Model selection for QTL mapping

Karl W Broman
Department of Biostatistics, Johns Hopkins University

Terry Speed
Department of Statistics, University of California, Berkeley
Walter and Eliza Hall Institute (Melbourne, Australia)

Backcross experiment
Data and Goals

Phenotypes: $y_i = \text{trait value for mouse } i$

Genotypes: $x_{ij} = 1/0$ if mouse i is BB/AB at marker j (for a backcross)

Genetic map: Locations of markers

Goals:

- Identify the (or at least one) genomic regions (QTLs) that contribute to variation in the trait.
- Form confidence intervals for QTL locations.
- Estimate QTL effects.
Models: Recombination

We assume no crossover interference.

→ Points of exchange (crossovers) are according to a Poisson process.

→ The \(\{x_{ij}\} \) (marker genotypes) form a Markov chain

Models: Genotype ↔ Phenotype

Let \(y = \) phenotype
\(g = \) whole genome genotype

Imagine a small number of QTLs with genotypes \(g_1, \ldots, g_p \).
(2\(p \) distinct genotypes)

\[
E(y|g) = \mu_{g_1, \ldots, g_p} \quad \text{var}(y|g) = \sigma^2_{g_1, \ldots, g_p}
\]
Models: Genotype \leftrightarrow Phenotype

Homoscedasticity (constant variance): $\sigma_g^2 \equiv \sigma^2$

Normally distributed residual variation: $y \mid g \sim N(\mu_g, \sigma^2)$.

Additivity: $\mu_{g_1, \ldots, g_p} = \mu + \sum_{j=1}^{p} \Delta_j g_j \quad (g_j = 1 \text{ or } 0)$

Epistasis: Any deviations from additivity.

The simplest method: ANOVA

- Split mice into groups according to genotype at a marker.
- Do a t-test / ANOVA.
- Repeat for each marker.
- Adjust for multiple testing

LOD score $= \log_{10}$ likelihood ratio comparing single-QTL model to “no QTL anywhere.”
Interval mapping (IM)

Lander & Botstein (1989)

- Take account of missing genotype data
- Interpolate between markers
- Maximum likelihood under a mixture model

![LOD curves graph]

![LOD curves graph]
LOD thresholds

LOD threshold = 95 \%ile of distr’n of max LOD, genome-wide, if there are no QTLs anywhere

Derivation:
- Analytical calculations
- Simulations
- Permutation tests

Multiple QTL methods

Why consider multiple QTLs at once?
- Reduce residual variation.
- Separate linked QTLs.
- Investigate interactions between QTLs (epistasis).
Abstractions / simplifications

- Complete marker data
- QTLs are at the marker loci
- QTLs act additively

The problem

n backcross mice; M markers

\[x_{ij} = \text{genotype (1/0) of mouse } i \text{ at marker } j \]
\[y_i = \text{phenotype (trait value) of mouse } i \]

\[y_i = \mu + \sum_{j=1}^{M} \Delta_j x_{ij} + \epsilon_i \]

Which \(\Delta_j \neq 0 \)?

\[\rightarrow \] Model selection in regression
How is this problem different?

- Relationship among the x’s
- Find a good model vs. minimize prediction error

Model selection

- **Select class of models**
 - Additive models
 - Add’ve plus pairwise interactions
 - Regression trees

- **Compare models**
 - $\text{BIC}_\delta(\gamma) = \log \text{RSS}(\gamma) + |\gamma| \left(\delta \frac{\log n}{n} \right)$
 - Sequential permutation tests

- **Search model space**
 - Forward selection (FS)
 - Backward elimination (BE)
 - FS followed by BE
 - MCMC

- **Assess performance**
 - Maximize no. QTLs found; control false positive rate
Why BIC_δ?

- For a fixed no. markers, letting $n \rightarrow \infty$, BIC_δ is consistent.
- There exists a prior (on models + coefficients) for which BIC_δ is the $-\log$ posterior.
- BIC_δ is essentially equivalent to use of a threshold on the conditional LOD score.
- It performs well.

Choice of δ

Larger δ: include more loci; higher false positive rate
Smaller δ: include fewer loci; lower false positive rate

Let $L = 95\%$ genome-wide LOD threshold
(compare single-QTL models to the null model)

Choose $\delta = 2 \frac{L}{\log_{10} n}$

With this choice of δ, in the absence of QTLs, we’ll include at least one extraneous locus, 5% of the time.
Simulations

- Backcross with n=250
- No crossover interference
- 9 chr, each 100 cM
- Markers at 10 cM spacing; complete genotype data
- 7 QTLs
 - One pair in coupling
 - One pair in repulsion
 - Three unlinked QTLs
- Heritability = 50%
- 2000 simulation replicates

Methods

- ANOVA at marker loci
- Composite interval mapping (CIM)
- Forward selection with permutation tests
- Forward selection with BIC$_\delta$
- Backward elimination with BIC$_\delta$
- FS followed by BE with BIC$_\delta$
- MCMC with BIC$_\delta$

→ A selected marker is deemed correct if it is within 10 cM of a QTL (i.e., correct or adjacent)
Ave no. chosen

ANOVA 3 5 7 9 11

CIM fs, perm fs fs/be mcmc

Correct

QTLs linked in coupling

Ave no. chosen

ANOVA 3 5 7 9 11

CIM fs, perm fs fs/be mcmc
QTLs linked in repulsion

Ave no. chosen

ANOVA 3 5 7 9 11
CIM
fs, perm
fs
be
fs/be
mcmc
BIC

Other QTLs

Ave no. chosen

ANOVA 3 5 7 9 11
CIM
fs, perm
fs
be
fs/be
mcmc
BIC
Summary

- QTL mapping is a model selection problem.
- Key issue: the comparison of models.
- Large-scale simulations are important.
- More refined procedures do not necessarily give improved results.
- BIC_δ with forward selection followed by backward elimination works quite well.