Mapping multiple QTL in experimental crosses

Karl W Broman
Biostatistics & Medical Informatics
University of Wisconsin – Madison

www.biostat.wisc.edu/~kbroman
Backcross
Intercross

P₁ × P₂

F₁ × F₁

F₂
Phenotype data

250 male mice from the backcross (A × B) × B
Blood pressure after two weeks drinking water with 1% NaCl

Blood pressure
90 100 110 120 130
Genotype data
Goals

- Identify quantitative trait loci (QTL) (and interactions among QTL)
- Interval estimates of QTL location
- Estimated QTL effects
The missing data problem: Markers \leftrightarrow QTL

The model selection problem: QTL, covariates \rightarrow phenotype
• Split mice into groups according to genotype at a marker.
• Do a t-test / ANOVA.
• Repeat for each marker.
Lander & Botstein (1989)

• Assume a single QTL model.

• Consider each position in the genome, one at a time, as the location of the putative QTL.

• Let $q = 0/1$ if the (unobserved) QTL genotype is BB/AB. (Or $0/1/2$ if the QTL genotype is AA/AB/BB in an intercross.)

Assume $y \mid q \sim N(\mu_q, \sigma)$

• Calculate $p_q = Pr(q \mid \text{marker data})$.

$y \mid \text{marker data} \sim \sum_q p_q \phi(y \mid \mu_q, \sigma)$

• $\text{LOD}(\lambda) = \log_{10} \left\{ \frac{Pr(y \mid \text{QTL at } \lambda, \hat{\mu}_q, \hat{\sigma}_\lambda)}{Pr(y \mid \text{no QTL}, \hat{\mu}, \hat{\sigma})} \right\}$
Permutation test

- Individuals
- Genotype data
- Markers
- Phenotypes
- LOD scores
- Maximum LOD score
Permutation results

Genome-wide maximum LOD score
Modeling multiple QTL

- Reduce residual variation \rightarrow increased power
- Separate linked QTL
- Identify interactions among QTL (epistasis)
Estimated effects

1 x 4

Chr 1 genotype

Blood pressure

BB

BA

6 x 15

Chr 6 genotype

Blood pressure

BB

BA

Chr 4 genotype

Blood pressure

BB

BA

Chr 15 Genotype

Blood pressure

BB

BA
Hypothesis testing?

- In the past, QTL mapping has been regarded as a task of hypothesis testing.

 Is this a QTL?

 Much of the focus has been on adjusting for test multiplicity.

- It is better to view the problem as one of model selection.

 What set of QTL are well supported?
 Is there evidence for QTL-QTL interactions?

Model = a defined set of QTL and QTL-QTL interactions (and possibly covariates and QTL-covariate interactions).
Model selection

- **Class of models**
 - Additive models
 - + pairwise interactions
 - + higher-order interactions
 - Impose hierarchy on interactions?
 - Don’t allow QTL to be too close

- **Model fit**
 - Maximum likelihood
 - Haley-Knott regression
 - extended Haley-Knott
 - Multiple imputation
 - MCMC

- **Model comparison**
 - Estimated prediction error
 - AIC, BIC, penalized likelihood
 - Bayes

- **Model search**
 - Forward selection
 - Backward elimination
 - Stepwise selection
 - Randomized algorithms
• Selection of a model includes two types of errors:
 – Miss important terms (QTL or interactions)
 – Include extraneous terms

• Unlike in hypothesis testing, we can make both errors at the same time.

• Identify as many correct terms as possible, while controlling the rate of inclusion of extraneous terms.

• Want the major players; correct identification of interactions is of secondary importance.
What is special here?

- Goal: identify the major players
- A continuum of ordinal-valued covariates (the genetic loci)
- Association among the covariates
 - Loci on different chromosomes are independent
 - Along chromosome, a very simple (and known) correlation structure
Automation

- Assistance to the masses
- Understanding performance
- Many phenotypes
Additive QTL

Simple situation:
- Dense markers
- Complete genotype data
- No epistasis

\[y = \mu + \sum \beta_j q_j + \epsilon \] which \(\beta_j \neq 0 \)?

\[pLOD(\gamma) = LOD(\gamma) - T |\gamma| \]
Additive QTL

Simple situation:

- Dense markers
- Complete genotype data
- No epistasis

\[y = \mu + \sum \beta_j q_j + \epsilon \]

which \(\beta_j \neq 0 \)?

\[pLOD(\gamma) = LOD(\gamma) - T |\gamma| \]

0 vs 1 QTL: \(pLOD(\emptyset) = 0 \)

\[pLOD(\{\lambda\}) = LOD(\{\lambda\}) - T \]
Additive QTL

Simple situation:

- Dense markers
- Complete genotype data
- No epistasis

\[y = \mu + \sum \beta_j q_j + \epsilon \]

which \(\beta_j \neq 0 \)?

\[\text{pLOD}(\gamma) = \text{LOD}(\gamma) - T |\gamma| \]

For the mouse genome:

\[T = 2.69 \text{ (BC) or } 3.52 \text{ (F}_2\text{)} \]
Experience

- Controls rate of inclusion of extraneous terms
- Forward selection over-selects
- Forward selection followed by backward elimination works as well as MCMC
- Need to define performance criteria
- Need large-scale simulations

Broman & Speed, JRSS B 64:641-656, 2002
Epistasis

\[y = \mu + \sum \beta_j q_j + \sum \gamma_{jk} q_j q_k + \epsilon \]

\[pLOD(\gamma) = LOD(\gamma) - T_m |\gamma|_m - T_i |\gamma|_i \]

\[T_m = \text{as chosen previously} \]

\[T_i = ? \]
Imagine there are two additive QTL and consider a 2d, 2-QTL scan.

\[T_i = \text{95th percentile of the distribution of} \]
\[\max \text{LOD}_f(\lambda_1, \lambda_2) - \max \text{LOD}_a(\lambda_1, \lambda_2) \]
Imagine there are two additive QTL and consider a 2d, 2-QTL scan.

\[T_i = \text{95th percentile of the distribution of} \]
\[\max \text{LOD}_f(\lambda_1, \lambda_2) - \max \text{LOD}_a(\lambda_1, \lambda_2) \]

For the mouse genome:

\[T_m = 2.69 \text{ (BC)} \text{ or } 3.52 \text{ (F}_2\text{)} \]
\[T_i^H = 2.62 \text{ (BC)} \text{ or } 4.28 \text{ (F}_2\text{)} \]
Imagine there is one QTL and consider a 2d, 2-QTL scan.

\[T_m + T_i = 95\text{th percentile of the distribution of} \]
\[\max \text{LOD}_f(\lambda_1, \lambda_2) - \max \text{LOD}_1(\lambda) \]
Imagine there is one QTL and consider a 2d, 2-QTL scan.

\[T_m + T_i = 95\text{th percentile of the distribution of} \]
\[\max LOD_f(\lambda_1, \lambda_2) - \max LOD_1(\lambda) \]

For the mouse genome:

\[T_m = 2.69 \text{ (BC)} \text{ or } 3.52 \text{ (F}_2\text{)} \]
\[T_i^H = 2.62 \text{ (BC)} \text{ or } 4.28 \text{ (F}_2\text{)} \]
\[T_i^L = 1.19 \text{ (BC)} \text{ or } 2.69 \text{ (F}_2\text{)} \]
Models as graphs
Results

LOD = 23.1
Drop one term?

\[
\begin{align*}
T_m &= 2.69 & T_i^H &= 2.62 & T_i^L &= 1.19 & T_m + T_i^H &= 5.31 & T_m + T_i^L &= 3.88 & 2T_m &= 5.38
\end{align*}
\]
Drop one term?

\[T_m = 2.69 \quad T_i^H = 2.62 \quad T_i^L = 1.19 \quad T_m + T_i^H = 5.31 \quad T_m + T_i^L = 3.88 \quad 2T_m = 5.38 \]
Drop one term?

\[T_m = 2.69 \quad T_i^H = 2.62 \quad T_i^L = 1.19 \quad T_m + T_i^H = 5.31 \quad T_m + T_i^L = 3.88 \quad 2T_m = 5.38 \]
Drop one term?

\[T_m = 2.69 \quad T_i^H = 2.62 \quad T_i^L = 1.19 \quad T_m + T_i^H = 5.31 \quad T_m + T_i^L = 3.88 \quad 2T_m = 5.38 \]
Drop one term?

\[T_m = 2.69 \quad T_i^H = 2.62 \quad T_i^L = 1.19 \quad T_m + T_i^H = 5.31 \quad T_m + T_i^L = 3.88 \quad 2T_m = 5.38 \]
Drop one at time

\[
T_m = 2.69 \quad T_i^H = 2.62 \quad T_i^L = 1.19 \quad T_m + T_i^H = 5.31 \quad T_m + T_i^L = 3.88 \quad 2T_m = 5.38
\]
Add an interaction?

\[T_m = 2.69 \quad T_i^H = 2.62 \quad T_i^L = 1.19 \quad T_m + T_i^H = 5.31 \quad T_m + T_i^L = 3.88 \quad 2T_m = 5.38 \]
Add an interaction?

\[T_m = 2.69 \quad T_i^H = 2.62 \quad T_i^L = 1.19 \quad T_m + T_i^H = 5.31 \quad T_m + T_i^L = 3.88 \quad 2T_m = 5.38 \]
Add an interaction?

\[T_m = 2.69 \quad T_i^H = 2.62 \quad T_i^L = 1.19 \quad T_m + T_i^H = 5.31 \quad T_m + T_i^L = 3.88 \quad 2T_m = 5.38 \]
Add an interaction?

\[T_m = 2.69 \quad T_i^H = 2.62 \quad T_i^L = 1.19 \quad T_m + T_i^H = 5.31 \quad T_m + T_i^L = 3.88 \quad 2T_m = 5.38 \]
Add an interaction?

$T_m = 2.69 \quad T_i^H = 2.62 \quad T_i^L = 1.19 \quad T_m + T_i^H = 5.31 \quad T_m + T_i^L = 3.88 \quad 2T_m = 5.38$
Add another QTL?

\[
\begin{align*}
T_m &= 2.69 \\
T_i^H &= 2.62 \\
T_i^L &= 1.19 \quad T_m + T_i^H = 5.31 \\
T_m + T_i^L &= 3.88 \quad 2T_m = 5.38
\end{align*}
\]
Add another QTL?

\[T_m = 2.69 \quad T_i^H = 2.62 \quad T_i^L = 1.19 \quad T_m + T_i^H = 5.31 \quad T_m + T_i^L = 3.88 \quad 2T_m = 5.38 \]
Add another QTL?

\[T_m = 2.69 \quad T_i^H = 2.62 \quad T_i^L = 1.19 \quad T_m + T_i^H = 5.31 \quad T_m + T_i^L = 3.88 \quad 2T_m = 5.38 \]
Add a pair of QTL?

$T_m = 2.69 \quad T_i^H = 2.62 \quad T_i^L = 1.19 \quad T_m + T_i^H = 5.31 \quad T_m + T_i^L = 3.88 \quad 2T_m = 5.38$
To do

• Study performance
 (especially relative to other approaches)

• Improve search procedures

• Measuring model uncertainty

• Measuring uncertainty in QTL location

• Covariates and QTL × covariate interactions

• That evil X chromosome

• Treat linked QTL differently?
• QTL mapping is a model selection problem

• The criterion for comparing models is most important

• We’re focusing on a penalized likelihood method and believe we have a practiceable solution
Acknowledgments

Ani Manichaikul
Johns Hopkins University
(now at University of Virginia)

Gary Churchill
Jackson Laboratory

Śaunak Sen
University of California, San Francisco

Terry Speed
University of California, Berkeley

Brian Yandell
University of Wisconsin – Madison

Fumihiro Sugiyama
now at University of Tsukuba, Japan

Bev Paigen
Jackson Laboratory
Bayes/MCMC

Advantages
- All analysis aspects combined
- More fully captures uncertainty
- More clean expression of uncertainty

Disadvantages
- May require a specialist
- Prior specification is difficult
- Bayes factors can be difficult to interpret
- Can be difficult to assess performance