Identifying essential genes in *M. tuberculosis* by random transposon mutagenesis

Karl W Broman

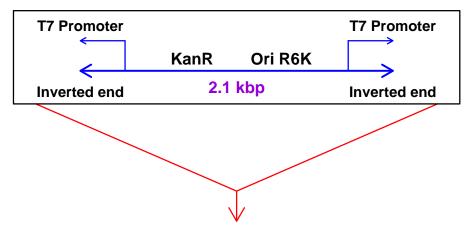
Department of Biostatistics Johns Hopkins University

www.biostat.jhsph.edu/~kbroman

Joint work with Natalie Blades, Gyanu Lamichhane, and William Bishai

Mycobacterium tuberculosis

- The organism that causes tuberculosis.
 - Cost for treatment: \sim \$15,000
 - Other bacterial pneumonias: \sim \$35
- 4.4 Mbp circular genome, completely sequenced
- 4250 known or inferred genes

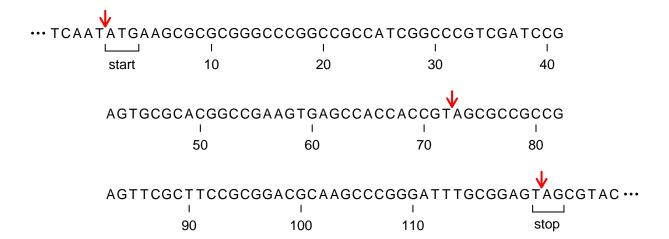

Aim

ldentify the essential genes (knock-out ⇒ non-viable mutant)

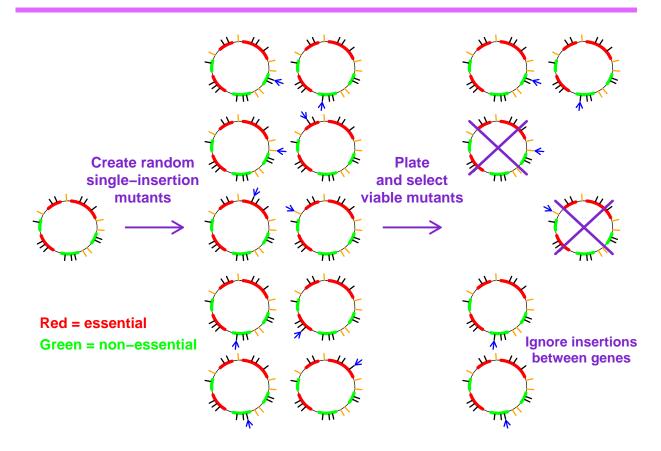
Method

Random transposon mutagenesis

The *Himar1* transposon



5'-TCGAAGCCTGCGACTAACGTTTAAAGTTTG-3'

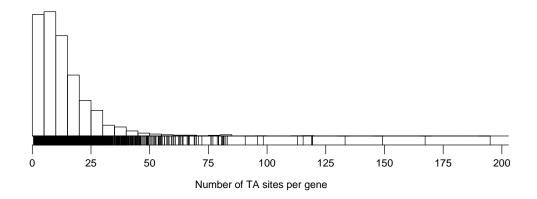

3'-AGCTTCGGACGCTGATTGCAAATTTCAAAC-5'

Note: ≥ 30 stop codons in each reading frame

Sequence of the gene MT598

Random transposon mutagenesis

Random transposon mutagenesis


- Location of transposon insertion determined by sequencing across junctions
- Viable insertion within a gene ⇒ gene is non-essential
- Essential genes: we will never see a viable insertion
- Note: We only consider insertion sites within proximal 80% or n-100 basepairs of a gene.

Insertions in the very distal portion of an essential gene may not be sufficiently disruptive.

The data

- Number, locations of genes.
- Number of insertion sites in each gene.
- n viable mutants with exactly one transposon insertion.
- Location of the transposon insertion in each mutant.

TA sites in M. tuberculosis

- 74,403 sites
- 65,649 sites within a gene
- 57,934 sites within proximal portion of a gene
- 4204/4250 genes with at least one TA site

1425 insertion mutants

- 1425 insertion mutants
- 1025 within proximal portion of a gene
- 21 double-hits
- 770 unique genes hit

Questions:

- Proportion of essential genes in M. tb.?
- Which genes are likely essential?

Statistical method

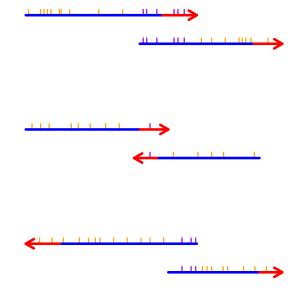
Model: Transposon inserts completely at random

- Each TA site equally likely
- Genes are either completely essential or completely non-essential

Prior

- Number of ess'l genes ∼ Uniform{0, 1, ..., 4204}
- Given no. essential genes, each possible subset is equally likely

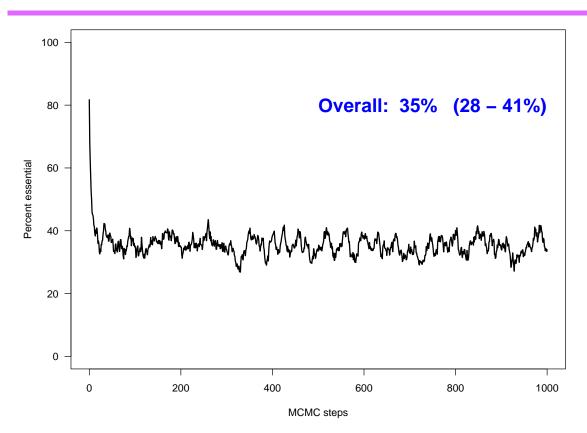
Bayes by a Gibbs sampler:

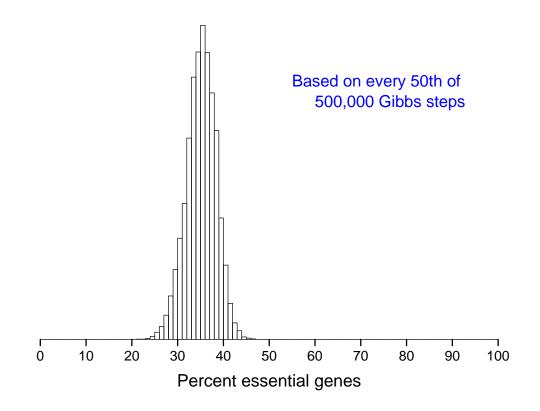

Estimate:

- Pr(gene i is essential | data)
- Distribution of no. essential genes given the data

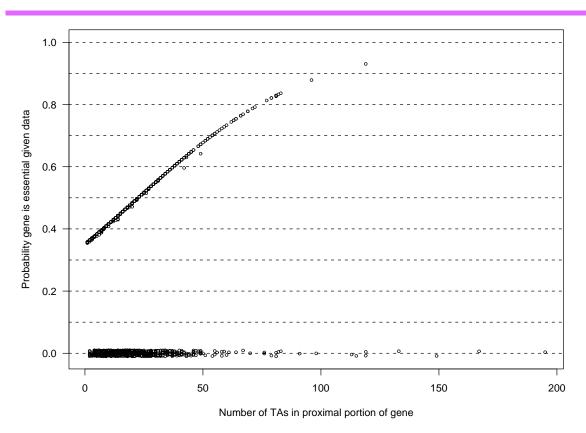
A further complication

Many genes overlap


- Of 4250 genes, 1005 pairs overlap (mostly by exactly 4 bp).
- The overlapping regions contain 547 insertion sites.
- Omit TA sites in overlapping regions, unless in the proximal portion of both genes.
- The algebra gets a bit more complicated.


M. tb. mutagenesis data

- 74,403 TA sites total
- 57,934 sites within proximal portion of a gene
- 77 sites shared by two genes
- 4204/4250 genes with at least one such site
- 1425 insertion mutants
- 1025 within proximal portion of a gene
- 2 mutants for sites shared by two genes
- 770 unique genes hit


Percent essential genes in M. tb.

Percent essential genes in M. tb.

Posterior probability that gene is essential

Yet another complication

Operon: A group of adjacent genes that are transcribed together as a single unit.

- Insertion at a TA site could disrupt all downstream genes
- If a gene is essential, insertion in any upstream gene would be non-viable
- Re-define the meaning of "essential gene".
- If operons were known, one could get an improved estimate of the proportion of essential genes.
- If one ignores the presence of operons, estimates should still be unbiased.

Summary

- Bayesian method, using MCMC, to estimate the proportion of essential genes in a genome with data from random transposon mutagenesis.
- Crucial assumptions:
 - Randomness of transposon insertion.
 - Essentiality is an all-or-none quality.
 - No relationship between essentiality and no. insertion sites.
 - The 80% rule.
- For *M. tuberculosis*, with data on 1400 mutants:
 - -28 41% of genes are essential.
 - 20 genes which have \geq 64 TA sites and for which no mutant has been observed, have > 75% chance of being essential.

Acknowledgements

Bill Bishai

Natalie Blades

Gyanu Lamichhane