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Trait distributions
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Data and Goals
Phenotypes: y; = trait value for mouse i
Genotypes: z;; = 1/0 if mouse i is BB/AB at marker j
(for a backcross)
Genetic map: Locations of markers
Goals:

e Identify the (or at least one) genomic regions
(QTLs) that contribute to variation in the trait.

e Form confidence intervals for QTL locations.
e Estimate QTL effects.



Genetic map
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Models: Genotype «— Phenotype

Let y = phenotype
g = whole genome genotype

Consider all possible mice with a
particular genome-type, g.

mean phenotype = y,
SD phenotype = g,

Suppose there are p QTLs, with genotypes denoted ¢, .. ., g,.
Then p, and o, depend only on g, ..., g,.

There are 27 distinct genotype groups.

Models: Genotype «— Phenotype

Simplifying assumptions:

Contant variance: o, =0

(environmental variation independent of genotype)
Normality: Given g, y is normal(u,, o)

Additivity: y=p+3 0 Ajzite

where z; = 1/0 if g; is AB/BB



Additivity vs. epistasis

Additivity:
QTL 1
QTL 2 AB BB
AB |20 30
BB |25 35
Epistasis:
QTL 1
QTL 2 AB BB
AB |20 30
BB |25 60
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The simplest method: ANOVA

e Split mice into groups
according to genotype
at a marker.

e Do a t-test / ANOVA.
e Repeat for each marker.

e Adjust for multiple
testing

Phenotype
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ANOVA at marker loci

Advantages
e Simple.

e Easily incorporates
covariates.

e Easily extended to more
complex models.

e Doesn’t require a genetic
map.

Disadvantages

e Must exclude individuals
with missing genotype data.

e Imperfect information about
QTL location.

e Suffers in low density scans.

e Only considers one QTL at a
time.

Interval mapping (IM)

Lander & Botstein (1989)

e Take account of missing genotype data

e Interpolate between markers
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Interval mapping

Advantages Disadvantages

e Takes proper account of e Increased computation
missing data. time.

¢ Allows examination of e Requires specialized
positions between markers. software.

e Gives improved estimates e Difficult to generalize.
of QTL effects. e Only considers one QTL at

e Provides pretty graphs. a time.

LOD scores

The LOD score is a measure of the strength of evidence for the
presence of a QTL at a particular location.

LOD(z) = log,, likelihood ratio comparing the hypothesis of a
QTL at position z versus that of no QTL

B Pr(y|QTL at z,ji.,A.,6,)
= log10 { Pr(y|n0 QTL,,&,@')

fi.,A,, &, are the MLEs, assuming a single QTL at position z.

No QTL model: The phenotypes are independent and identically
distributed (iid) N(u,o?).



LOD curves
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LOD thresholds

Large LOD scores indicate evidence for the presence of a QTL.
Q: How large is large?

— We consider the distribution of the LOD score under the null
hypothesis of no QTL.

Key point: We must make some adjustment for our examination of
multiple putative QTL locations.

— We seek the distribution of the maximum LOD score, genome-
wide. The 95th %ile of this distribution serves as a genome-wide
LOD threshold.

Estimating the threshold: simulations, analytical calculations, per-
mutation (randomization) tests.



Null distribution of the LOD score

e Null distribution derived by
computer simulation of backcross
with genome of typical size.

e Solid curve: distribution of LOD
score at any one point.

e Dashed curve: distribution of
maximum LOD score,
genome-wide.

LOD score

Permutation tests

markers phenotypes
: genotype LOD(z) —
mice — —
data (a set of curves) max, LOD(z)

e Permute/shuffle the phenotypes; keep the genotype data intact.
e Calculate LOD*(z) — M* = max, LOD*(z2)

e \We wish to compare the observed M to the distribution of M*.
e Pr(M* > M) is a genome-wide P-value.

e The 95th %ile of M* is a genome-wide LOD threshold.

e We can't look at all n! possible permutations, but a random set of 1000 is feasi-
ble and provides reasonable estimates of P-values and thresholds.

e Value: conditions on observed phenotypes, marker density, and pattern of miss-
ing data; doesn’t rely on normality assumptions or asymptotics.



Estimated permutation distribution

95th percentile

Maximum LOD

Multiple QTL methods

Why consider multiple QTLs at once?

e Reduce residual variation.
e Separate linked QTLs.
e Investigate interations between QTLs (epistasis).



Abstractions / simplifications

o Complete marker data
e QTLs are at the marker loci

e QTLs act additively

— This work is not useful in practice
but serves to illustrate the key issues.

The problem

n backcross mice; M markers
zi; = genotype (1/0) of mouse i at marker ;
y; = phenotype (trait value) of mouse

M
y¢:u+ZAj Tij + € Which A]’#O?
j—1

Errors: e Miss important loci

e Include extraneous loci



Model selection

e Select a class of models
o Compare models
e Search model space

¢ Assess the perfomance of a procedure

Model fit
Model: y=p+ Aszx3+ A7x7 4+ Agrg + €
Model fit: i, As, A7, Ag by least squares

Fitted values: § = i + Aszs + Aqzr + Agag

RSS = 3".(y; — ;) made as small as possible

Note: If you include an additional =, the RSS goes
down.



Class of models

o Additive models
« Additive + pairwise interactions
« Additive + higher order interactions

e Regression trees

Model comparison

e Estimated prediction error

¢ BIC; =10gRSS + § x no. markers x logn
n

e Sequential permutation tests



BIC; «— conditional LOD

Minimizing BIC; is approximately equivalent to placing
a threshold on the conditional LOD score;

LOD(zi|z1,...,25_1)

Choosing ¢: We choose § to correspond to a genome-
wide LOD threshold.

With this choice of ¢, in the absence of QTLs, we’ll in-
clude at least one extraneous locus, 5% of the time.

Larger ¢: include more loci; higher false positive rate
Smaller ¢: include fewer loci; lower false positive rate

Model search

In the case of 100 markers, there are 2*%° ~ 10
possible models—far more than may be inspected
individually.

Methods of searching through models:
o Forward selection (FS)
e Backward elimination (BE)
« FS followed by BE

e Randomized searches



Assessing performance

Once must balance
e Missing important loci
e including extraneous loci

“Correctly identify a QTL:”
Choose a marker within 10 cM of the QTL.

One approach:
Control the false positive rate at 5%

The appropriate criterion depends on the goals of the
experimenter

Simulations

e Backcross with n=250

e NO crossover interference

e 9 chr, each 100 cM S ' —

e Markers at 10 cM spacing;
complete genotype data

e 7 QTLs >
— One pair in coupling 6
— One pair in repulsion 7 —
— Three unlinked QTLs g

e Heritability = 50% 9 —y

¢ 2000 simulation replicates
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Ave no. chosen

Methods

o« ANOVA at marker loci

o Composite interval mapping (CIM)

o Forward selection with permutation tests
e Forward selection with BIC;

e Backward elimination with BIC;

o FS followed by BE with BIC;

e MCMC with BIC;

A selected marker is deemed correct if it is within
10 cM of a QTL (i.e., correct or adjacent)

Correct

ANOVA —
fs, perm —
fs

be —

fs/be —
mcmc —

BIC



Extraneous linked
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QTLs linked in coupling
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QTLs linked in repulsion
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Ave no. chosen

Other QTLs
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Summary

e« QTL mapping is a model selection problem.

e Key issue: the comparison of models.

e Large-scale simulations are important.

e More refined procedures do not necessarily give

Improved results.

¢ BIC; with forward selection followed by backward
elimination works quite well.



