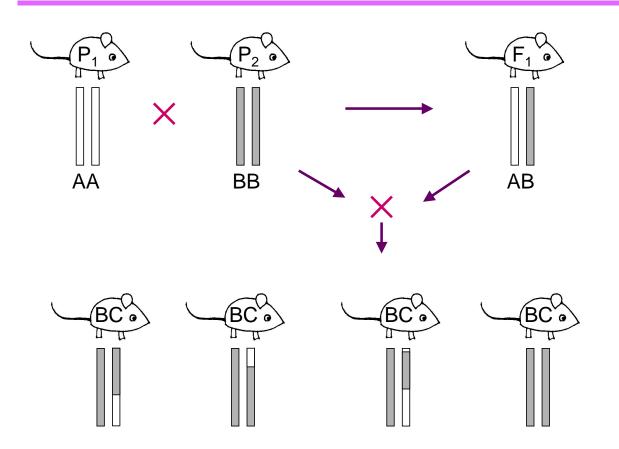
Model selection for QTL mapping

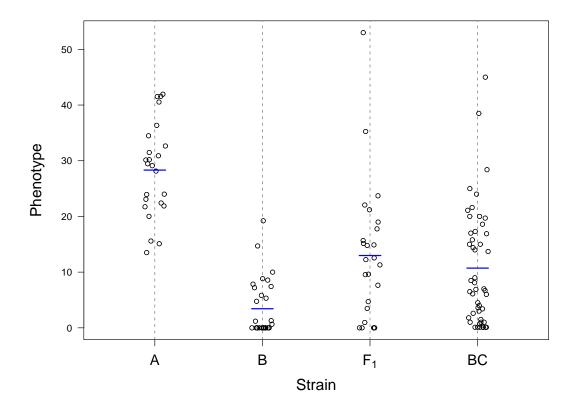
Karl W Broman Department of Biostatistics Johns Hopkins University

www.google.com

Backcross experiment



Trait distributions



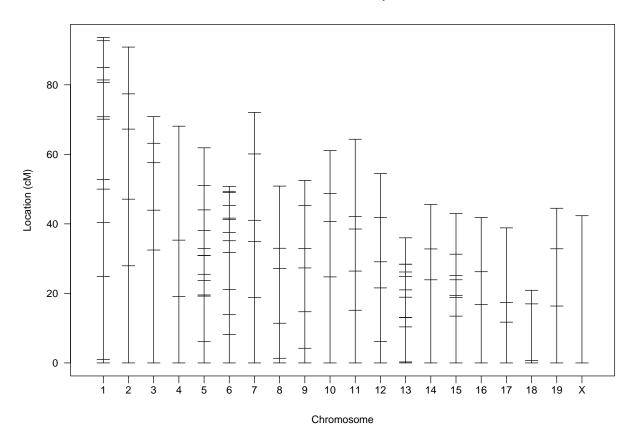
Data and Goals

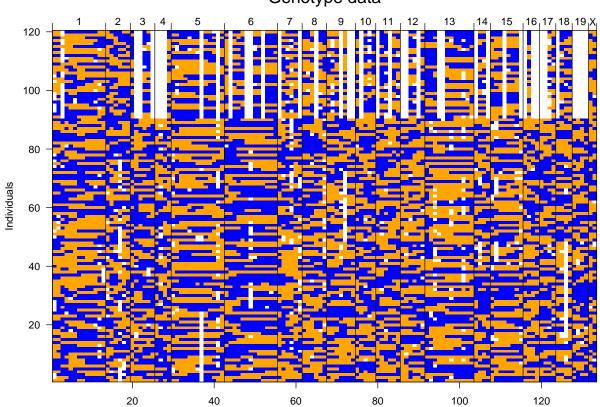
Phenotypes:	y_i = trait value for mouse i
Genotypes:	x_{ij} = 1/0 if mouse <i>i</i> is BB/AB at marker <i>j</i>
	(for a backcross)
Genetic map:	Locations of markers

Goals:

- Identify the (or at least one) genomic regions (QTLs) that contribute to variation in the trait.
- Form confidence intervals for QTL locations.
- Estimate QTL effects.

Genetic map





Genotype data

Markers

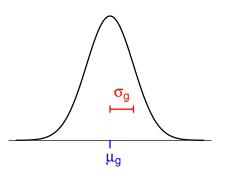
Models: Genotype \longleftrightarrow Phenotype

Let y = phenotypeg = whole genome genotype

Consider all possible mice with a particular genome-type, *g*.

mean phenotype = μ_g

SD phenotype = σ_g



Suppose there are p QTLs, with genotypes denoted g_1, \ldots, g_p .

Then μ_g and σ_g depend only on g_1, \ldots, g_p . There are 2^p distinct genotype groups.

Models: Genotype \longleftrightarrow Phenotype

Simplifying assumptions:

Contant variance: $\sigma_g \equiv \sigma$

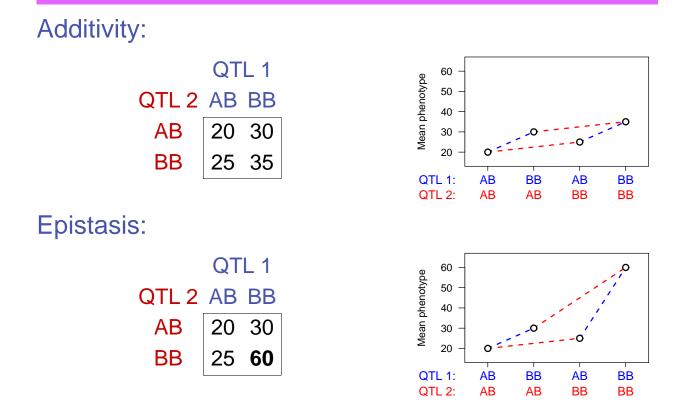
(environmental variation independent of genotype)

Normality: Given g, y is normal(μ_g, σ)

Additivity: $y = \mu + \sum_{j=1}^{p} \Delta_j z_j + \epsilon$

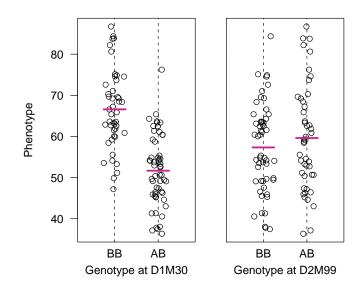
where $z_i = 1/0$ if g_i is AB/BB

Additivity vs. epistasis



The simplest method: ANOVA

- Split mice into groups according to genotype at a marker.
- Do a t-test / ANOVA.
- Repeat for each marker.
- Adjust for multiple testing



Advantages

- Simple.
- Easily incorporates covariates.
- Easily extended to more complex models.
- Doesn't require a genetic map.

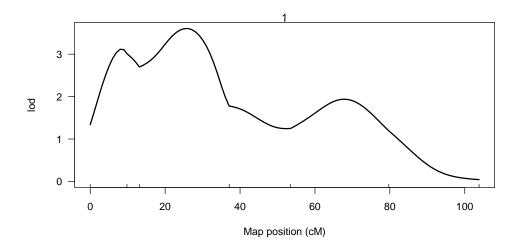
Disadvantages

- Must exclude individuals with missing genotype data.
- Imperfect information about QTL location.
- Suffers in low density scans.
- Only considers one QTL at a time.

Interval mapping (IM)

Lander & Botstein (1989)

- Take account of missing genotype data
- Interpolate between markers



Advantages

- Takes proper account of missing data.
- Allows examination of positions between markers.
- Gives improved estimates of QTL effects.
- Provides pretty graphs.

Disadvantages

- Increased computation time.
- Requires specialized software.
- Difficult to generalize.
- Only considers one QTL at a time.

LOD scores

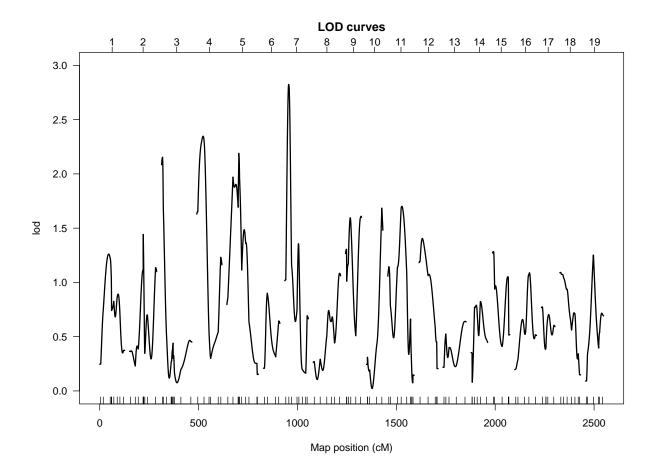
The LOD score is a measure of the strength of evidence for the presence of a QTL at a particular location.

 $LOD(z) = \log_{10}$ likelihood ratio comparing the hypothesis of a QTL at position z versus that of no QTL

$$= \log_{10} \left\{ \frac{\Pr(y|\mathsf{QTL at } z, \hat{\mu}_z, \hat{\Delta}_z, \hat{\sigma}_z)}{\Pr(y|\mathsf{no } \mathsf{QTL}, \hat{\mu}, \hat{\sigma})} \right\}$$

 $\hat{\mu}_z, \hat{\Delta}_z, \hat{\sigma}_z$ are the MLEs, assuming a single QTL at position z.

No QTL model: The phenotypes are independent and identically distributed (iid) $N(\mu, \sigma^2)$.



LOD thresholds

Large LOD scores indicate evidence for the presence of a QTL.

Q: How large is large?

 \rightarrow We consider the distribution of the LOD score under the null hypothesis of no QTL.

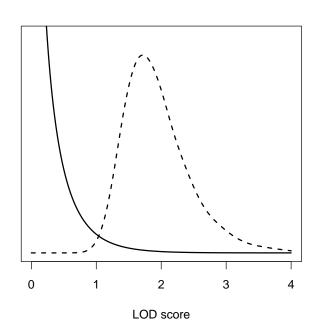
Key point: We must make some adjustment for our examination of multiple putative QTL locations.

 \rightarrow We seek the distribution of the *maximum* LOD score, genome-wide. The 95th %ile of this distribution serves as a genome-wide LOD threshold.

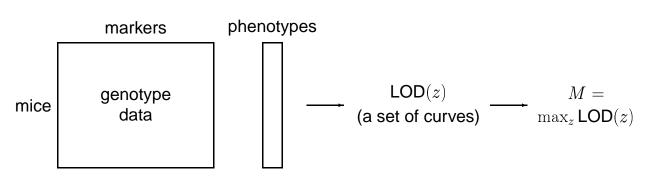
Estimating the threshold: simulations, analytical calculations, permutation (randomization) tests.

Null distribution of the LOD score

- Null distribution derived by computer simulation of backcross with genome of typical size.
- Solid curve: distribution of LOD score at any one point.
- Dashed curve: distribution of maximum LOD score, genome-wide.

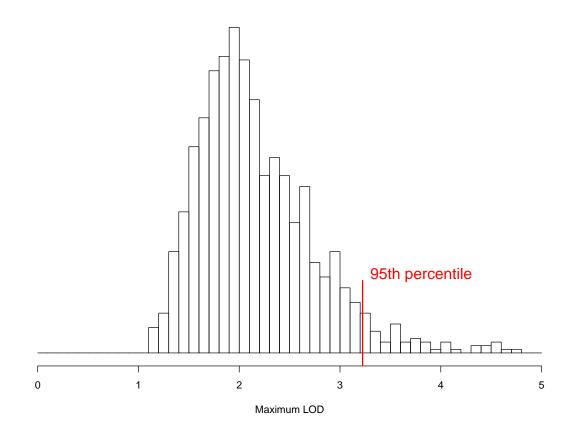


Permutation tests



- Permute/shuffle the phenotypes; keep the genotype data intact.
- Calculate $LOD^{\star}(z) \longrightarrow M^{\star} = \max_{z} LOD^{\star}(z)$
- We wish to compare the observed M to the distribution of M^{\star} .
- $\Pr(M^{\star} \ge M)$ is a genome-wide P-value.
- The 95th %ile of M^* is a genome-wide LOD threshold.
- We can't look at all *n*! possible permutations, but a random set of 1000 is feasible and provides reasonable estimates of P-values and thresholds.
- Value: conditions on observed phenotypes, marker density, and pattern of missing data; doesn't rely on normality assumptions or asymptotics.

Estimated permutation distribution



Multiple QTL methods

Why consider multiple QTLs at once?

- Reduce residual variation.
- Separate linked QTLs.
- Investigate interations between QTLs (epistasis).

Abstractions / simplifications

- Complete marker data
- QTLs are at the marker loci
- QTLs act additively
- \rightarrow This work is not useful in practice but serves to illustrate the key issues.

The problem

n backcross mice; M markers x_{ij} = genotype (1/0) of mouse *i* at marker *j* y_i = phenotype (trait value) of mouse *i*

$$y_i = \mu + \sum_{j=1}^M \Delta_j x_{ij} + \epsilon_i$$

Which $\Delta_j \neq 0$?

- Errors: Miss important loci
 - Include extraneous loci

- Select a class of models
- Compare models
- Search model space
- Assess the perfomance of a procedure

Model fit

Model:	$y = \mu + \Delta_3 x_3 + \Delta_7 x_7 + \Delta_9 x_9 + \epsilon$
--------	---

Model fit: $\hat{\mu}$, $\hat{\Delta}_3$, $\hat{\Delta}_7$, $\hat{\Delta}_9$ by least squares

Fitted values: $\hat{y} = \hat{\mu} + \hat{\Delta}_3 x_3 + \hat{\Delta}_7 x_7 + \hat{\Delta}_9 x_9$

RSS = $\sum_{i}(y_i - \hat{y}_i)^2$ made as small as possible

Note: If you include an additional *x*, the RSS goes down.

- Additive models
- Additive + pairwise interactions
- Additive + higher order interactions
- Regression trees

Model comparison

- Estimated prediction error
- BIC_{δ} = log RSS + $\delta \times$ no. markers $\times \frac{\log n}{n}$
- Sequential permutation tests

Minimizing BIC_{δ} is approximately equivalent to placing a threshold on the conditional LOD score:

 $\mathsf{LOD}(x_k|x_1,\ldots,x_{k-1})$

Choosing δ : We choose δ to correspond to a genomewide LOD threshold.

With this choice of δ , in the absence of QTLs, we'll include at least one extraneous locus, 5% of the time.

Larger δ : include more loci; higher false positive rate Smaller δ : include fewer loci; lower false positive rate

Model search

In the case of 100 markers, there are $2^{100} \approx 10^{30}$ possible models—far more than may be inspected individually.

Methods of searching through models:

- Forward selection (FS)
- Backward elimination (BE)
- FS followed by BE
- Randomized searches

Once must balance

- missing important loci
- including extraneous loci

"Correctly identify a QTL:"

Choose a marker within 10 cM of the QTL.

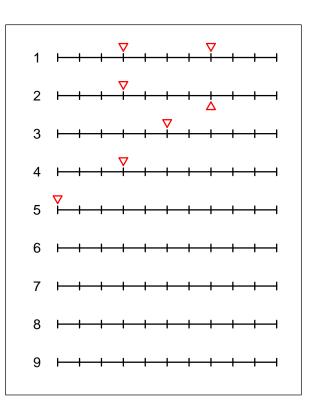
One approach:

Control the false positive rate at 5%

The appropriate criterion depends on the goals of the experimenter

Simulations

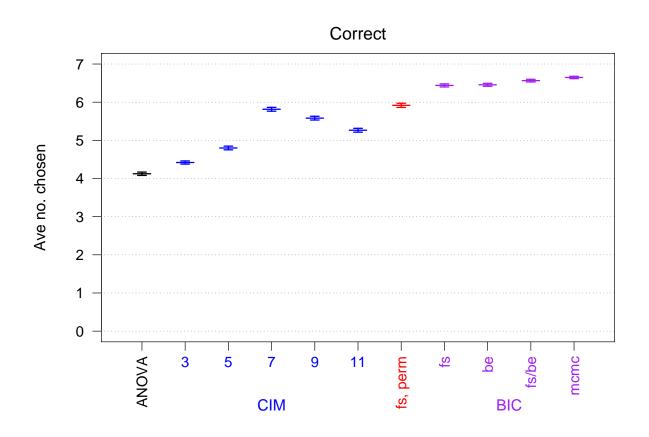
- Backcross with n=250
- No crossover interference
- 9 chr, each 100 cM
- Markers at 10 cM spacing; complete genotype data
- 7 QTLs
 - One pair in coupling
 - One pair in repulsion
 - Three unlinked QTLs
- Heritability = 50%
- 2000 simulation replicates

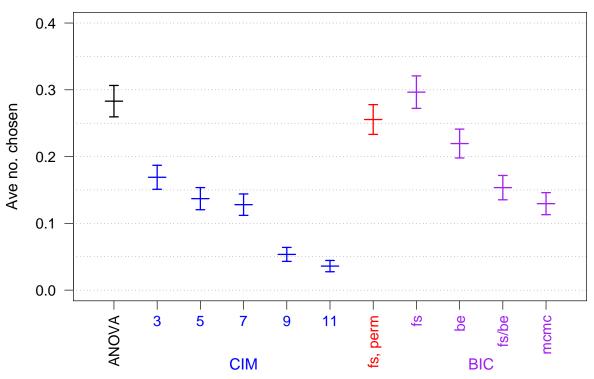


Methods

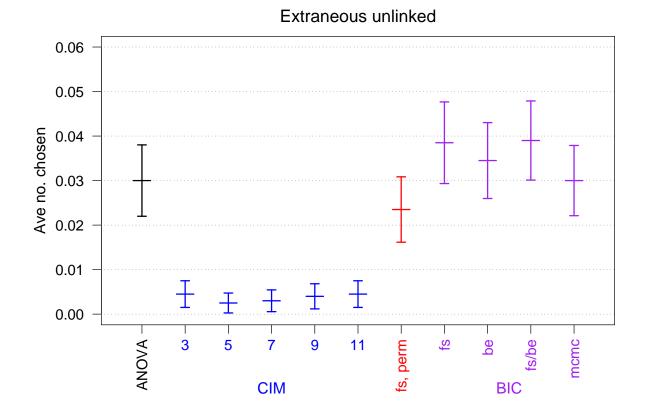
- ANOVA at marker loci
- Composite interval mapping (CIM)
- Forward selection with permutation tests
- \bullet Forward selection with BIC_δ
- \bullet Backward elimination with BIC_δ
- \bullet FS followed by BE with BIC_{δ}
- MCMC with BIC_{δ}

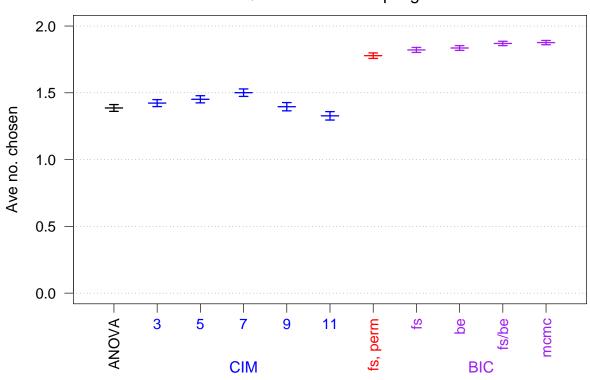
 → A selected marker is deemed correct if it is within 10 cM of a QTL (i.e., correct or adjacent)

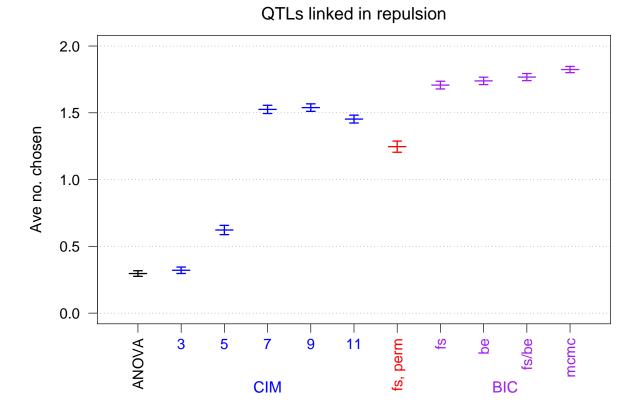




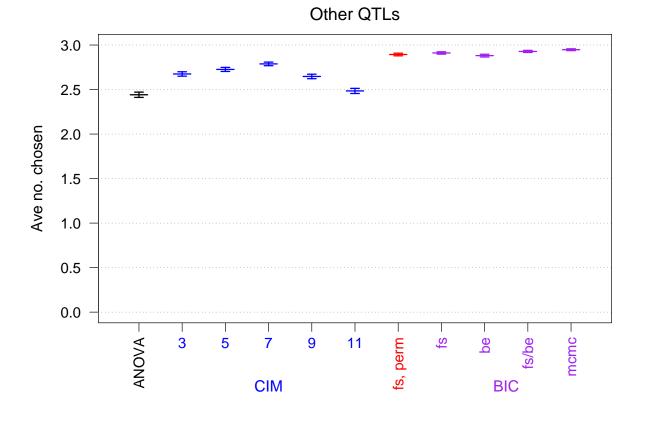
Extraneous linked







QTLs linked in coupling



Summary

- QTL mapping is a model selection problem.
- Key issue: the comparison of models.
- Large-scale simulations are important.
- More refined procedures do not necessarily give improved results.
- BIC_{δ} with forward selection followed by backward elimination works quite well.