18 years of R/qtl
maintaining, supporting, and sustaining
scientific software

Karl Broman
Biostatistics & Medical Informatics, UW–Madison

kbroman.org
github.com/kbroman
@kwbroman
Slides: bit.ly/csu2018
18 years of R/qtl

Year

Lines of code

R

C

doc

idea

svn

git

0

5000

10000

15000

20000

25000

30000

35000

40000
Intercross

\[P_1 \times P_2 \]

\[F_1 \times F_1 \]

\[F_2 \]
QTL mapping
18 years of R/qtl

[Graph showing the growth of lines of code in R, C, and documentation over years from 2000 to 2017.]
Why?
Good things
Good things

- some of the code
- basics of the user interface
- diagnostics and data visualization
- quite comprehensive
- quite flexible
Bad things
<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>liver</td>
<td>spleen</td>
<td>sex</td>
<td>pgm</td>
<td>D1Mit18</td>
<td>D1Mit80</td>
<td>D1Mit17</td>
<td>D2Mit379</td>
<td>D2Mit75</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>27.3</td>
<td>51.4</td>
<td>110.4</td>
<td>38.3</td>
<td>48.1</td>
</tr>
<tr>
<td>4</td>
<td>61.92</td>
<td>153.16</td>
<td>m</td>
<td>1</td>
<td>BB</td>
<td>SB</td>
<td>SB</td>
<td>SB</td>
<td>SB</td>
</tr>
<tr>
<td>5</td>
<td>88.33</td>
<td>178.58</td>
<td>m</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>BB</td>
<td>BB</td>
</tr>
<tr>
<td>6</td>
<td>58</td>
<td>131.91</td>
<td>m</td>
<td>1</td>
<td>BB</td>
<td>SB</td>
<td>SB</td>
<td>SB</td>
<td>SB</td>
</tr>
<tr>
<td>7</td>
<td>78.06</td>
<td>126.13</td>
<td>m</td>
<td>1</td>
<td>SB</td>
<td>SB</td>
<td>BB</td>
<td>SS</td>
<td>SS</td>
</tr>
<tr>
<td>8</td>
<td>65.31</td>
<td>181.05</td>
<td>m</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>SB</td>
<td>SB</td>
</tr>
<tr>
<td>9</td>
<td>59.26</td>
<td>191.54</td>
<td>m</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>SS</td>
<td>SS</td>
</tr>
<tr>
<td>10</td>
<td>59.47</td>
<td>154.88</td>
<td>m</td>
<td>1</td>
<td>BB</td>
<td>BB</td>
<td>BB</td>
<td>SB</td>
<td>SB</td>
</tr>
<tr>
<td>11</td>
<td>65.63</td>
<td>184.12</td>
<td>m</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>SB</td>
<td>SB</td>
</tr>
<tr>
<td>12</td>
<td>38.64</td>
<td>133.05</td>
<td>m</td>
<td>1</td>
<td>SB</td>
<td>BB</td>
<td>SB</td>
<td>SB</td>
<td>SB</td>
</tr>
<tr>
<td>13</td>
<td>60.94</td>
<td>275.63</td>
<td>m</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>SB</td>
<td>BB</td>
</tr>
<tr>
<td>14</td>
<td>51.48</td>
<td>395.25</td>
<td>m</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>SB</td>
<td>BB</td>
</tr>
<tr>
<td>15</td>
<td>47.12</td>
<td>260.45</td>
<td>m</td>
<td>1</td>
<td>BB</td>
<td>SB</td>
<td>SB</td>
<td>BB</td>
<td>BB</td>
</tr>
</tbody>
</table>
Stupidest code ever

n <- ncol(data)
temp <- rep(FALSE,n)
for(i in 1:n) {
 temp[i] <- all(data[2,1:i]=="")
 if(!temp[i]) break
}
if(!any(temp)) stop("...")
n.phe <- max((1:n)[temp])

kbroman.org/blog/2011/08/17/the-stupidest-r-code-ever
Open source means everyone can see my stupid mistakes
Open source means everyone can see my stupid mistakes

Version control means everyone can see every stupid mistake I’ve ever made
Documentation
Support
QTL mapping
Congenic line
Improving precision

- more recombinations
- more individuals
- more precise phenotype
- lower-level phenotypes
 - transcripts, proteins, metabolites
Advanced intercross lines

P A B
F2
F3
F4
F7
F10
Recombinant inbred lines
Collaborative Cross
Heterogeneous stock
Genome-scale phenotypes
Challenges: diagnostics

kbroman.org/blog/2012/04/25/microarrays-suck
Challenges: diagnostics

bit.ly/many_boxplots
Challenges: scale of results

genotypes
phenotypes
Challenges: scale of results

genotypes
phenotypes

results
Challenges: organizing, automating

genotypes phenotypes
Challenges: organizing, automating

- genotypes
- phenotypes
Challenges: organizing, automating

- genotypes
- phenotypes
Challenges: organizing, automating
Challenges: organizing, automating

genotypes

phenotypes
Challenges: organizing, automating

<table>
<thead>
<tr>
<th>genotypes</th>
<th>phenotypes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Challenges: organizing, automating

<table>
<thead>
<tr>
<th>genotypes</th>
<th>phenotypes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Challenges: metadata

What the heck is "FAD_NAD SI 8.3_3.3G"?
What was the question again?
R/9t12
Now in 3D

ropenscilabs.github.io/miner_book
- High-density genotypes
- High-dimensional phenotypes
- Multi-parent populations
- Linear mixed models
R/qtl2: Let’s not make the same mistakes

- C++ and Rcpp
- Roxygen2 for documentation
- Unit tests
- A single “switch” for cross type
R/qtl2: Let’s not make the same mistakes

- C++ and Rcpp
- Roxygen2 for documentation
- Unit tests
- A single “switch” for cross type
- Yet another data input format
- Flatter data structures, but still complex
Sustainable academic software
Acknowledgments

Danny Arends
Gary Churchill
Nick Furlotte
Dan Gatti
Ritsert Jansen
Pjotr Prins
Śaunak Sen
Petr Simecek
Artem Tarasov
Hao Wu
Brian Yandell

Robert Corty
Timothée Flutre
Lars Ronnegard
Rohan Shah
Laura Shannon
Quoc Tran
Aaron Wolen

NIH/NIGMS