of PathMatFac fit
the data poorly. The current version improves on them greatly.

From the beginning, PathMatFac aimed to (i) explain the variance
in samples of multiomic data and (ii) describe this variance in terms of
biological pathways. It always took an approach based on matrix factor-
ization. However, several important aspects of the model changed over
time in response to empirical evaluations.

Perhaps the most important modeling assumption to change was the
assumed relationship between linear factors and biological pathways. At
first, PathMatFac assumed a one-to-one correspondence between factors
and pathways. In other words, the matrix factorization would include
exactly one linear factor for each biological pathway considered in the
analysis. This amounts to an assumption that (i) the included pathways
are complete; and (ii) each pathway makes a single additive contribution
to each sample in the dataset. A practical implication of this was that the
matrix factorization would necessarily include a large number of factors

138

in order to cover a reasonable set of pathways.
Another key modeling assumption to change was the regularization

applied to linear factors. The “one-to-one” assumption mentioned above
implied that each linear factor represented a pathway. Early versions of
PathMatFac attempted this through a graph regularization scheme. The idea
was to translate each pathway into an undirected graph, and then use the
graph’s Laplacian matrix to define a quadratic regularizer. Probabilistically,
this amounts to a multivariate normal prior on the linear factor (where
the graph Laplacian serves as a precision matrix). From a biological
perspective, this modeling assumption asserts that multiomic features
near each other in the pathway will tend to share correlations.

I conceived of these modeling ideas by thinking abstractly about path-
ways, without relying on observation or data. I reasoned that pathways
represent dependencies between molecules. Surely these dependencies
imply the existence of correlations between the multiomic features?

Unfortunately, these ideas crashed into reality as soon as I tested the
model on simulated and real data. Simulations showed that graph reg-
ularization was ineffective at biasing the factors as intended—even on
synthetic data, consistent with the modeling assumptions. And the prob-
lems became worse as the number of factors (i.e., pathways) increased
from 10s to 100s. Fits on real data also failed to produce factors corre-
sponding to pathways in any reasonable way. Over time, this empirical
feedback led to several important changes to the model. In particular, I
abandoned strong assumptions about pathways and their relationships to
multiomic data.

The current form of PathMatFac is much more grounded in empiri-
cism than earlier versions. It imposes no mechanistic assumptions about
the underlying biology. PathMatFac’s FSARD hyperprior does posit a
probabilistic dependence between the linear factors and the biological
prior knowledge (i.e., gene sets). However, under recommended usage,

139

the gene sets do not inform the matrix factorization—they are only used to
interpret it.

The value of PathMatFac can best be understood in relation to PLIER
(Mao et al., 2019). The methods have similar goals: (i) factorize an omics
dataset and (ii) summarize the factorization in terms of curated gene sets.
However, PathMatFac has a distinct advantage over PLIER by accommo-
dating multiomic data; in fact, its ability to model non-Gaussian data at all
gives PathMatFac an edge over PLIER.

PathMatFac is one more tool for embedding multiomic datasets, in an
already-crowded field of options. VAEs have gained dominance in this
area, in a very short time (Gong et al., 2021; Ashuach et al., 2021; Gut et al.,
2021; Gayoso et al., 2021; Lotfollahi et al., 2022; Zhou et al., 2023). Matrix
factorizations still have a role to play, although MOFA+ fills that role fairly
well (Argelaguet et al., 2020). In this crowded ecosystem, PathMatFac
occupies a small—though unique—niche, precisely because of its emphasis
on interpretability. None of the other listed techniques are designed to yield
gene set interpretations. PathMatFac could secure its place in this niche
with continued development, including the improvements mentioned in
Section 3.4.

The value of biological prior knowledge. My work in probabilistic mod-
eling for omics data has brought me to a nuanced position regarding the
value of biological prior knowledge, and especially pathways. I entered
this research area with naïve assumptions:

1. The thousands of curated biological pathways capture most of the
molecular processes governing cells—or, at least, enough to be useful.

2. The edges in curated pathways approximately reflect the pairwise
interactions in real cell processes.

140

3. Omics data relate to pathways in a fairly straightforward way. Path-
way edges ought to manifest themselves as probabilistic dependen-
cies in the data.

However, I now take the concept of a “biological pathway” much less
seriously.

It seems instructive to make an analogy between (i) biological pathways
for modeling omics data; and (ii) formal grammars for natural language
processing (NLP). Formal grammars help linguists organize their knowl-
edge about languages. However, NLP based on formal grammar never
performed well. NLP only began to see success when datasets became
larger and techniques relied on statistical patterns rather than grammars
(Manning and Schutze, 1999). Similarly, pathways help biologists orga-
nize their knowledge of biological systems; but there’s no guarantee they
will help in modeling omics data.

Pathways and gene sets seem most useful as tools for interpreting data.
They can serve as statistically useful collections. For example, compar-
isons between gene sets can be more statistically robust than compar-
isons between individual genes. Classic, enrichment-based techniques
like GSEA (Subramanian et al., 2005) and GO analysis (Young et al., 2010)
are based on this principle. I am more skeptical of pathways and gene sets
as Bayesian priors to inform modeling of omics data.

A wiser person may have reached similar conclusions without years of
misguided effort.

4.2 Research practices and methodology

Doubts about black-box inference

In their text Bayesian Data Analysis, Gelman et al. (2014) lay out an idealized
process for probabilistic modeling:

141

1. Define the full probability model. In other words, implement a joint
distribution for all observed and latent variables.

2. Condition on observed data. That is, hold the observed variables
fixed and estimate quantities of interest from the posterior distribu-
tion by some inference procedure.

3. Evaluate the model’s fit and inferences. Do the estimated quantities
make sense? Are they sensitive to the modeling assumptions?

4. Repeat steps 1-3 until the results are satisfactory.

This is a sound plan for modeling, but it’s worth bearing in mind that
computational tools play a crucial role in each step.

Gelman et al. (2014) recommend the Stan probabilistic programming
language to carry out steps 1 and 2 (Carpenter et al., 2017). Stan enables the
user to easily define a probabilistic model and make posterior inferences.
Stan’s abilities to automate inference can be especially valuable, since the
design and implementation of Bayesian inference procedures can be quite
challenging. This design philosophy, which hides the details of inference
from the user, has been called black-box inference (Ranganath et al., 2014;
Salimans and Knowles, 2014).

While black-box inference can be helpful, it places important limitations
on (i) model design and (ii) the efficiency of inference. Stan in partic-
ular makes inferences via Hamiltonian Monte Carlo (HMC) sampling
(Betancourt, 2018), or in some cases variational Bayes (Kucukelbir et al.,
2015). These are sophisticated techniques, but they have limitations. As a
small example, both techniques only operate on continuous variables—the
user is responsible for marginalizing any discrete variables, which isn’t
always practical and seems contrary to the “black box” value proposition.
Furthermore, they are unable to benefit from domain-specific knowledge
that could improve inference efficiency. For example, we saw in Chapter

142

2 that an asymmetric proposal distribution informed by knowledge of
the posterior greatly improved sampling efficiency for MCMC. Black-box
procedures cannot in general exploit knowledge in that way. I see similar
issues in other probabilistic programming environments based on black-
box inference, such as Pyro (Bingham et al., 2018) or, historically, Edward
(Dillon et al., 2017).

These issues lead me to think that the aspirations of black-box infer-
ence are mistaken. A better design would provide the user with a set of
reasonable default inference algorithms, and provide ways to modify or
adapt those algorithms to the problem at hand. This is the design phi-
losophy behind Gen, the probabilistic programming language used in
Chapter 2 (Cusumano-Towner et al., 2019). Gen offers building blocks for
inference, and enables the user to assemble them into an inference program
appropriate for the task at hand. This provides much of the convenience
of black-box inference, but gives the user greater agency to design models
and inference algorithms.

Reproducibility in computational research

Like any science, computational research should be reproducible. Ideally,
all research software and data would be publicly available, and published
results would be reproducible without undue effort. Distributing source
code via GitHub (or some other Git service) is a minimal standard for
software availability. Distributing the software as a package—e.g., an R,
Python, or Julia package—is even better. Data (and code) can be archived
at Zenodo and given a DOI, which provides some guarantee for its long-
term availability.

Beyond availability, software should be usable without undue effort.
Distributing a package can also help in this respect. Publishing a container
(e.g., Docker or Singularity) can be an excellent solution when the software
has complicated dependencies.

143

Computational biologists sometimes set up web servers to demonstrate
their software tools, as a “reproducibility” measure. However, web servers
are at best a partial solution. They can only be used in a manual ad-hoc
manner, and can’t be incorporated into a laboratory’s analysis pipelines.
It’s been documented that the availability and maintenance is quite poor
for most of these research-related web servers (Kern et al., 2020).

Finally, the published results of analyses should be reproducible with-
out unreasonable effort. Scripts and Jupyter notebooks are better than
nothing. However, workflow managers like Snakemake, NextFlow, and Air-
Flow have many strengths over scripts or notebooks. If a researcher defines
their analyses as a workflow in one of these systems, and distributes the
workflow, then this allows others to run the identical set of analyses. Work-
flow managers confer other benefits, though. They allow the analyses to be
run with arbitrary amounts of parallelism. If a workflow gets interrupted
for some reason, then the workflow manager can resume where it stopped,
without rerunning the entire set of analyses. Some workflow managers,
like Snakemake, can also manage software environments via containers.
Beyond reproducibility, workflow managers can be extremely useful for
computational work in general. A well-constructed workflow can auto-
mate otherwise-tedious analysis steps. Both projects in this dissertation
made extensive use of Snakemake to manage their analyses.

An opinionated review of programming languages for
model development

I avoid being ideological when I choose software tools—in every case I
try to use the right tool for the job. However, my PhD research has made
me an enthusiastic proponent of the Julia programming language. People
frequently ask me about this after perusing my work. A brief discussion
about programming language choice seems appropriate in this chapter.

144

A useful programming language for model implementation should
possess a rich collection of relevant libraries or packages. R has the most
complete ecosystem of bioinformatics and biostatistics packages. The
Bioconductor package repository provides convenient access to the most
widely used models and analyses. However, my research does not focus on
performing analyses. It focuses on developing new methods. This entails a
different set of requirements. I need packages for automatic differentiation;
GPU programming; probabilistic programming; and numerical linear
algebra. Both Julia and Python have a strong advantage over R in this
regard.

A language for model development should be designed according to
sound software engineering principles. Historically, R was developed by
statisticians to perform analyses. In contrast, languages like Python and
Julia were developed by computer scientists to build tools. These origins
manifest themselves in language design, in ways that are apparent to
software engineers but less apparent to others (Smith and Ushey, 2023;
Hacker News, 2023). Without a doubt, R is an excellent language for
performing analyses. However, I’m in the business of building tools and
Julia and Python are much better suited for that.

A language for model development should produce fast, performant
code. Python and R are both interpreted, though many of their packages
call efficient compiled code. In contrast, Julia is dynamically compiled. This
means it incurs an up-front compilation cost at run-time, but generates
efficient compiled code. Since I’m building tools with a typical runtime of
minutes or hours, the gains of dynamic compilation generally outweigh
the losses.

A language for model development should allow me to write free
software—free as in freedom (libre) and as in beer (gratis). This is a
reasonable requirement for code in a collaborative, scientific setting. How-
ever, it immediately excludes MATLAB or Mathematica, which require

145

a paid license. In contrast, Python, Julia, and R have fairly permissive
licenses; in those languages, intellectual property rarely poses practical
issues in the development of research software.

I admit that novelty also factored into my choice. It seemed worthwhile
to experiment with Julia and see how it compared to other options. I was
not disappointed!

4.3 Prospects for machine learning on omics
data

Machine learning on omics data has historically been data-constrained. The
quantity of data has been limited, since (i) assay technologies are relatively
expensive, and (ii) large sample sizes can be hard to acquire, especially
if they come from humans or live animals. Data quality has also been
an issue. As documented previously in this dissertation, omics data are
almost never i.i.d.—for biological and technical reasons. In principle a
machine learning model could account for this heterogeneity between
datasets, similar to how we modeled away batch effects in Chapter 3.
However the omics datasets are rarely annotated with sufficient metadata
to model these systematic differences. These issues can make machine
learning on omics data more difficult than in other domains, e.g., text or
images.

We can expect the quantity and quality of omics data to increase over
time, though. Investment in biomedical technologies will most likely
continue to increase, for demographic and economic reasons. Populations
across the developed world are aging. Accordingly, age-related disease—
cancer, neurodegenerative disease, heart disease, etc.—will increasingly
burden healthcare systems. Governments and corporations are strongly
incentivized to pursue technological solutions to these problems.

Machine learning has already demonstrated value in the domains of

146

text and image processing. Investors are eager to see it make an impact
in biotech, and understand that this will require large amounts of high-
quality omics data. For instance, venture capitalists traditionally focused
on software have been turning their sights toward biotech and healthcare.
Blog posts from Andreesen Horowitz describe a strategic rationale for this
(Conde and Rughani, 2023; Wolf and Pande, 2023). Money speaks louder,
though: Andreesen Horowitz and Sequoia both have large portfolios
devoted to AI in biotech (cipherbio, 2023; Andreesen Horowitz, 2023)

Accordingly, a large number of data-centric biotech and drug discovery
startups have begun to emerge. Notable examples include Recursion
Pharmaceuticals (Recursion Pharmaceuticals, 2023a) and Insitro (Insitro,
2022), which both emphasize a “lab in the loop” business model. This
amounts to active learning: an automated laboratory generates data in a
consistent and highly controlled fashion; machine learning models learn
from the data and inform the next round of experiments. The public
datasets released by Recursion Pharmaceuticals provide a sense of the scale
of data collection and machine learning taking place there. Recursion’s
public RxRx dataset is approximately 83TB, and comprises less than 1% of
their full dataset (Recursion Pharmaceuticals, 2023b).

This investment is also yielding assay technologies that are (i) more
informative and (ii) less expensive. Chapter 1 already mentioned some
of these. Another area worth paying attention to is microscopy. Develop-
ments in microscopy will make computer vision techniques increasingly
relevant in the life sciences. For example, quantitative phase microscopy
(Park et al., 2018) can capture the shape and organization of cells in greater
detail and with less distortion than older techniques based on staining.
Daphne Köller spoke specifically about this during an ICML 2022 work-
shop talk (Köller, 2022).

All of this is to say, machine learning on omics data has a bright future.
There are many impactful and intellectually stimulating problems to solve.

147

It’s difficult to imagine a field of work with greater potential human and
economic value.

The work in this dissertation was based on a simple idea: that proba-
bilistic models could provide a natural way to learn from (i) omics data
and (ii) biological prior knowledge. The lessons I took away were more
nuanced. Biological prior knowledge may have a place in the bright future
described above—pathways and gene sets are a useful vocabulary for biol-
ogists when they interpret data and inferences. However, I don’t expect
pathways and gene sets will have success as prior knowledge in a Bayesian
sense.

DISCARD THIS PAGE

148

colophon

This document was typeset in LATEX using Will Benton’s template:

https://github.com/willb/wi-thesis-template.git

The default font is Gyre Pagella.

This document was written 100% free of LLM labor.

https://github.com/willb/wi-thesis-template.git

149

references

23andMe. 2013. Our Service: Genotyping Technology -
23andMe. https://web.archive.org/web/20131202222247/https:
//www.23andme.com/more/genotyping/.

Abdi, Herve. 2003. Factor Rotations in Factor Analyses. https://
personal.utdallas.edu/~herve/Abdi-rotations-pretty.pdf.

Aebersold, Ruedi, and Matthias Mann. 2003. Mass spectrometry-based
proteomics. Nature 422(6928):198–207. Number: 6928 Publisher: Nature
Publishing Group.

Andreesen Horowitz. 2023. a16z Bio + Health Tech Investments | An-
dreessen Horowitz. https://web.archive.org/web/20230526053229/
https://a16z.com/bio/.

Argelaguet, Ricard, Damien Arnol, Danila Bredikhin, Yonatan Deloro,
Britta Velten, John C. Marioni, and Oliver Stegle. 2020. MOFA+: a statis-
tical framework for comprehensive integration of multi-modal single-cell
data. Genome Biology 21(1):111.

Argelaguet, Ricard, Anna S. E. Cuomo, Oliver Stegle, and John C. Marioni.
2021. Computational principles and challenges in single-cell data inte-
gration. Nature Biotechnology 39(10):1202–1215. Number: 10 Publisher:
Nature Publishing Group.

Argelaguet, Ricard, Britta Velten, Damien Arnol, Sascha Dietrich,
Thorsten Zenz, John C Marioni, Florian Buettner, Wolfgang Huber, and
Oliver Stegle. 2018. Multi-Omics Factor Analysis—a framework for unsu-
pervised integration of multi-omics data sets. Molecular Systems Biology
14(6):e8124. Publisher: John Wiley & Sons, Ltd.

https://web.archive.org/web/20131202222247/https://www.23andme.com/more/genotyping/
https://web.archive.org/web/20131202222247/https://www.23andme.com/more/genotyping/
https://personal.utdallas.edu/~herve/Abdi-rotations-pretty.pdf
https://personal.utdallas.edu/~herve/Abdi-rotations-pretty.pdf
https://web.archive.org/web/20230526053229/https://a16z.com/bio/
https://web.archive.org/web/20230526053229/https://a16z.com/bio/

150

Ashuach, Tal, Mariano I. Gabitto, Michael I. Jordan, and Nir Yosef. 2021.
MultiVI: deep generative model for the integration of multi-modal data.
preprint, Bioinformatics.

Baker, Monya. 2013. Big biology: The ’omes puzzle. Nature 494(7438):
416–419. Number: 7438 Publisher: Nature Publishing Group.

Beck, Amir, and Marc Teboulle. 2009. A Fast Iterative Shrinkage-
Thresholding Algorithm for Linear Inverse Problems. SIAM Journal
on Imaging Sciences 2(1):183–202.

Benjamini, Yoav, and Yosef Hochberg. 1995. Controlling the False Dis-
covery Rate: A Practical and Powerful Approach to Multiple Testing.
Journal of the Royal Statistical Society: Series B (Methodological) 57(1):289–
300. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-
6161.1995.tb02031.x.

Besard, Tim, Christophe Foket, and Bjorn De Sutter. 2018. Effective
extensible programming: Unleashing Julia on GPUs. IEEE Transactions
on Parallel and Distributed Systems. 1712.03112.

Betancourt, Michael. 2018. A Conceptual Introduction to Hamiltonian
Monte Carlo. ArXiv:1701.02434 [stat].

Bingham, Eli, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer,
Neeraj Pradhan, Theofanis Karaletsos, Rohit Singh, Paul Szerlip, Paul
Horsfall, and Noah D. Goodman. 2018. Pyro: Deep Universal Probabilistic
Programming. Journal of Machine Learning Research.

Budak, Gungor, Oyku Eren Ozsoy, Yesim Aydin Son, Tolga Can, and
Nurcan Tuncbag. 2015. Reconstruction of the temporal signaling network
in Salmonella-infected human cells. Frontiers in Microbiology 6:730.

1712.03112

151

Cardner, Mathias, Nathalie Meyer-Schaller, Gerhard Christofori, and
Niko Beerenwinkel. 2019. Inferring signalling dynamics by integrating
interventional with observational data. Bioinformatics 35(14):i577–i585.

Carlin, Daniel E., Evan O. Paull, Kiley Graim, Christopher K. Wong,
Adrian Bivol, Peter Ryabinin, Kyle Ellrott, Artem Sokolov, and Joshua M.
Stuart. 2017. Prophetic granger causality to infer gene regulatory net-
works. PLOS ONE 12(12):e0170340.

Carpenter, Bob, Andrew Gelman, Matthew D. Hoffman, Daniel Lee, Ben
Goodrich, Michael Betancourt, Marcus Brubaker, Jiqiang Guo, Peter Li,
and Allen Riddell. 2017. Stan: A probabilistic programming language.
Journal of Statistical Software 76(1).

Cerami, Ethan G., Benjamin E. Gross, Emek Demir, Igor Rodchenkov,
Özgün Babur, Nadia Anwar, Nikolaus Schultz, Gary D. Bader, and Chris
Sander. 2011. Pathway Commons, a web resource for biological pathway
data. Nucleic Acids Research 39(Database issue):D685–D690.

Chauveau, Claire, John Rowell, and Ana Ferreiro. 2014. A Rising Titan:
TTN Review and Mutation Update. Human Mutation 35(9):1046–1059.
_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/humu.22611.

Chauvel, Cécile, Alexei Novoloaca, Pierre Veyre, Frédéric Reynier, and
Jérémie Becker. 2020. Evaluation of integrative clustering methods for
the analysis of multi-omics data. Briefings in Bioinformatics 21(2):541–552.

Chen, Hugh, Ian C. Covert, Scott M. Lundberg, and Su-In Lee. 2023.
Algorithms to estimate Shapley value feature attributions. Nature Machine
Intelligence 1–12. Publisher: Nature Publishing Group.

Chen, Kok Hao, Alistair N. Boettiger, Jeffrey R. Moffitt, Siyuan Wang,
and Xiaowei Zhuang. 2015. Spatially resolved, highly multiplexed RNA
profiling in single cells. Science (New York, N.Y.) 348(6233):aaa6090.

152

Cheong, Raymond, Alex Rhee, Chiaochun Joanne Wang, Ilya Nemenman,
and Andre Levchenko. 2011. Information Transduction Capacity of Noisy
Biochemical Signaling Networks. Science 334(6054):354–358.

cipherbio. 2023. Sequoia Capital Investment Information | Ci-
pherBio. https://www.cipherbio.com/data-viz/investor/Sequoia%
2BCapital.

Coarfa, Cristian, Sandra L. Grimm, Kimal Rajapakshe, Dimuthu Perera,
Hsin-Yi Lu, Xuan Wang, Kurt R. Christensen, Qianxing Mo, Dean P. Ed-
wards, and Shixia Huang. 2021. Reverse-Phase Protein Array: Technology,
Application, Data Processing, and Integration. Journal of Biomolecular
Techniques : JBT 32(1):15–29.

Conde, Jorge, and Jay Rughani. 2023. Doing More with
Moore: Biotech’s Tech Moment | Andreessen Horowitz. https:
//web.archive.org/web/20230515020608/https://a16z.com/2023/
02/14/doing-more-with-moore/.

Conesa, Ana, Pedro Madrigal, Sonia Tarazona, David Gomez-Cabrero,
Alejandra Cervera, Andrew McPherson, Michał Wojciech Szcześniak,
Daniel J. Gaffney, Laura L. Elo, Xuegong Zhang, and Ali Mortazavi. 2016.
A survey of best practices for RNA-seq data analysis. Genome Biology
17(1):13.

Cusumano-Towner, Marco F., Feras A. Saad, Alexander K. Lew, and
Vikash K. Mansinghka. 2019. Gen: A general-purpose probabilistic pro-
gramming system with programmable inference. In Proceedings of the 40th
acm sigplan conference on programming language design and implementation.
PLDI 2019, New York, NY, USA: ACM.

Davis, Jesse, and Mark Goadrich. 2006. The relationship between
precision-recall and ROC curves. In Proceedings of the 23rd international
conference on machine learning.

https://www.cipherbio.com/data-viz/investor/Sequoia%2BCapital
https://www.cipherbio.com/data-viz/investor/Sequoia%2BCapital
https://web.archive.org/web/20230515020608/https://a16z.com/2023/02/14/doing-more-with-moore/
https://web.archive.org/web/20230515020608/https://a16z.com/2023/02/14/doing-more-with-moore/
https://web.archive.org/web/20230515020608/https://a16z.com/2023/02/14/doing-more-with-moore/

153

Dedeurwaerder, Sarah, Matthieu Defrance, Martin Bizet, Emilie Calonne,
Gianluca Bontempi, and François Fuks. 2014. A comprehensive overview
of Infinium HumanMethylation450 data processing. Briefings in Bioinfor-
matics 15(6):929–941.

Dempster, A. P., N. M. Laird, and D. B. Rubin. 1977. Maximum Likelihood
from Incomplete Data via the EM Algorithm. Journal of the Royal Statistical
Society. Series B (Methodological) 39(1):1–38. Publisher: [Royal Statistical
Society, Wiley].

Dillon, Joshua V., Ian Langmore, Dustin Tran, Eugene Brevdo, Srinivas
Vasudevan, Dave Moore, Brian Patton, Alex Alemi, Matt Hoffman, and
Rif A. Saurous. 2017. Tensorflow distributions. arXiv arXiv:1711.10604.

Documentation, NCI GDC. 2022a. Bioinformatics Pipeline: Copy
Number Variation Analysis - GDC Docs. https://web.archive.
org/web/20221202025900/https://docs.gdc.cancer.gov/Data/
Bioinformatics_Pipelines/CNV_Pipeline/.

———. 2022b. Bioinformatics Pipeline: DNA-Seq Analysis - GDC
Docs. https://web.archive.org/web/20221203145132/https:
//docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/DNA_
Seq_Variant_Calling_Pipeline/.

———. 2022c. Bioinformatics Pipeline: Methylation Analysis Pipeline
- GDC Docs. https://web.archive.org/web/20220924191217/https:
//docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/
Methylation_Pipeline/.

———. 2022d. Bioinformatics Pipeline: mRNA Analysis - GDC
Docs. https://web.archive.org/web/20221116232737/https:
//docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/
Expression_mRNA_Pipeline/.

https://web.archive.org/web/20221202025900/https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/CNV_Pipeline/
https://web.archive.org/web/20221202025900/https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/CNV_Pipeline/
https://web.archive.org/web/20221202025900/https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/CNV_Pipeline/
https://web.archive.org/web/20221203145132/https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/DNA_Seq_Variant_Calling_Pipeline/
https://web.archive.org/web/20221203145132/https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/DNA_Seq_Variant_Calling_Pipeline/
https://web.archive.org/web/20221203145132/https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/DNA_Seq_Variant_Calling_Pipeline/
https://web.archive.org/web/20220924191217/https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/Methylation_Pipeline/
https://web.archive.org/web/20220924191217/https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/Methylation_Pipeline/
https://web.archive.org/web/20220924191217/https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/Methylation_Pipeline/
https://web.archive.org/web/20221116232737/https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/Expression_mRNA_Pipeline/
https://web.archive.org/web/20221116232737/https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/Expression_mRNA_Pipeline/
https://web.archive.org/web/20221116232737/https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/Expression_mRNA_Pipeline/

154

———. 2023. Bioinformatics Pipeline: Protein Expression - GDC
Docs. https://web.archive.org/web/20230227225743/https://docs.
gdc.cancer.gov/Data/Bioinformatics_Pipelines/RPPA_intro/.

Drake, Justin M., Evan O. Paull, Nicholas A. Graham, John K. Lee, Bryan A.
Smith, Bjoern Titz, Tanya Stoyanova, Claire M. Faltermeier, Vladislav Uzu-
nangelov, Daniel E. Carlin, Daniel Teo Fleming, Christopher K. Wong,
Yulia Newton, Sud Sudha, Ajay A. Vashisht, Jiaoti Huang, James A.
Wohlschlegel, Thomas G. Graeber, Owen N. Witte, and Joshua M. Stuart.
2016. Phosphoproteome Integration Reveals Patient-Specific Networks
in Prostate Cancer. Cell 166(4):1041–1054.

Eduati, Federica, Patricia Jaaks, Jessica Wappler, Thorsten Cramer,
Christoph A Merten, Mathew J Garnett, and Julio Saez-Rodriguez. 2020.
Patient-specific logic models of signaling pathways from screenings on
cancer biopsies to prioritize personalized combination therapies. Molecu-
lar Systems Biology 16(2):e8664.

Eker, Steven, Merrill Knapp, Keith Laderoute, Patrick Lincoln, Jose
Meseguer, and Kemal Sonmez. 2002. Pathway logic: symbolic analy-
sis of biological signaling. Pacific Symposium on Biocomputing 400–412.

Flach, Peter A., and Meelis Kull. 2015. Precision-recall-gain curves: PR
analysis done right. In Advances in neural information processing systems.

Flynn, Emily, Ana Almonte-Loya, and Gabriela K. Fragiadakis. 2023.
Single-Cell Multiomics. Annual Review of Biomedical Data Science 6(1):null.
_eprint: https://doi.org/10.1146/annurev-biodatasci-020422-050645.

Friedman, Jerome, Trevor Hastie, and Rob Tibshirani. 2010. Regulariza-
tion paths for generalized linear models via coordinate descent. Journal
of Statistical Software 33.

https://web.archive.org/web/20230227225743/https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/RPPA_intro/
https://web.archive.org/web/20230227225743/https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/RPPA_intro/

155

Gayoso, Adam, Zoë Steier, Romain Lopez, Jeffrey Regier, Kristopher L.
Nazor, Aaron Streets, and Nir Yosef. 2021. Joint probabilistic modeling
of single-cell multi-omic data with totalVI. Nature Methods 18(3):272–282.
Number: 3 Publisher: Nature Publishing Group.

Gelman, Andrew, John B. Carlin, Hal S. Stern, David B. Dunson, Aki
Vehtari, and Donald B. Rubin. 2014. Bayesian data analysis. 3rd ed. CRC
Press.

Gilks, W. R. 2005. Markov Chain Monte Carlo. In En-
cyclopedia of Biostatistics. John Wiley & Sons, Ltd. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/0470011815.b2a14021.

Gillespie, Marc, Bijay Jassal, Ralf Stephan, Marija Milacic, Karen Rothfels,
Andrea Senff-Ribeiro, Johannes Griss, Cristoffer Sevilla, Lisa Matthews,
Chuqiao Gong, Chuan Deng, Thawfeek Varusai, Eliot Ragueneau, Yusra
Haider, Bruce May, Veronica Shamovsky, Joel Weiser, Timothy Brunson,
Nasim Sanati, Liam Beckman, Xiang Shao, Antonio Fabregat, Konstanti-
nos Sidiropoulos, Julieth Murillo, Guilherme Viteri, Justin Cook, Solomon
Shorser, Gary Bader, Emek Demir, Chris Sander, Robin Haw, Guanming
Wu, Lincoln Stein, Henning Hermjakob, and Peter D’Eustachio. 2022. The
reactome pathway knowledgebase 2022. Nucleic Acids Research 50(D1):
D687–D692.

Gjerga, Enio, Panuwat Trairatphisan, Attila Gabor, Hermann Koch, Ce-
line Chevalier, Francesco Ceccarelli, Aurelien Dugourd, Alexander Mit-
sos, and Julio Saez-Rodriguez. 2020. Converting networks to predictive
logic models from perturbation signalling data with CellNOpt. bioRxiv
2020.03.04.976852.

Gong, Boying, Yun Zhou, and Elizabeth Purdom. 2021. Cobolt: integra-
tive analysis of multimodal single-cell sequencing data. Genome Biology
22(1):351.

156

Gregorczyk, Marco. 2010. An introduction to Gaussian Bayesian networks.
In Systems biology in drug discovery and development: Methods and protocols,
ed. Qing Yan, chap. 6, 121–147. Springer.

Grimsrud, Paul A., Danielle L. Swaney, Craig D. Wenger, Nicole A.
Beauchene, and Joshua J. Coon. 2010. Phosphoproteomics for the Masses.
ACS Chemical Biology 5(1):105–119. Publisher: American Chemical Soci-
ety.

Gut, Gilles, Stefan G. Stark, Gunnar Rätsch, and Natalie R. Davidson.
2021. pmVAE: Learning Interpretable Single-Cell Representations with
Pathway Modules. bioRxiv 2021.01.28.428664. Publisher: Cold Spring
Harbor Laboratory Section: New Results.

Guziolowski, Carito, Santiago Videla, Federica Eduati, Sven Thiele,
Thomas Cokelaer, Anne Siegel, and Julio Saez-Rodriguez. 2013. Exhaus-
tively characterizing feasible logic models of a signaling network using
Answer Set Programming. Bioinformatics 29(18):2320–2326.

Hacker News. 2023. A newcomer’s (angry) guide to R | Hacker
News. https://web.archive.org/web/20230515051910/https://news.
ycombinator.com/item?id=17305878.

Halasz, Melinda, Boris N. Kholodenko, Walter Kolch, and Tapesh Santra.
2016. Integrating network reconstruction with mechanistic modeling to
predict cancer therapies. Science Signaling 9(455):ra114.

Hanspers, Kristina, Anders Riutta, Martina Summer-Kutmon, and
Alexander R. Pico. 2020. Pathway information extracted from 25 years of
pathway figures. Genome Biology 21(1):273.

Hardoon, David R., Sandor Szedmak, and John Shawe-Taylor. 2004.
Canonical Correlation Analysis: An Overview with Application to Learn-

https://web.archive.org/web/20230515051910/https://news.ycombinator.com/item?id=17305878
https://web.archive.org/web/20230515051910/https://news.ycombinator.com/item?id=17305878

157

ing Methods. Neural Computation 16(12):2639–2664. Conference Name:
Neural Computation.

Henriques, David, Alejandro F. Villaverde, Miguel Rocha, Julio Saez-
Rodriguez, and Julio R. Banga. 2017. Data-driven reverse engineering of
signaling pathways using ensembles of dynamic models. PLOS Computa-
tional Biology 13(2):e1005379.

Hill, Steven M., Laura M. Heiser, Thomas Cokelaer, Michael Unger,
Nicole K. Nesser, Daniel E. Carlin, Yang Zhang, Artem Sokolov, Even O.
Paull, Chris K. Wong, Kiley Graim, Adrian Bivol, Haizhou Wang, Fan Zhu,
Bahman Afsari, Ludmila V. Danilova, Alexander V. Favorov, Wai Shing
Lee, Dane Taylor, Chenyue W. Hu, Byron L. Long, David P. Noren, Alexan-
der J. Bisberg, HPN-DREAM Consortium, Joe W. Gray, Michael Kellen,
Thea Norman, Stephen Friend, Amina A. Qutub, Elana J. Fertig, Yuan-
fang Guan, Mingzhou Song, Joshua M. Stuart, Paul T. Spellman, Heinz
Koeppl, Gustavo Stovolitzky, Julio Saez-Rodriguez, and Sach Mukherjee.
2016. Inferring causal molecular networks: empirical assessment through
a community-based effort. Nature Methods.

Hill, Steven M., Yiling Lu, Jennifer Molina, Laura M. Heiser, Paul T.
Spellman, Terence P. Speed, Joe W. Gray, Gordon B. Mills, and Sach
Mukherjee. 2012. Bayesian inference of signaling network topology in a
cancer cell line. Bioinformatics 28:2804–2810.

Hill, Steven M., Nicole K. Nesser, Katie Johnson-Camacho, Mara Jeffress,
Aimee Johnson, Chris Boniface, Simon E.F. Spencer, Yiling Lu, Laura M.
Heiser, Yancey Lawrence, Nupur T. Pande, James E. Korkola, Joe W. Gray,
Gordon B. Mills, Sach Mukherjee, and Paul T. Spellman. 2017. Con-
text specificity in causal signaling networks revealed by phosphoprotein
profiling. Cell Systems 73–83.

158

Hoadley, Katherine A., Christina Yau, Toshinori Hinoue, Denise M. Wolf,
Alexander J. Lazar, Esther Drill, Ronglai Shen, Alison M. Taylor, An-
drew D. Cherniack, Vésteinn Thorsson, Rehan Akbani, Reanne Bowlby,
Christopher K. Wong, Maciej Wiznerowicz, Francisco Sanchez-Vega,
A. Gordon Robertson, Barbara G. Schneider, Michael S. Lawrence, Houtan
Noushmehr, Tathiane M. Malta, The Cancer Genome Atlas Network,
Joshua M. Stuart, Christopher C. Benz, and Peter W. Laird. 2018. Cell-of-
Origin Patterns Dominate the Molecular Classification of 10,000 Tumors
from 33 Types of Cancer. Cell 173(2):291–304.e6. Publisher: Elsevier.

Hotelling, H. 1933. Analysis of a complex of statistical variables into
principal components. Journal of Educational Psychology 24:417–441. Place:
US Publisher: Warwick & York.

HOTELLING, HAROLD. 1936. RELATIONS BETWEEN TWO SETS OF
VARIATES*. Biometrika 28(3-4):321–377.

Hunter, Tony. 2009. Tyrosine phosphorylation: thirty years and counting.
Current Opinion in Cell Biology 21(2):140–146.

Hänzelmann, Sonja, Robert Castelo, and Justin Guinney. 2013. GSVA:
gene set variation analysis for microarray and RNA-Seq data. BMC
Bioinformatics 14(1):7.

info@sagebase.org, Sage Bionetworks. 2013. Hpn-dream breast cancer net-
work inference challenge; additional data details. https://www.synapse.
org/#!Wiki:syn1720047/ENTITY/56210.

Innes, Michael. 2018. Don’t unroll adjoint: Differentiating ssa-form pro-
grams. CoRR abs/1810.07951. 1810.07951.

Innes, Michael, Elliot Saba, Keno Fischer, Dhairya Gandhi, Marco Con-
cetto Rudilosso, Neethu Mariya Joy, Tejan Karmali, Avik Pal, and Viral

https://www.synapse.org/#!Wiki:syn1720047/ENTITY/56210
https://www.synapse.org/#!Wiki:syn1720047/ENTITY/56210
1810.07951

159

Shah. 2018. Fashionable modelling with flux. CoRR abs/1811.01457.
1811.01457.

Insitro. 2022. Insitro - Approach. https://web.archive.org/web/
20220923225015/https://www.insitro.com/approach.

Ishwaran, H., and U.B. Kogalur. 2007. Random survival forests for r. R
News 7(2):25–31.

Johnson, W. Evan, Cheng Li, and Ariel Rabinovic. 2007. Adjusting batch
effects in microarray expression data using empirical Bayes methods.
Biostatistics 8(1):118–127.

de Jong, Hidde. 2002. Modeling and Simulation of Genetic Regulatory
Systems: A Literature Review. Journal of Computational Biology 9(1):
67–103. Publisher: Mary Ann Liebert, Inc., publishers.

Kanehisa, Minoru, and Susumu Goto. 2000. KEGG: Kyoto Encyclopedia
of Genes and Genomes. Nucleic Acids Research 28(1):27–30.

Kern, Fabian, Tobias Fehlmann, and Andreas Keller. 2020. On the lifetime
of bioinformatics web services. Nucleic Acids Research 48(22):12523–12533.

Kholodenko, Boris, Michael B. Yaffe, and Walter Kolch. 2012. Com-
putational Approaches for Analyzing Information Flow in Biological
Networks. Science Signaling 5(220):re1.

Kholodenko, Boris N., John F. Hancock, and Walter Kolch. 2010. Sig-
nalling ballet in space and time. Nature Reviews Molecular Cell Biology
11(6):414–426.

Klami, Arto, Seppo Virtanen, and Samuel Kaski. 2013. Bayesian Canonical
Correlation Analysis. Journal of Machine Learning Research 14(30):965–
1003.

1811.01457
https://web.archive.org/web/20220923225015/https://www.insitro.com/approach
https://web.archive.org/web/20220923225015/https://www.insitro.com/approach

160

Klami, Arto, Seppo Virtanen, Eemeli Leppäaho, and Samuel Kaski. 2015.
Group Factor Analysis. IEEE transactions on neural networks and learning
systems 26(9):2136–2147.

Köksal, Ali Sinan, Kirsten Beck, Dylan R. Cronin, Aaron McKenna,
Nathan D. Camp, Saurabh Srivastava, Matthew E. MacGilvray, Rastislav
Bodik, Alejandro Wolf-Yadlin, Ernest Fraenkel, Jasmin Fisher, and An-
thony Gitter. 2018. Synthesizing signaling pathways from temporal phos-
phoproteomic data. Cell Reports 24:3607–3618.

Köller, Daphne. 2022. ICML 2022 workshop: AI for Sci-
ence. https://web.archive.org/web/20230607051326/https:
//icml.cc/Conferences/2022/Schedule?showEvent=13450.

Koster, J., and S. Rahmann. 2012. Snakemake–a scalable bioinformatics
workflow engine. Bioinformatics 28(19):2520–2522.

Krishnaswamy, Smita, Matthew H. Spitzer, Michael Mingueneau, Sean C.
Bendall, Oren Litvin, Erica Stone, Dana Pe’er, and Garry P. Nolan. 2014.
Conditional density-based analysis of T cell signaling in single-cell data.
Science 346(6213):1250689.

Kucukelbir, Alp, Rajesh Ranganath, Andrew Gelman, and David M. Blei.
2015. Automatic Variational Inference in Stan. ArXiv:1506.03431 [stat].

LaFramboise, Thomas. 2009. Single nucleotide polymorphism arrays: a
decade of biological, computational and technological advances. Nucleic
Acids Research 37(13):4181–4193.

Lawrence, Michael S., Petar Stojanov, Paz Polak, Gregory V. Kryukov,
Kristian Cibulskis, Andrey Sivachenko, Scott L. Carter, Chip Stewart,
Craig H. Mermel, Steven A. Roberts, Adam Kiezun, Peter S. Hammerman,
Aaron McKenna, Yotam Drier, Lihua Zou, Alex H. Ramos, Trevor J. Pugh,
Nicolas Stransky, Elena Helman, Jaegil Kim, Carrie Sougnez, Lauren

https://web.archive.org/web/20230607051326/https://icml.cc/Conferences/2022/Schedule?showEvent=13450
https://web.archive.org/web/20230607051326/https://icml.cc/Conferences/2022/Schedule?showEvent=13450

161

Ambrogio, Elizabeth Nickerson, Erica Shefler, Maria L. Cortés, Daniel
Auclair, Gordon Saksena, Douglas Voet, Michael Noble, Daniel DiCara,
Pei Lin, Lee Lichtenstein, David I. Heiman, Timothy Fennell, Marcin
Imielinski, Bryan Hernandez, Eran Hodis, Sylvan Baca, Austin M. Dulak,
Jens Lohr, Dan-Avi Landau, Catherine J. Wu, Jorge Melendez-Zajgla,
Alfredo Hidalgo-Miranda, Amnon Koren, Steven A. McCarroll, Jaume
Mora, Ryan S. Lee, Brian Crompton, Robert Onofrio, Melissa Parkin,
Wendy Winckler, Kristin Ardlie, Stacey B. Gabriel, Charles W. M. Roberts,
Jaclyn A. Biegel, Kimberly Stegmaier, Adam J. Bass, Levi A. Garraway,
Matthew Meyerson, Todd R. Golub, Dmitry A. Gordenin, Shamil Sunyaev,
Eric S. Lander, and Gad Getz. 2013. Mutational heterogeneity in cancer
and the search for new cancer-associated genes. Nature 499(7457):214–218.
Number: 7457 Publisher: Nature Publishing Group.

Lee, Jeongwoo, Do Young Hyeon, and Daehee Hwang. 2020. Single-
cell multiomics: technologies and data analysis methods. Experimental
& Molecular Medicine 52(9):1428–1442. Number: 9 Publisher: Nature
Publishing Group.

Leiserson, Mark D. M., Fabio Vandin, Hsin-Ta Wu, Jason R. Dobson,
Jonathan V. Eldridge, Jacob L. Thomas, Alexandra Papoutsaki, Youn-
hun Kim, Beifang Niu, Michael McLellan, Michael S. Lawrence, Abel
Gonzalez-Perez, David Tamborero, Yuwei Cheng, Gregory A. Ryslik,
Nuria Lopez-Bigas, Gad Getz, Li Ding, and Benjamin J. Raphael. 2015.
Pan-cancer network analysis identifies combinations of rare somatic mu-
tations across pathways and protein complexes. Nature Genetics 47(2):
106–114. Number: 2 Publisher: Nature Publishing Group.

Liberzon, Arthur, Chet Birger, Helga Thorvaldsdóttir, Mahmoud Ghandi,
Jill P. Mesirov, and Pablo Tamayo. 2015. The Molecular Signatures
Database (MSigDB) hallmark gene set collection. Cell systems 1(6):417–
425.

162

Lotfollahi, Mohammad, Anastasia Litinetskaya, and Fabian J. Theis.
2022. Multigrate: single-cell multi-omic data integration. Pages:
2022.03.16.484643 Section: New Results.

Luecken, Malte D, and Fabian J Theis. 2019. Current best practices in
single-cell RNA-seq analysis: a tutorial. Molecular Systems Biology 15(6):
e8746. Publisher: John Wiley & Sons, Ltd.

MacKay, David J. C. 1999. Comparison of Approximate Methods for Han-
dling Hyperparameters. Neural Computation 11(5):1035–1068. Conference
Name: Neural Computation.

Maghsoudi, Zeynab, Ha Nguyen, Alireza Tavakkoli, and Tin Nguyen.
2022. A comprehensive survey of the approaches for pathway analy-
sis using multi-omics data integration. Briefings in Bioinformatics 23(6):
bbac435.

Makrodimitris, Stavros, Bram Pronk, Tamim Abdelaal, and Marcel
Reinders. 2023. An in-depth comparison of linear and non-linear
joint embedding methods for bulk and single-cell multi-omics. Pages:
2023.04.10.535672 Section: New Results.

Manning, Christopher, and Hinrich Schutze. 1999. Foundations of Statis-
tical Natural Language Processing. MIT Press. Google-Books-ID: 3qnuD-
wAAQBAJ.

Mao, Weiguang, Elena Zaslavsky, Boris M. Hartmann, Stuart C. Sealfon,
and Maria Chikina. 2019. Pathway-level information extractor (PLIER)
for gene expression data. Nature Methods 16(7):607–610.

Meng, Chen, Azfar Basunia, Bjoern Peters, Amin Moghaddas Gholami,
Bernhard Kuster, and Aedín C. Culhane. 2019. MOGSA: Integrative
Single Sample Gene-set Analysis of Multiple Omics Data *. Molecular &
Cellular Proteomics 18(8):S153–S168. Publisher: Elsevier.

163

Meng, Chen, Dominic Helm, Martin Frejno, and Bernhard Kuster. 2016.
moCluster: Identifying Joint Patterns Across Multiple Omics Data Sets.
Journal of Proteome Research 15(3):755–765. Publisher: American Chemical
Society.

Merrell, David. 2022. Tcga hdf file pipeline. https://doi.org/10.5281/
zenodo.6977490.

Merrell, David, Aws Albarghouthi, and Loris D’Antoni. 2017. Weighted
Model Integration with Orthogonal Transformations. In Proceedings of the
Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI-17,
4610–4616.

Merrell, David, Thevaa Chandereng, and Yeonhee Park. 2023. A Markov
decision process for response-adaptive randomization in clinical trials.
Computational Statistics & Data Analysis 178:107599.

Mezlini, Aziz M., and Anna Goldenberg. 2017. Incorporating networks
in a probabilistic graphical model to find drivers for complex human
diseases. PLOS Computational Biology 13(10):e1005580.

Mo, Qianxing, Ronglai Shen, Cui Guo, Marina Vannucci, Keith S Chan,
and Susan G Hilsenbeck. 2018. A fully Bayesian latent variable model
for integrative clustering analysis of multi-type omics data. Biostatistics
19(1):71–86.

Mo, Qianxing, Sijian Wang, Venkatraman E. Seshan, Adam B. Olshen,
Nikolaus Schultz, Chris Sander, R. Scott Powers, Marc Ladanyi, and
Ronglai Shen. 2013. Pattern discovery and cancer gene identification
in integrated cancer genomic data. Proceedings of the National Academy
of Sciences 110(11):4245–4250. Publisher: Proceedings of the National
Academy of Sciences.

https://doi.org/10.5281/zenodo.6977490
https://doi.org/10.5281/zenodo.6977490

164

Molinelli, Evan J., Anil Korkut, Weiqing Wang, Martin L. Miller,
Nicholas P. Gauthier, Xiaohong Jing, Poorvi Kaushik, Qin He, Gordon
Mills, David B. Solit, Christine A. Pratilas, Martin Weigt, Alfredo Braun-
stein, Andrea Pagnani, Riccardo Zecchina, and Chris Sander. 2013. Per-
turbation biology: inferring signaling networks in cellular systems. PLOS
Computational Biology 9.

Moore, Lisa D., Thuc Le, and Guoping Fan. 2013. DNA Methylation
and Its Basic Function. Neuropsychopharmacology 38(1):23–38. Number: 1
Publisher: Nature Publishing Group.

Murtagh, Fionn, and Pedro Contreras. 2012. Algo-
rithms for hierarchical clustering: an overview. WIREs
Data Mining and Knowledge Discovery 2(1):86–97. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/widm.53.

Neal, Radford M. 2012. Bayesian Learning for Neural Networks. Springer
Science & Business Media. Google-Books-ID: LHHrBwAAQBAJ.

Neuhaus, John, and Charles McCulloch. 2011. Generalized lin-
ear models. WIREs Computational Statistics 3(5):407–413. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/wics.175.

Newman, Robert H., Jin Zhang, and Heng Zhu. 2014. Toward a systems-
level view of dynamic phosphorylation networks. Frontiers in Genetics 5:
263.

Norman, Utku, and A. Ercument Cicek. 2019. ST-Steiner: a spatio-
temporal gene discovery algorithm. Bioinformatics 35(18):3433–3440.

Oates, Chris J., Jim Korkola, Joe W. Gray, and Sach Mukherjee. 2014. Joint
estimation of multiple related biological networks. The Annals of Applied
Statistics 8:1892–1919.

165

Olivier, Magali, Monica Hollstein, and Pierre Hainaut. 2010. TP53 Muta-
tions in Human Cancers: Origins, Consequences, and Clinical Use. Cold
Spring Harbor Perspectives in Biology 2(1):a001008.

O’Reilly, Francis J., and Juri Rappsilber. 2018. Cross-linking mass spec-
trometry: methods and applications in structural, molecular and systems
biology. Nature Structural & Molecular Biology 25(11):1000–1008. Number:
11 Publisher: Nature Publishing Group.

Pandey, Akhilesh, WikiPathways Maintenance Bot, Nathan Salomo-
nis, Michiel Adriaens, Alex Pico, Kristina Hanspers, NetPath, Chris-
tine Chichester, Zahra Roudbari, Lauren J. Dupuis, Egon Willigha-
gen, Eric Weitz, and Finterly Hu. 2023. EGF/EGFR signaling pathway.
https://www.wikipathways.org/instance/WP437.

Park, YongKeun, Christian Depeursinge, and Gabriel Popescu. 2018.
Quantitative phase imaging in biomedicine. Nature Photonics 12(10):
578–589. Number: 10 Publisher: Nature Publishing Group.

Patil, Ashwini, Yutaro Kumagai, Kuo-ching Liang, Yutaka Suzuki, and
Kenta Nakai. 2013. Linking Transcriptional Changes over Time in Stim-
ulated Dendritic Cells to Identify Gene Networks Activated during the
Innate Immune Response. PLOS Computational Biology 9(11):e1003323.

Pawson, T., and N. Warner. 2007. Oncogenic re-wiring of cellular signaling
pathways. Oncogene 26(9):1268–1275.

Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-
learn: Machine learning in Python. Journal of Machine Learning Research
12:2825–2830.

https://www.wikipathways.org/instance/WP437

166

Pico, Alexander R., Thomas Kelder, Martijn P. van Iersel, Kristina
Hanspers, Bruce R. Conklin, and Chris Evelo. 2008. WikiPathways: Path-
way Editing for the People. PLOS Biology 6(7):e184. Publisher: Public
Library of Science.

Ranganath, Rajesh, Sean Gerrish, and David Blei. 2014. Black Box Varia-
tional Inference. In Proceedings of the Seventeenth International Conference
on Artificial Intelligence and Statistics, 814–822. PMLR. ISSN: 1938-7228.

Rauluseviciute, Ieva, Finn Drabløs, and Morten Beck Rye. 2019. DNA
methylation data by sequencing: experimental approaches and recom-
mendations for tools and pipelines for data analysis. Clinical Epigenetics
11(1):193.

Recursion Pharmaceuticals. 2023a. Approach. https://web.archive.
org/web/20230514150945/https://www.recursion.com/approach.

———. 2023b. RxRx. https://web.archive.org/web/20230514073900/
https://www.rxrx.ai/.

Regev, Aviv, William Silverman, and Ehud Shapiro. 2000. Representation
and simulation of biochemical processes using the π-calculus process
algebra. In Biocomputing 2001, 459–470. WORLD SCIENTIFIC.

Ritz, Anna, Allison N. Tegge, Hyunju Kim, Christopher L. Poirel, and
T. M. Murali. 2014. Signaling hypergraphs. Trends in Biotechnology 32(7):
356–362.

Sachs, Karen, Omar Perez, Dana Pe’er, Douglas A. Lauffenburger, and
Garry P. Nolan. 2005. Causal Protein-Signaling Networks Derived from
Multiparameter Single-Cell Data. Science 308(5721):523–529.

Salimans, Tim, and David A. Knowles. 2014. On Using Control Variates
with Stochastic Approximation for Variational Bayes and its Connection
to Stochastic Linear Regression. ArXiv:1401.1022 [stat].

https://web.archive.org/web/20230514150945/https://www.recursion.com/approach
https://web.archive.org/web/20230514150945/https://www.recursion.com/approach
https://web.archive.org/web/20230514073900/https://www.rxrx.ai/
https://web.archive.org/web/20230514073900/https://www.rxrx.ai/

167

Salvatier, John, Thomas V. Wiecki, and Christopher Fonnesbeck. 2016.
Probabilistic programming in Python using PyMC3. PeerJ Computer
Science 2:e55.

Schaefer, Carl F., Kira Anthony, Shiva Krupa, Jeffrey Buchoff, Matthew
Day, Timo Hannay, and Kenneth H. Buetow. 2009. PID: the Pathway
Interaction Database. Nucleic Acids Research 37(Database issue):D674–
D679.

Schoeberl, Birgit, Claudia Eichler-Jonsson, Ernst Dieter Gilles, and Ger-
traud Müller. 2002. Computational modeling of the dynamics of the
MAP kinase cascade activated by surface and internalized EGF receptors.
Nature Biotechnology 20(4):370–375.

Shen, Ronglai, Adam B. Olshen, and Marc Ladanyi. 2009. Integrative clus-
tering of multiple genomic data types using a joint latent variable model
with application to breast and lung cancer subtype analysis. Bioinformatics
25(22):2906–2912.

Shojaie, Ali, and George Michailidis. 2010. Discovering graphical Granger
causality using the truncating lasso penalty. Bioinformatics 26(18):
i517–i523. https://academic.oup.com/bioinformatics/article-pdf/
26/18/i517/536841/btq377.pdf.

Smith, Tim, and Kevin Ushey. 2023. aRrgh: a newcomer’s (angry) guide
to R. https://web.archive.org/web/20230515051445/http://arrgh.
tim-smith.us/.

Smolen, Paul, Douglas A. Baxter, and John H. Byrne. 2000. Modeling
transcriptional control in gene networks—methods, recent results, and
future directions. Bulletin of Mathematical Biology 62(2):247–292.

https://academic.oup.com/bioinformatics/article-pdf/26/18/i517/536841/btq377.pdf
https://academic.oup.com/bioinformatics/article-pdf/26/18/i517/536841/btq377.pdf
https://web.archive.org/web/20230515051445/http://arrgh.tim-smith.us/
https://web.archive.org/web/20230515051445/http://arrgh.tim-smith.us/

168

Spencer, Simon E.F., Steven M. Hill, and Sach Mukherjee. 2015. Inferring
network structure from interventional time-course experiments. The
Annals of Applied Statistics 9:507–524.

Stoeckius, Marlon, Christoph Hafemeister, William Stephenson, Brian
Houck-Loomis, Pratip K. Chattopadhyay, Harold Swerdlow, Rahul Satija,
and Peter Smibert. 2017. Simultaneous epitope and transcriptome mea-
surement in single cells. Nature Methods 14(9):865–868. Number: 9
Publisher: Nature Publishing Group.

Stuart, Joshua. 2023. PARADIGM | Systems Biology Group. https:
//web.archive.org/web/20230607223156/https://sysbiowiki.soe.
ucsc.edu/paradigm.

Subramanian, A., P. Tamayo, V. K. Mootha, S. Mukherjee, B. L. Ebert,
M. A. Gillette, A. Paulovich, S. L. Pomeroy, T. R. Golub, E. S. Lander, and
J. P. Mesirov. 2005. Gene set enrichment analysis: A knowledge-based
approach for interpreting genome-wide expression profiles. Proceedings
of the National Academy of Sciences 102(43):15545–15550.

Terry M. Therneau, and Patricia M. Grambsch. 2000. Modeling survival
data: Extending the Cox model. New York: Springer.

The Cancer Genome Atlas Network. 2012a. Comprehensive genomic
characterization of squamous cell lung cancers. Nature 489(7417):519–
525.

———. 2012b. Comprehensive molecular characterization of human
colon and rectal cancer. Nature 487(7407):330–337.

———. 2012c. Comprehensive molecular portraits of human breast
tumours. Nature 490(7418):61–70.

———. 2014. Comprehensive molecular characterization of urothelial
bladder carcinoma. Nature 507(7492):315–322.

https://web.archive.org/web/20230607223156/https://sysbiowiki.soe.ucsc.edu/paradigm
https://web.archive.org/web/20230607223156/https://sysbiowiki.soe.ucsc.edu/paradigm
https://web.archive.org/web/20230607223156/https://sysbiowiki.soe.ucsc.edu/paradigm

169

The Cancer Genome Atlas Network, John N Weinstein, Eric A Collisson,
Gordon B Mills, Kenna R Mills Shaw, Brad A Ozenberger, Kyle Ellrott,
Ilya Shmulevich, Chris Sander, and Joshua M Stuart. 2013. The Cancer
Genome Atlas Pan-Cancer analysis project. Nature Genetics 45(10):1113–
1120.

Tipping, Michael E. 2001. Sparse Bayesian Learning and the Relevance
Vector Machine. Journal of Machine Learning Research 1(Jun):211–244.

Udell, Madeleine. 2015. Generalized Low Rank Models. Ph.D. thesis,
Stanford University.

Upadhya, Swathi Ramachandra, and Colm J. Ryan. 2023. Antibody
reliability influences observed mRNA–protein correlations in tumour
samples. Life Science Alliance 6(8). Publisher: Life Science Alliance Section:
Research Articles.

Vaske, Charles J., Stephen C. Benz, J. Zachary Sanborn, Dent Earl, Szeto
Christopher, Jingchun Zhu, David Haussler, and Joshua M. Stuart. 2010a.
Inference of patient-specific pathway activities from multi-dimensional
cancer genomics data using paradigm. Bioinformatics 26:i237–i245.

Vaske, Charles J., Stephen C. Benz, J. Zachary Sanborn, Dent Earl, Christo-
pher Szeto, Jingchun Zhu, David Haussler, and Joshua M. Stuart. 2010b.
Inference of patient-specific pathway activities from multi-dimensional
cancer genomics data using PARADIGM. Bioinformatics 26(12):i237–i245.

Wang, Bo, Aziz M. Mezlini, Feyyaz Demir, Marc Fiume, Zhuowen Tu,
Michael Brudno, Benjamin Haibe-Kains, and Anna Goldenberg. 2014.
Similarity network fusion for aggregating data types on a genomic scale.
Nature Methods 11(3):333–337. Number: 3 Publisher: Nature Publishing
Group.

170

Welch, Joshua D., Velina Kozareva, Ashley Ferreira, Charles Vanderburg,
Carly Martin, and Evan Z. Macosko. 2019. Single-Cell Multi-omic In-
tegration Compares and Contrasts Features of Brain Cell Identity. Cell
177(7):1873–1887.e17. Publisher: Elsevier.

Werhli, Adriano V., and Dirk Husmeier. 2007. Reconstructing gene regula-
tory networks with Bayesian networks by combining expression data with
multiple sources of prior knowledge. Statistical Applications in Genetics
and Molecular Biology 6.

White, Frames, Michael Abbott, Miha Zgubic, Jarrett Revels, Seth Axen,
Alex Arslan, Simeon Schaub, Nick Robinson, Yingbo Ma, Gaurav Dhin-
gra, Will Tebbutt, David Widmann, Niklas Heim, Niklas Schmitz, Christo-
pher Rackauckas, Carlo Lucibello, Rainer Heintzmann, frankschae, An-
dreas Noack, Keno Fischer, Alex Robson, cossio, Jerry Ling, mattBrzezin-
ski, Rory Finnegan, Andrei Zhabinski, Daniel Wennberg, Mathieu Be-
sançon, and Pietro Vertechi. 2023. Juliadiff/chainrules.jl: v1.49.0. https:
//doi.org/10.5281/zenodo.7870094.

Wolf, Daisy, and Vijay Pande. 2023. Hey Tech, It’s Time
To Build. In Healthcare. | Andreessen Horowitz. https:
//web.archive.org/web/20230515020712/https://a16z.com/2023/
04/20/hey-tech-its-time-to-build-in-healthcare/.

Wu, Mike, and Noah Goodman. 2018. Multimodal Generative Models for
Scalable Weakly-Supervised Learning. In Advances in Neural Information
Processing Systems, vol. 31. Curran Associates, Inc.

Wysocka, Magdalena, Oskar Wysocki, Marie Zufferey, Dónal Landers,
and André Freitas. 2023. A systematic review of biologically-informed
deep learning models for cancer: fundamental trends for encoding and
interpreting oncology data. ArXiv:2207.00812 [cs, q-bio].

https://doi.org/10.5281/zenodo.7870094
https://doi.org/10.5281/zenodo.7870094
https://web.archive.org/web/20230515020712/https://a16z.com/2023/04/20/hey-tech-its-time-to-build-in-healthcare/
https://web.archive.org/web/20230515020712/https://a16z.com/2023/04/20/hey-tech-its-time-to-build-in-healthcare/
https://web.archive.org/web/20230515020712/https://a16z.com/2023/04/20/hey-tech-its-time-to-build-in-healthcare/

171

Xu, Yang, Priyojit Das, and Rachel Patton McCord. 2022. SMILE: mutual
information learning for integration of single-cell omics data. Bioinfor-
matics 38(2):476–486.

Yang, Zi, and George Michailidis. 2016. A non-negative matrix factoriza-
tion method for detecting modules in heterogeneous omics multi-modal
data. Bioinformatics 32(1):1–8.

Young, Matthew D., Matthew J. Wakefield, Gordon K. Smyth, and Alicia
Oshlack. 2010. Gene ontology analysis for RNA-seq: accounting for
selection bias. Genome Biology 11(2):R14.

Zhang, Yang, and Mingzhou Song. 2013. Deciphering interactions in
causal networks without parametric assumptions. arXiv arXiv:1311.2707.
1311.2707.

Zhou, Manqi, Hao Zhang, Zilong Bai, Dylan Mann-Krzisnik, Fei Wang,
and Yue Li. 2023. Single-cell multi-omic topic embedding reveals cell-
type-specific and COVID-19 severity-related immune signatures. Pages:
2023.01.31.526312 Section: New Results.

Zhuang, Xiaowei. 2021. Spatially resolved single-cell genomics and tran-
scriptomics by imaging. Nature methods 18(1):18–22.

Zou, Hui, Trevor Hastie, and Robert Tibshirani. 2007. On the “degrees of
freedom” of the lasso. The Annals of Statistics 35:2173–2192.

1311.2707

	Contents
	List of Tables
	List of Figures
	Abstract
	Introduction
	Motivation
	Scope
	Biological background
	Unique challenges for machine learning on omics data

	Inferring the structure of a signaling pathway from phosphoproteomic time series
	Introduction
	Materials and methods
	Results
	Discussion

	Viewing multiomic data through the lens of matrix factorization and gene sets
	Introduction
	Proposed method
	Evaluation
	Discussion

	Discussion and closing remarks
	Parting thoughts on SSPS, PathMatFac, and biological prior knowledge
	Research practices and methodology
	Prospects for machine learning on omics data

	Colophon
	References

