The genetic dissection of complex traits

Karl W Broman
Department of Biostatistics
Johns Hopkins University

http://www.biostat.jhsph.edu/~kbroman

Linkage mapping in mouse and man

Karl W Broman
Department of Biostatistics
Johns Hopkins University

http://www.biostat.jhsph.edu/~kbroman
The genetic approach

- Start with the phenotype; find genes the influence it.
 - Allelic differences at the genes result in phenotypic differences.
- Value: Need not know anything in advance.
- Goal
 - Understanding the disease etiology (e.g., pathways)
 - Identify possible drug targets

Approaches to gene mapping

- Experimental crosses in model organisms
- Linkage analysis in human pedigrees
 - A few large pedigrees
 - Many small families (e.g., sibling pairs)
- Association analysis in human populations
 - Isolated populations vs. outbred populations
 - Candidate genes vs. whole genome
Outline

• A bit about experimental crosses
• Meiosis, recombination, genetic maps
• QTL mapping in experimental crosses
• Parametric linkage analysis in humans
• Nonparametric linkage analysis in humans
• QTL mapping in humans
• Association mapping

The intercross
The data

- Phenotypes, y_i
- Genotypes, $x_{ij} = AA/AB/BB$, at genetic markers
- A genetic map, giving the locations of the markers.

Goals

- Identify genomic regions (QTLs) that contribute to variation in the trait.
- Obtain interval estimates of the QTL locations.
- Estimate the effects of the QTLs.
Phenotypes

133 females
(NOD × B6) × (NOD × B6)

NOD
C57BL/6

Agouti coat
Genetic map

Genotype data
Statistical structure

- Missing data: markers ↔ QTL
- Model selection: genotypes ↔ phenotype

Meiosis
Genetic distance

• Genetic distance between two markers (in cM) =
 \[\text{Average number of crossovers in the interval} \]
 \[\text{in 100 meiotic products} \]

• “Intensity” of the crossover point process

• Recombination rate varies by
 – Organism
 – Sex
 – Chromosome
 – Position on chromosome

Crossover interference

• Strand choice
 \[\rightarrow \text{Chromatid interference} \]

• Spacing
 \[\rightarrow \text{Crossover interference} \]

Positive crossover interference:
Crossovers tend not to occur too close together.
Recombination fraction

We generally do not observe the locations of crossovers; rather, we observe the grandparental origin of DNA at a set of genetic markers.

Recombination across an interval indicates an odd number of crossovers.

Recombination fraction =

\[Pr(\text{recombination in interval}) = Pr(\text{odd no. XOs in interval}) \]

Map functions

- A map function relates the genetic length of an interval and the recombination fraction.
 \[r = M(d) \]
- Map functions are related to crossover interference, but a map function is not sufficient to define the crossover process.
- Haldane map function: no crossover interference
- Kosambi: similar to the level of interference in humans
- Carter-Falconer: similar to the level of interference in mice
Models: recombination

- We assume no crossover interference
 - Locations of breakpoints according to a Poisson process.
 - Genotypes along chromosome follow a Markov chain.
- Clearly wrong, but super convenient.

Models: gen ↔ phe

Phenotype = \(y \), whole-genome genotype = \(g \)

Imagine that \(p \) sites are all that matter.

\[
E(y \mid g) = \mu(g_1, \ldots, g_p) \quad \text{SD}(y \mid g) = \sigma(g_1, \ldots, g_p)
\]

Simplifying assumptions:

- \(\text{SD}(y \mid g) = \sigma \), independent of \(g \)
- \(y \mid g \sim \text{normal}(\mu(g_1, \ldots, g_p), \sigma) \)
- \(\mu(g_1, \ldots, g_p) = \mu + \sum \alpha_j 1\{g_j = \text{AB}\} + \beta_j 1\{g_j = \text{BB}\} \)
The simplest method

“Marker regression”
- Consider a single marker
- Split mice into groups according to their genotype at a marker
- Do an ANOVA (or t-test)
- Repeat for each marker

Marker regression

Advantages
+ Simple
+ Easily incorporates covariates
+ Easily extended to more complex models
+ Doesn’t require a genetic map

Disadvantages
- Must exclude individuals with missing genotypes data
- Imperfect information about QTL location
- Suffers in low density scans
- Only considers one QTL at a time
Interval mapping

Lander and Botstein 1989

• Imagine that there is a single QTL, at position z.
• Let q_i = genotype of mouse i at the QTL, and assume

 $y_i \mid q_i \sim \text{normal}(\mu(q_i), \sigma)$

• We won’t know q_i, but we can calculate (by an HMM)

 $p_{ig} = \Pr(q_i = g \mid \text{marker data})$

• y_i, given the marker data, follows a mixture of normal distributions with
 known mixing proportions (the p_{ig}).

• Use an EM algorithm to get MLEs of $\theta = (\mu_{AA}, \mu_{AB}, \mu_{BB}, \sigma)$.

• Measure the evidence for a QTL via the LOD score, which is the \log_{10}
 likelihood ratio comparing the hypothesis of a single QTL at position z
 to the hypothesis of no QTL anywhere.

Interval mapping

Advantages

+ Takes proper account of missing data
+ Allows examination of positions between markers
+ Gives improved estimates of QTL effects
+ Provides pretty graphs

Disadvantages

– Increased computation time
– Requires specialized software
– Difficult to generalize
– Only considers one QTL at a time
LOD curves

LOD thresholds

- To account for the genome-wide search, compare the observed LOD scores to the distribution of the maximum LOD score, genome-wide, that would be obtained if there were no QTL anywhere.

- The 95th percentile of this distribution is used as a significance threshold.

- Such a threshold may be estimated via permutations (Churchill and Doerge 1994).
Permutation test

- Shuffle the phenotypes relative to the genotypes.
- Calculate $M^* = \text{max LOD}^*$, with the shuffled data.
- Repeat many times.
- LOD threshold = 95th percentile of M^*.
- P-value = $\Pr(M^* \geq M)$

Permutation distribution

- 95th %ile
- maximum LOD score
Chr 9 and 11

Non-normal traits
Non-normal traits

• Standard interval mapping assumes that the residual variation is normally distributed (and so the phenotype distribution follows a mixture of normal distributions).

• In reality: we see binary traits, counts, skewed distributions, outliers, and all sorts of odd things.

• Interval mapping, with LOD thresholds derived via permutation tests, often performs fine anyway.

• Alternatives to consider:
 – Nonparametric linkage analysis (Kruglyak and Lander 1995).
 – Transformations (e.g., log or square root).
 – Specially-tailored models (e.g., a generalized linear model, the Cox proportional hazards model, the model of Broman 2003).

Split by sex
Split by sex

Split by parent-of-origin
Split by parent-of-origin

Percent of individuals with phenotype

<table>
<thead>
<tr>
<th>Genotype at D15Mit252</th>
<th>Genotype at D19Mit59</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-O-O</td>
<td>AA</td>
</tr>
<tr>
<td>Dad</td>
<td>63%</td>
</tr>
<tr>
<td>Mom</td>
<td>57%</td>
</tr>
<tr>
<td></td>
<td>75%</td>
</tr>
<tr>
<td></td>
<td>38%</td>
</tr>
</tbody>
</table>

The X chromosome

\[
\begin{align*}
(N \times B) \times (N \times B) & \quad (B \times N) \times (B \times N) \\
F_1 & \quad F_1 \\
\downarrow & \quad \downarrow \\
F_2 & \quad F_2 \\
♀ & \quad ♀ \\
♂ & \quad ♂
\end{align*}
\]
The X chromosome

- BB ≡ BY? \(\equiv \) NN ≡ NY?

- Different “degrees of freedom”
 - Autosomal \(NN : NB : BB \)
 - Females, one direction \(NN : NB \)
 - Both sexes, both directions \(NY : NN : NB : BB : BY \)

\[\Rightarrow \text{Need an X-chr-specific LOD threshold.} \]

- “Null model” should include a sex effect.

Chr 9 and 11

![LOD score vs Location (cM) graph for Chr 9 and Chr 11]
Epistasis

Going after multiple QTLs

- Greater ability to detect QTLs.
- Separate linked QTLs.
- Learn about interactions between QTLs (epistasis).
Model selection

• Choose a class of models.
 – Additive; pairwise interactions; regression trees

• Fit a model (allow for missing genotype data).
 – Linear regression; ML via EM; Bayes via MCMC

• Search model space.
 – Forward/backward/stepwise selection; MCMC

• Compare models.
 – $\text{BIC}_d(\gamma) = \log L(\gamma) + \frac{\tilde{d}/2}{\log n}$

 Miss important loci \leftrightarrow include extraneous loci.

Special features

• Relationship among the covariates

• Missing covariate information

• Identify the key players vs. minimize prediction error
Before you do anything…

Check data quality
- Genetic markers on the correct chromosomes
- Markers in the correct order
- Identify and resolve likely errors in the genotype data

Software

- R/qtl
 http://www.biostat.jhsph.edu/~kbroman/qtl
- Mapmaker/QTL
 http://www.broad.mit.edu/genome_software
- Mapmanager QTX
 http://www.mapmanager.org/mmQTX.html
- QTL Cartographer
 http://statgen.ncsu.edu/qtlcart/index.php
- Multimapper
 http://www.rni.helsinki.fi/~mjs
Linkage in large human pedigrees

Before you do anything…

- Verify relationships between individuals
- Identify and resolve genotyping errors
- Verify marker order, if possible
- Look for apparent tight double crossovers, indicative of genotyping errors
Parametric linkage analysis

- Assume a specific genetic model. For example:
 - One disease gene with 2 alleles
 - Dominant, fully penetrant
 - Disease allele frequency known to be 1%.

- Single-point analysis (aka two-point)
 - Consider one marker (and the putative disease gene)
 - θ = recombination fraction between marker and disease gene
 - Test H_0: $\theta = 1/2$ vs. H_a: $\theta < 1/2$

- Multipoint analysis
 - Consider multiple markers on a chromosome
 - θ = location of disease gene on chromosome
 - Test gene unlinked ($\theta = \infty$) vs. θ = particular position

Phase known

\[
L(\theta) = \Pr(\text{data} \mid \theta) = \theta^3(1-\theta)^5
\]

LOD score = $\log_{10} \left(\frac{\max_{\theta} L(\theta)}{L(\theta = 1/2)} \right)$
Phase unknown

\[L(\theta) = \theta^1 (1 - \theta)^6 + \theta^5 (1 - \theta)^1 \]

LOD score = \(\log_{10} \left(\frac{\max_{\theta} L(\theta)}{L(\theta = 1/2)} \right) \)

Missing data

The likelihood now involves a sum over possible parental genotypes, and we need:

- Marker allele frequencies
- Further assumptions: Hardy-Weinberg and linkage equilibrium
More generally

- Simple diallelic disease gene
 - Alleles d and + with frequencies p and 1-p
 - Penetrances \(f_0, f_1, f_2 \), with \(f_i = \Pr(\text{affected} \mid i \text{ d alleles}) \)

- Possible extensions:
 - Penetrances vary depending on parental origin of disease allele
 \(f_1 \rightarrow f_{1m}, f_{1p} \)
 - Penetrances vary between people (according to sex, age, or other known covariates)
 - Multiple disease genes

- We assume that the penetrances and disease allele frequencies are known

Likelihood calculations

- Define
 \(g = \) complete ordered (aka phase-known) genotypes for all individuals in a family
 \(x = \) observed “phenotype” data (including phenotypes and phase-unknown genotypes, possibly with missing data)

- For example:
 \[
 g_i = \begin{pmatrix}
 3 & 2 \\
 1 & 2 \\
 d & + \\
 5 & 4 \\
 \end{pmatrix},
 x_i = \begin{cases}
 (2, 3) \\
 (1, 2) \\
 \text{unaffected} \\
 (--)
 \end{cases}
 \]

- Goal: \(L(\theta) = \Pr(x \mid \theta) = \sum_g \Pr(g) \Pr(x \mid g, \theta) \)
The parts

- **Prior** = \(\text{Pop}(g_i) \)
 Founding genotype probabilities

- **Penetrance** = \(\text{Pen}(x_i \mid g_i) \)
 Phenotype given genotype

- **Transmission**
 Transmission parent → child
 \[= \text{Tran}(g_i \mid g_m(i), g_f(i)) \]

 Note: If \(g_i = (u_i, v_i) \), where \(u_i = \) haplotype from mom and \(v_i = \) that from dad
 Then \(\text{Tran}(g_i \mid g_m(i), g_f(i)) = \text{Tran}(u_i \mid g_m(i)) \cdot \text{Tran}(v_i \mid g_f(i)) \)

Examples

\[\text{Pop} \left(g_i = \frac{1}{d} \mid \frac{2}{d} \right) = p_1 \cdot p_2 \cdot p \cdot (1 - p) \]

\[\text{Pen} \left(x_i = \begin{cases} \frac{1}{2} \\ \text{affected} \end{cases} \mid g_i = \frac{1}{d} \right) = f_i \]

\[\text{Tran} \left(g_i = \frac{1}{d} \mid \frac{2}{d} \right) = \text{Tran} \left(g_m(i) = \frac{1}{d} \mid \frac{3}{d} \right) \cdot \text{Tran} \left(g_f(i) = \frac{4}{d} \right) = \left(\frac{1}{z} \theta \right) \cdot \frac{1}{z} \]
The likelihood

\[\Pr(x) = \sum_g \Pr(g) \Pr(x \mid g) \]

\[\Pr(x \mid g) = \prod_i \Pr(x_i \mid g_i) \quad \text{Phenotypes conditionally independent given genotypes} \]

\[\Pr(g) = \prod_{i \in F} \Pr(p_i) \prod_{i \in F} \Tran(g_i \mid g_{m(i)}, g_{r(i)}) \]

\[F = \text{set of " founding" individuals} \]

That’s a mighty big sum!

- With a marker having \(k \) alleles and a diallelic disease gene, we have a sum with \((2k)^{2n} \) terms.
- Solution:
 - Take advantage of conditional independence to factor the sum
 - Elston-Stewart algorithm: Use conditional independence in pedigree
 - Good for large pedigrees, but blows up with many loci
 - Lander-Green algorithm: Use conditional independence along chromosome (assuming no crossover interference)
 - Good for many loci, but blows up in large pedigrees
Ascertainment

• We generally select families according to their phenotypes. (For example, we may require at least two affected individuals.)

• How does this affect linkage?
 If the genetic model is known, it doesn’t; we can condition on the observed phenotypes.

\[
\text{LOD} = \frac{\max_\theta \Pr(\text{data} \mid \theta)}{\Pr(\text{data} \mid \theta = \frac{1}{2})} = \frac{\max_\theta \Pr(M,D \mid \theta)}{\Pr(M,D \mid \theta = \frac{1}{2})}
\]

\[
= \frac{\max_\theta \Pr(M, D, \theta) \Pr(D \mid \theta)}{\Pr(M \mid D, \theta = \frac{1}{2}) \Pr(D \mid \theta = \frac{1}{2})} = \frac{\max_\theta \Pr(M \mid D, \theta)}{\Pr(M \mid D, \theta = \frac{1}{2})}
\]

Model misspecification

• To do parametric linkage analysis, we need to specify:
 – Penetrances
 – Disease allele frequency
 – Marker allele frequencies
 – Marker order and genetic map (in multipoint analysis)

• Question: Effect of misspecification of these things on:
 – False positive rate
 – Power to detect a gene
 – Estimate of \(\theta \) (in single-point analysis)
Model misspecification

• Misspecification of disease gene parameters (f’s, p) has little effect on the false positive rate.

• Misspecification of marker allele frequencies can lead to a greatly increased false positive rate.
 – Complete genotype data: marker allele freq don’t matter
 – Incomplete data on the founders: misspecified marker allele frequencies can really screw things up
 – BAD: using equally likely allele frequencies
 – BETTER: estimate the allele frequencies with the available data (perhaps even ignoring the relationships between individuals)

Model misspecification

• In single-point linkage, the LOD score is relatively robust to misspecification of:
 – Phenocopy rate
 – Effect size
 – Disease allele frequency

 However, the estimate of \(\theta \) is generally too large.

• This is less true for multipoint linkage (i.e., multipoint linkage is not robust).

• Misspecification of the degree of dominance leads to greatly reduced power.
Other things

- Phenotype misclassification (equivalent to misspecifying penetrances)
- Pedigree and genotyping errors
- Locus heterogeneity
- Multiple genes
- Map distances (in multipoint analysis), especially if the distances are too small.

All lead to:
- Estimate of θ too large
- Decreased power
- Not much change in the false positive rate

Multiple genes generally not too bad as long as you correctly specify the marginal penetrances.

Software

- Liped
 ftp://linkage.rockefeller.edu/software/liped
- Fastlink
- Genehunter
- Allegro
 Email allegro@decode.is
Linkage in affected sibling pairs

Nonparametric linkage

Underlying principle
- Relatives with similar traits should have higher than expected levels of sharing of genetic material near genes that influence the trait.
- "Sharing of genetic material" is measured by identity by descent (IBD).
Identity by descent (IBD)

Two alleles are identical by descent if they are copies of a single ancestral allele.

IBD in sibpairs

- Two non-inbred individuals share 0, 1, or 2 alleles IBD at any given locus.
- *A priori*, sib pairs are IBD=0,1,2 with probability 1/4, 1/2, 1/4, respectively.
- Affected sibling pairs, in the region of a disease susceptibility gene, will tend to share more alleles IBD.
Example

- Single diallelic gene with disease allele frequency = 10%
- Penetrances $f_0 = 1\%$, $f_1 = 10\%$, $f_2 = 50\%$
- Consider position rec. frac. = 5% away from gene

<table>
<thead>
<tr>
<th>Type of sibpair</th>
<th>IBD probabilities</th>
<th>Ave. IBD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Both affected</td>
<td>0.063 0.495 0.442</td>
<td>1.38</td>
</tr>
<tr>
<td>Neither affected</td>
<td>0.248 0.500 0.252</td>
<td>1.00</td>
</tr>
<tr>
<td>1 affected, 1 not</td>
<td>0.368 0.503 0.128</td>
<td>0.76</td>
</tr>
</tbody>
</table>

Complete data case

Set-up
- n affected sibling pairs
- IBD at particular position known exactly
- n_i = no. sibpairs sharing i alleles IBD
- Compare (n_0, n_1, n_2) to $(n/4, n/2, n/4)$
- Example: 100 sibpairs
 $(n_0, n_1, n_2) = (15, 38, 47)$
Affected sibpair tests

- Mean test
 Let \(S = n_1 + 2n_2 \).
 Under \(H_0: \pi = (1/4, 1/2, 1/4) \),
 \[E(S | H_0) = n \quad \text{var}(S | H_0) = n/2 \]
 Let \(Z = (S - n)/\sqrt{n}/2 \) \(\text{LOD} = Z^2/(2 \ln 10) \)
 Example:
 \(S = 132 \)
 \(Z = 4.53 \)
 \(\text{LOD} = 4.45 \)

- \(\chi^2 \) test
 Let \(\pi_0 = (1/4, 1/2, 1/4) \)
 \[X^2 = \sum (n_i - \pi_0 n)^2 / \pi_0 n \]
 Example:
 \(X^2 = 26.2 \)
 \(\text{LOD} = X^2/(2 \ln 10) = 5.70 \)
Incomplete data

- We seldom know the alleles shared IBD for a sib pair exactly.
- We can calculate, for sib pair i,

 \[p_j = \text{Pr(sib pair } i \text{ has IBD } = j | \text{ marker data}) \]

- For the means test, we use $\sum_i p_i$ in place of n_j
- Problem: the denominator in the means test, $\sqrt{n_j/2}$, is correct for perfect IBD information, but is too small in the case of incomplete data
- Most software uses this perfect data approximation, which can make the test conservative (too low power).
- Alternatives: Computer simulation; likelihood methods (e.g., Kong & Cox AJHG 61:1179-88, 1997)

Larger families

Inheritance vector, ν

Two elements for each subject $= 0/1$, indicating grandparental origin of DNA
Score function

• $S(v) =$ number measuring the allele sharing among affected relatives

• Examples:
 – $S_{\text{pairs}}(v) =$ sum (over pairs of affected relatives) of no. alleles IBD
 – $S_{\text{all}}(v) =$ a bit complicated; gives greater weight to the case that many affected individuals share the same allele
 – S_{all} is better for dominance or additivity; S_{pairs} is better for recessiveness

• Normalized score, $Z(v) = \{S(v) - \mu\} / \sigma$
 – $\mu = E\{S(v) | \text{no linkage}\}$
 – $\sigma = SD\{S(v) | \text{no linkage}\}$

Combining families

• Calculate the normalized score for each family
 $$Z_i = \{S_i - \mu_i\} / \sigma_i$$

• Combine families using weights $w_i \geq 0$
 $$Z = \sum_i w_i Z_i / \sqrt{\sum_i w_i^2}$$

• Choices of weights
 – $w_i = 1$ for all families
 – $w_i =$ no. sibpairs
 – $w_i = \sigma_i$ (i.e., combine the Z_i's and then standardize)

• Incomplete data
 – In place of S_i, use $S = \sum_v S(v) p(v)$
 where $p(v) = Pr(\text{inheritance vector } v | \text{marker data})$
Software

- Genehunter
- Allegro
 Email allegro@decode.is
- Merlin
 http://www.sph.umich.edu/csg/abecasis/Merlin

Summary

- Experimental crosses in model organisms
 + Cheap, fast, powerful, can do direct experiments
 - The “model” may have little to do with the human disease
- Linkage in a few large human pedigrees
 + Powerful, studying humans directly
 - Families not easy to identify, phenotype may be unusual, and mapping resolution is low
- Linkage in many small human families
 + Families easier to identify, see the more common genes
 - Lower power than large pedigrees, still low resolution mapping
- Association analysis
 + Easy to gather cases and controls, great power (with sufficient markers), very high resolution mapping
 - Need to type an extremely large number of markers (or very good candidates), hard to establish causation
References

References