R/qtl2
high-dimensional data & multi-parent populations

Karl Broman

Biostatistics & Medical Informatics, UW–Madison

kbroman.org
github.com/kbroman
@kwbroman
Slides: bit.ly/uncc2017
New

University of Wisconsin–Madison
PhD in Biomedical Data Science

bit.ly/MadBDS
17 years of R/qtl

Lines of code vs Year

- R
- C
- doc

Lines of code:
- 0
- 5000
- 10000
- 15000
- 20000
- 25000
- 30000
- 35000
- 40000

Year:
- 2000
- 2001
- 2002
- 2003
- 2004
- 2005
- 2006
- 2007
- 2008
- 2009
- 2010
- 2011
- 2012
- 2013
- 2014
- 2015
- 2016
- 2017

Events:
- idea
- svn
- git
Intercross

P1 x P2

F1 x F1

F2
QTL mapping

![Chart showing QTL mapping results with LOD scores across different chromosomes. The LOD scores range from 0.8 to 1.1, with peaks indicating regions of interest. The chromosomes are labeled from 1 to X.]
Interactive plot

bit.ly/lod_and_effect
17 years of R/qtl

Lines of code

Year

idea svn git
R
C
doc
Good things
Good things

- some of the code
- basics of the user interface
- diagnostics and data visualization
- quite comprehensive
- quite flexible
Bad things
<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>liver</td>
<td>spleen</td>
<td>sex</td>
<td>pgm</td>
<td>D1Mit18</td>
<td>D1Mit80</td>
<td>D1Mit17</td>
<td>D2Mit379</td>
<td>D2Mit75</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>27.3</td>
<td>51.4</td>
<td>110.4</td>
<td>38.3</td>
<td>48.1</td>
</tr>
<tr>
<td>4</td>
<td>61.92</td>
<td>153.16</td>
<td>m</td>
<td>1</td>
<td>BB</td>
<td>SB</td>
<td>SB</td>
<td>SB</td>
<td>SB</td>
</tr>
<tr>
<td>5</td>
<td>88.33</td>
<td>178.58</td>
<td>m</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>BB</td>
<td>BB</td>
</tr>
<tr>
<td>6</td>
<td>58</td>
<td>131.91</td>
<td>m</td>
<td>1</td>
<td>BB</td>
<td>SB</td>
<td>SB</td>
<td>SB</td>
<td>SB</td>
</tr>
<tr>
<td>7</td>
<td>78.06</td>
<td>126.13</td>
<td>m</td>
<td>1</td>
<td>SB</td>
<td>SB</td>
<td>BB</td>
<td>SS</td>
<td>SS</td>
</tr>
<tr>
<td>8</td>
<td>65.31</td>
<td>181.05</td>
<td>m</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>SB</td>
<td>SB</td>
</tr>
<tr>
<td>9</td>
<td>59.26</td>
<td>191.54</td>
<td>m</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>SS</td>
<td>SS</td>
</tr>
<tr>
<td>10</td>
<td>59.47</td>
<td>154.88</td>
<td>m</td>
<td>1</td>
<td>BB</td>
<td>BB</td>
<td>BB</td>
<td>SB</td>
<td>SB</td>
</tr>
<tr>
<td>11</td>
<td>65.63</td>
<td>184.12</td>
<td>m</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>SB</td>
<td>SB</td>
</tr>
<tr>
<td>12</td>
<td>38.64</td>
<td>133.05</td>
<td>m</td>
<td>1</td>
<td>SB</td>
<td>BB</td>
<td>SB</td>
<td>SB</td>
<td>SB</td>
</tr>
<tr>
<td>13</td>
<td>60.94</td>
<td>275.63</td>
<td>m</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>SB</td>
<td>BB</td>
</tr>
<tr>
<td>14</td>
<td>51.48</td>
<td>395.25</td>
<td>m</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>SB</td>
<td>BB</td>
</tr>
<tr>
<td>15</td>
<td>47.12</td>
<td>260.45</td>
<td>m</td>
<td>1</td>
<td>BB</td>
<td>SB</td>
<td>SB</td>
<td>BB</td>
<td>BB</td>
</tr>
</tbody>
</table>
n <- ncol(data)
temp <- rep(FALSE,n)
for(i in 1:n) {
 temp[i] <- all(data[2,1:i]==""")
 if(!temp[i]) break
}
if(!any(temp)) stop("...")
n.phe <- max((1:n)[temp])

kbroman.org/blog/2011/08/17/the-stupidest-r-code-ever
Open source means everyone can see my stupid mistakes.
Open source means everyone can see my stupid mistakes

Version control means everyone can see every stupid mistake I’ve ever made
Documentation
Support
QTL mapping
Congenic line
Improving precision

- more recombinations
- more individuals
- more precise phenotype
- lower-level phenotypes
 - transcripts, proteins, metabolites
Advanced intercross lines

<table>
<thead>
<tr>
<th></th>
<th>F2</th>
<th>F3</th>
<th>F4</th>
<th>F7</th>
<th>F10</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>A</td>
</tr>
</tbody>
</table>

- **F2**:
- **F3**:
- **F4**:
- **F7**:
- **F10**:

The diagram illustrates the intercrossing of two parental lines (P), with subsequent generations showing the inheritance patterns.
Recombinant inbred lines
Collaborative Cross

G_0
A
B

G_1
A
B

G_2
ABCD

G_3

G_4

G_∞
Heterogeneous stock

G₀
G₁
G₂
G₁₀
G₁₅
G₂₀
Genome-scale phenotypes

Alan Attie
Challenges: diagnostics
Challenges: diagnostics

bit.ly/many_boxplots
Challenges: diagnostics

- What might have gone wrong?
- How might it be revealed?
- Make lots of graphs
- Follow up artifacts
Challenges: scale of results

- genotypes
- phenotypes
Challenges: scale of results

genotypes
phenotypes
results
Challenges: organizing, automating

genotypes phenotypes
Challenges: organizing, automating

- genotypes
- phenotypes
Challenges: organizing, automating

genotypes

phenotypes
Challenges: organizing, automating

<table>
<thead>
<tr>
<th>genotypes</th>
<th>phenotypes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Challenges: organizing, automating

<table>
<thead>
<tr>
<th>Genotypes</th>
<th>Phenotypes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Challenges: organizing, automating
Challenges: organizing, automating

<table>
<thead>
<tr>
<th>genotypes</th>
<th>phenotypes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Challenges: metadata

What the heck is "FAD_NAD SI 8.3_3.3G"?
What was the question again?
R/9t12

Now in 3D
R/qtl2

- High-density genotypes
- High-dimensional phenotypes
- Multi-parent populations
- Linear mixed models
R/qtl2: Let’s not make the same mistakes

- C++ and Rcpp
- Roxygen2 for documentation
- Unit tests
- A single “switch” for cross type
R/qtl2: Let’s not make the same mistakes

- C++ and Rcpp
- Roxygen2 for documentation
- Unit tests
- A single “switch” for cross type
- Split into multiple packages
- Yet another data input format
- Flatter data structures, but still complex
Sustainable academic software
Acknowledgments

Danny Arends
Gary Churchill
Nick Furlotte
Dan Gatti
Ritsert Jansen
Pjotr Prins
Śaunak Sen
Petr Simecek
Artem Tarasov
Hao Wu
Brian Yandell

Robert Corty
Timothée Flutre
Lars Ronnegard
Rohan Shah
Laura Shannon
Quoc Tran
Aaron Wolen

NIH/NIGMS