R/qtl2
QTL mapping in multi-parent populations

Karl Broman
Biostatistics & Medical Informatics, UW–Madison

kbroman.org
github.com/kbroman
@kwbroman
Slides: bit.ly/purdue2018
18 years of R/qtl
Intercross
QTL mapping

![Graph showing QTL mapping with LOD scores on the y-axis and chromosome numbers on the x-axis. The LOD scores vary across chromosomes, with some peaks exceeding the LOD score threshold.]
Good things
Good things

- some of the code
- basics of the user interface
- diagnostics and data visualization
- quite comprehensive
- quite flexible
Bad things
Input file

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>liver</td>
<td>spleen</td>
<td>sex</td>
<td>pgm</td>
<td>D1Mit18</td>
<td>D1Mit80</td>
<td>D1Mit17</td>
<td>D2Mit379</td>
<td>D2Mit75</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>27.3</td>
<td>51.4</td>
<td>110.4</td>
<td>38.3</td>
<td>48.1</td>
</tr>
<tr>
<td>4</td>
<td>61.92</td>
<td>153.16</td>
<td>m</td>
<td>1</td>
<td>BB</td>
<td>SB</td>
<td>SB</td>
<td>SB</td>
<td>SB</td>
</tr>
<tr>
<td>5</td>
<td>88.33</td>
<td>178.58</td>
<td>m</td>
<td>1</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>BB</td>
<td>BB</td>
</tr>
<tr>
<td>6</td>
<td>58</td>
<td>131.91</td>
<td>m</td>
<td>1</td>
<td>BB</td>
<td>SB</td>
<td>SB</td>
<td>SB</td>
<td>SB</td>
</tr>
<tr>
<td>7</td>
<td>78.06</td>
<td>126.13</td>
<td>m</td>
<td>1</td>
<td>SB</td>
<td>SB</td>
<td>BB</td>
<td>SS</td>
<td>SS</td>
</tr>
<tr>
<td>8</td>
<td>65.31</td>
<td>181.05</td>
<td>m</td>
<td>1</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>SB</td>
<td>SB</td>
</tr>
<tr>
<td>9</td>
<td>59.26</td>
<td>191.54</td>
<td>m</td>
<td>1</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>SS</td>
<td>SS</td>
</tr>
<tr>
<td>10</td>
<td>59.47</td>
<td>154.88</td>
<td>m</td>
<td>1</td>
<td>BB</td>
<td>BB</td>
<td>BB</td>
<td>SB</td>
<td>SB</td>
</tr>
<tr>
<td>11</td>
<td>65.63</td>
<td>184.12</td>
<td>m</td>
<td>1</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>SB</td>
<td>SB</td>
</tr>
<tr>
<td>12</td>
<td>38.64</td>
<td>133.05</td>
<td>m</td>
<td>1</td>
<td>SB</td>
<td>BB</td>
<td>SB</td>
<td>SB</td>
<td>SB</td>
</tr>
<tr>
<td>13</td>
<td>60.94</td>
<td>275.63</td>
<td>m</td>
<td>1</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>SB</td>
<td>BB</td>
</tr>
<tr>
<td>14</td>
<td>51.48</td>
<td>395.25</td>
<td>m</td>
<td>1</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>SB</td>
<td>BB</td>
</tr>
<tr>
<td>15</td>
<td>47.12</td>
<td>260.45</td>
<td>m</td>
<td>1</td>
<td>BB</td>
<td>SB</td>
<td>SB</td>
<td>BB</td>
<td>BB</td>
</tr>
</tbody>
</table>
n <- ncol(data)
temp <- rep(FALSE,n)
for(i in 1:n) {
 temp[i] <- all(data[2,1:i]=="")
 if(!temp[i]) break
}
if(!any(temp)) stop("...")
n.phe <- max((1:n)[temp])

kbroman.org/blog/2011/08/17/the-stupidest-r-code-ever
Open source means everyone can see my stupid mistakes
Open source means everyone can see my stupid mistakes

Version control means everyone can see every stupid mistake I’ve ever made
Documentation
Support
QTL mapping
Congenic line
Improving precision

- more recombinations
- more individuals
- more precise phenotype
- lower-level phenotypes
 - transcripts, proteins, metabolites
Advanced intercross lines

P	A	B
F₂ | | |
F₃ | | |
F₄ | | |
F₇ | | |
F₁₀ | | |
Recombinant inbred lines
Heterogeneous stock
Genome-scale phenotypes
Challenges: diagnostics

kbroman.org/blog/2012/04/25/microarrays-suck
Challenges: scale of results

- genotypes
- phenotypes
Challenges: scale of results

- genotypes
- phenotypes

results
Challenges: organizing, automating

- genotypes
- phenotypes
Challenges: organizing, automating
Challenges: organizing, automating

<table>
<thead>
<tr>
<th>genotypes</th>
<th>phenotypes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Challenges: organizing, automating

<table>
<thead>
<tr>
<th>genotypes</th>
<th>phenotypes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Challenges: metadata

What the heck is "FAD_NAD SI 8.3_3.3G"?
What was the question again?
r/9t12
Now in 3D
R/qtl2

- High-density genotypes
- High-dimensional phenotypes
- Multi-parent populations
- Linear mixed models

kbroman.org/qtl2
R/qtl2: Let’s not make the same mistakes

- C++ and Rcpp
- Roxygen2 for documentation
- Unit tests
- A single “switch” for cross type
R/qtl2: Let’s not make the same mistakes

- C++ and Rcpp
- Roxygen2 for documentation
- Unit tests
- A single “switch” for cross type
- Yet another data input format
- Flatter data structures, but still complex
Sustainable academic software
Acknowledgments

<table>
<thead>
<tr>
<th>Danny Arends</th>
<th>Robert Corty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gary Churchill</td>
<td>Timothée Flutre</td>
</tr>
<tr>
<td>Nick Furlotte</td>
<td>Lars Ronnegard</td>
</tr>
<tr>
<td>Dan Gatti</td>
<td>Rohan Shah</td>
</tr>
<tr>
<td>Ritsert Jansen</td>
<td>Laura Shannon</td>
</tr>
<tr>
<td>Pjotr Prins</td>
<td>Quoc Tran</td>
</tr>
<tr>
<td>Šaunak Sen</td>
<td>Aaron Wolen</td>
</tr>
<tr>
<td>Petr Simecek</td>
<td>NIH/NIGMS</td>
</tr>
<tr>
<td>Artem Tarasov</td>
<td></td>
</tr>
<tr>
<td>Hao Wu</td>
<td></td>
</tr>
<tr>
<td>Brian Yandell</td>
<td></td>
</tr>
</tbody>
</table>
Slides: bit.ly/purdue2018

kbroman.org

kbroman.org/qt12

github.com/kbroman

@kwbroman