Creating effective figures and tables

Karl W Broman

Biostatistics \& Medical Informatics
University of Wisconsin - Madison

kbroman.org
github.com/kbroman
Qkwbroman

Slides: tinyurl.com/graphs2017

Displaying data well

- Be accurate and clear.
- Let the data speak.
- Show as much information as possible, taking care not to obscure the message.
- Science not sales.
- Avoid unnecessary frills (esp. gratuitous 3d).
- In tables, every digit should be meaningful. Don't drop ending 0's.

Show the data

Avoid pie charts

Avoid pie charts

Avoid pie charts

Avoid pie charts

via @MonaChalabi (bit.ly/pie_vs_barchart)

Avoid pie charts

via @MonaChalabi (bit.ly/pie_vs_barchart)

Avoid pie charts

via @MonaChalabi (bit.ly/pie_vs_barchart)

Avoid pie charts

via @MonaChalabi (bit.ly/pie_vs_barchart)

Consider logs

Group

Group

Consider logs

Consider logs

Consider logs

Consider logs

Consider logs

Consider logs

Consider logs

Take differences

Another "take logs" example

Chromosome 1

Chromosome 14

Chromosome 4

Chromosome 19

Chromosome 7

Chromosome 21

Ease comparisons

(things to be compared should be adjacent)

Ease comparisons

(add a bit of color)

AA
AB
BB

Which comparison is easiest?

Don't distort the quantities (value \propto radius)

Don't distort the quantities

(value \propto area)

Don't use areas at all
(value \propto length)

Encoding data

Quantities

- Position
- Length
- Angle
- Area
- Luminance (light/dark)
- Chroma (amount of color)

Categories

- Shape
- Hue (which color)
- Texture
- Width

Ease comparisons

(align things vertically)

Women

Men

Ease comparisons

(use common axes)

Men

Women

Men

Use labels not legends

Don't sort alphabetically

Must you include 0?

A bad table

N	$b / c=10.0$		$b / c=10.0$		$b / c=100.0$	
	r^{\star}	G	r^{\star}	G	r^{\star}	G
3	2	0.2	2	2.225	2	22.47499
4	2	0.26333	2	2.88833	2	29.13832
5	2	0.32333	3	3.54167	3	35.79166
6	3	0.38267	3	4.23767	3	42.78764
7	3	0.446	3	4.901	3	49.45097
8	3	0.50743	4	5.5765	4	56.33005
9	3	0.56743	4	6.26025	4	63.20129
10	4	0.62948		6.92358	4	69.86462

Fewer digits

N	$b / c=10.0$		$b / c=10.0$		$b / c=100.0$	
	r^{\star}	G	r^{\star}	G	r^{\star}	G
3	2	0.20	2	2.2	2	22
4	2	0.26	2	2.9	2	29
5	2	0.32	3	3.5	3	36
6	3	0.38	3	4.2	3	43
7	3	0.45	3	4.9	3	49
8	3	0.51	4	5.6	4	56
9	3	0.57	4	6.3	4	63
10	4	0.63	4	6.9	4	70

	1990		2005		2010		p value
	n	Rate (95\% CI)	n	Rate (95\% CI)	n	Rate (95\% CI)	
(Continued from previous page)							
Globally							
<75 years							
Incidence	6353868	159.22 (145.32-174.98)	9288048	$167 \cdot 45$ (150.96-187.11)	10469624	168.75 (152.43-187.09)	0.208
Prevalence	13234062	324.26 (288.74-374.96)	20187246	358.58 (317.58-412.79)	23052804	366.93 (328.04-420.66)	0.086
MIR	.	0.359 (0.318-0.409)	.	0.293 (0.249-0.332)	.	0.254 (0.212-0.287)	<0.001
DALYs lost	63991864	1543.96 (1452.03-1728.25)	74855520	1326.17 (1172.08-1388.74)	73293552	1163.448 (1011.43-1232.19)	<0.001
Mortality	2301435	$57 \cdot 38$ (54.12-64.27)	2734251	49.16 (43.60-51.55)	2668499	42.89 (37.65-45.81)	<0.001
≥ 75 years							
Incidence	3725067	$3173 \cdot 50$ (2932-14-3422.23)	5446077	3082.97 (2819.52-3372.55)	6424911	3113.00 (2850.95-3403.57)	$0 \cdot 361$
Prevalence	4681276	$3974 \cdot 37$ (3609.66-4441.23)	8308337	$4700 \cdot 18$ (4239.37-5256.84)	9972153	$4835 \cdot 38$ (4382.63-5433.92)	0.005
MIR	.	0.634 (0.575-0.709)	.	0.543 (0.476-0.607)	.	0.500 (0.439-0.560)	<0.001
DALYs	22018520	18665.35 (17464.55-20 408.51)	27096178	15300.36 (13987.78-16317.62)	28938754	14053.63 (12761.98-15088.12)	<0.001
Mortality	2359013	$2033 \cdot 21$ (1888.78-2233.65)	2950719	1678.65 (1528.60-1807.22)	3205682	$1545 \cdot 29$ (1412.76-1685.12)	<0.001
All ages							
Incidence	10078935	$250 \cdot 55$ (229.70-273.25)	14734124	255.79 (232.10-283.88)	16894536	257.96 (234.40-284.11)	0.335
Prevalence	17915338	434.86 (389.45-496.84)	28495582	$490 \cdot 13$ (436.60-557.52)	33024958	$502 \cdot 32$ (451.26-572.18)	0.047
MIR	.	$0.461(0.415-0.518)$..	0.386 (0.336-0.432)	.	0.348 (0.299-0.390)	<0.001
DALYs lost	86010384	2062.74 (1949.53-2280.29)	101951696	1749.59 (1568.67-1830.82)	102232304	1554.02 (1373.94-1642.26)	<0.001
Mortality	4660449	$117 \cdot 25$ (111.51-129.68)	5684970	98.53 (89.02-103.86)	5874182	88.41 (79.84-94.41)	<0.001

*p value for the difference in age-adjusted rates between 1990 and 2010 only
Table 1:- Age-adjusted annual incidence and mortality rates (per 100000 person-years), disability-adjusted life-years (DALYs) lost, prevalence (per 100000 people), and mortality-toincidence ratio (MIR) by age groups in high-income and low-income and middle-income countries, and globally in 1990, 2005, and 2010

Yuck!

1990

n
 Rate (95\% CI)

(Continued from previous page)
Globally
< 75 years

Incidence	6353868	$159.22(145 \cdot 32-174 \cdot 98)$
Prevalence	13234062	$324.26(288 \cdot 74-374.96)$
MIR	..	$0.359(0.318-0 \cdot 409)$
DALYs lost	63991864	$1543.96(1452.03-1728 \cdot 25)$
Mortality	2301435	$57.38(54.12-64 \cdot 27)$

Feigen et al., Lancet 383:245-255, 2014, Table 1

What was wrong with that?

- Way too many digits.
- Numbers aren't aligned.
- Numbers to be compared aren't anywhere near each other.
- The interesting comparisons are horizontal rather than vertical.
- It would be much better as a multi-panel figure.

One last example

fivethirtyeight.com/datalab/which-state-has-the-worst-drivers

An alternative

Scatterplots

Summary I

- Show the data
- Avoid chart junk
- Consider taking logs and/or differences
- Put the things to be compared next to each other
- Use color to set things apart, but consider color blind folks
- Use position rather than angle or area to represent quantities

Summary II

- Align things vertically to ease comparisons
- Use common axis limits to ease comparisons
- Use labels rather than legends
- Sort on meaningful variables (not alphabetically)
- Must 0 be included in the axis limits?
- Use scatterplots to explore relationships

Inspirations

- Hadley Wickham (slides at http://courses.had.co.nz)
- Naomi Robbins (Creating more effective graphs)
- Howard Wainer
- Andrew Gelman
- Dan Carr
- Edward Tufte

Further reading

- ER Tufte (1983) The visual display of quantitative information. Graphics Press.
- ER Tufte (1990) Envisioning information. Graphics Press.
- ER Tufte (1997) Visual explanations. Graphics Press.
- A Gelman, C Pasarica, R Dodhia (2002) Let's practice what we preach: Turning tables into graphs. The American Statistician 56:121-130
- NB Robbins (2004) Creating more effective graphs. Wiley
- Nature Methods columns: http://bang.clearscience.info/?p=546
- These slides: tinyurl.com/graphs2017

