The genetic analysis of
high-throughput phenotypes

Karl Broman

Biostatistics & Medical Informatics, University of Wisconsin – Madison

kbroman.org
github.com/kbroman
@kwbroman

slides: bit.ly/Texas2015

Inbred mice

2

Human vs mouse

3

Intercross

4

Genome scan for QTL

5

Genome scan for QTL

5

Genome-scale phenotypes

6

Why?

7

But more is not necessarily better

8

Challenges: diagnostics

9

Challenges: diagnostics

10

Challenges: metadata

What the heck is “FAD_NAD SI 8.3_3.3G”?

11

Challenges: Organizing & automating

12

Challenges: Scale of the results

13

What was the question again?

14

The ridiculome

15

Pleiotropy?

16

Causal?

17

Multivariate analysis

18

Multivariate analysis

19

Composite phenotypes

20

Share more data, sooner.

21

Training

22

Interactive graphics

23

All graphs can be improved with interactivity

24

Genome scan for a longitudinal phenotype

25

Interactivity is great for teaching

26

Interactive eQTL plot

27

D3 is awesome!

You just need to learn html, css, svg, and javascript.

And don’t forget .enter()

http://mbostock.github.io/d3/talk/20111018/collision.html

28

R/qtlcharts

29

Summary

30

Acknowledgments

Alan Attie
Mark Keller
Biochemistry, UW–Madison
Brian Yandell Statistics and Horticulture, UW–Madison
Christina Kendziorski
Aimee Teo Broman
Biostatistics & Medical Informatics, UW–Madison
Eric Schadt Mount Sinai
Danielle Greenawalt
Amit Kulkarni
Merck & Co., Inc.
Śaunak Sen Epidemiology & Biostatistics, UC-San Francisco
Edgar Spalding
Candace Moore
Logan Johnson
Botany, UW-Madison

31

slides: bit.ly/Texas2015  

kbroman.org

github.com/kbroman

@kwbroman

kbroman.org/qtlcharts

32