Mapping multiple QTL in experimental crosses

Karl W Broman
Department of Biostatistics & Medical Informatics
University of Wisconsin – Madison

www.biostat.wisc.edu/~kbroman
Human vs mouse

www.daviddeen.com

www.daviddeen.com
Backcross
Intercross

P_1 \times P_2

F_1 \times F_1

F_2

250 male mice from the backcross \((A \times B) \times B\)

Blood pressure after two weeks drinking water with 1% NaCl
Genotype data
Goals

• Identify quantitative trait loci (QTL) (and interactions among QTL)

• Interval estimates of QTL location

• Estimated QTL effects
Statistical structure

The missing data problem:

Markers ←→ QTL

The model selection problem:

QTL, covariates → phenotype
ANOVA at marker loci

- Split mice into groups according to genotype at a marker.
- Do a t-test / ANOVA.
- Repeat for each marker.
Interval mapping

Lander & Botstein (1989)

• Assume a single QTL model.

• Consider each position in the genome, one at a time, as the location of the putative QTL.

• Let $q = 0/1$ if the (unobserved) QTL genotype is BB/AB. (Or 0/1/2 if the QTL genotype is AA/AB/BB in an intercross.)

Assume $y \mid q \sim N(\mu_q, \sigma)$

• Calculate $p_q = Pr(q \mid \text{marker data})$.

$y \mid \text{marker data} \sim \sum_q p_q \phi(y \mid \mu_q, \sigma)$
LOD scores

\[\text{LOD}(\lambda) = \log_{10} \text{likelihood ratio comparing the hypothesis of a QTL at position } \lambda \text{ versus that of no QTL} \]

\[= \log_{10} \left\{ \frac{\Pr(y|\text{QTL at } \lambda, \hat{\mu}_q\lambda, \hat{\sigma}_\lambda)}{\Pr(y|\text{no QTL}, \hat{\mu}, \hat{\sigma})} \right\} \]

\(\hat{\mu}_q\lambda, \hat{\sigma}_\lambda\) are the MLEs, assuming a single QTL at position \(\lambda\).

No QTL model: The phenotypes are iid \(N(\mu, \sigma^2)\).
LOD curves
Permutation test

markers

individuals

genotype data

phenotypes

LOD scores

maximum LOD score
Permutation results

Genome-wide maximum LOD score
Estimated effects

Chr 1 @ 48 cM
Genotype
blood pressure
BB BA
●
●
98
100
102
104
106

Chr 4 @ 30 cM
Genotype
BB BA
●
●
98
100
102
104
106

Chr 6 @ 24 cM
Genotype
BB BA
●
●
98
100
102
104
106

Chr 15 @ 20 cM
Genotype
BB BA
●
●
98
100
102
104
106
 Modeling multiple QTL

- Reduce residual variation \rightarrow increased power
- Separate linked QTL
- Identify interactions among QTL (epistasis)
Estimated effects

1 x 4

Chr 1 genotype

6 x 15

Chr 6 genotype

Chr 4 genotype

Chr 15 Genotype
• In the past, QTL mapping has been regarded as a task of **hypothesis testing**.

 Is this a QTL?

 Much of the focus has been on adjusting for test multiplicity.

• It is better to view the problem as one of **model selection**.

 What set of QTL are well supported?
 Is there evidence for QTL-QTL interactions?

 Model = a defined set of QTL and QTL-QTL interactions (and possibly covariates and QTL-covariate interactions).
Model selection

- **Class of models**
 - Additive models
 - + pairwise interactions
 - + higher-order interactions
 - Regression trees

- **Model fit**
 - Maximum likelihood
 - Haley-Knott regression
 - extended Haley-Knott
 - Multiple imputation
 - MCMC

- **Model comparison**
 - Estimated prediction error
 - AIC, BIC, penalized likelihood
 - Bayes

- **Model search**
 - Forward selection
 - Backward elimination
 - Stepwise selection
 - Randomized algorithms
● Selection of a model includes two types of errors:
 – Miss important terms (QTLs or interactions)
 – Include extraneous terms

● Unlike in hypothesis testing, we can make both errors at the same time.

● Identify as many correct terms as possible, while controlling the rate of inclusion of extraneous terms.
What is special here?

- Goal: identify the major players

- A continuum of ordinal-valued covariates (the genetic loci)

- Association among the covariates
 - Loci on different chromosomes are independent
 - Along chromosome, a very simple (and known) correlation structure
Automation

- Assistance to the masses
- Understanding performance
- Many phenotypes
Additive QTL

Simple situation:

- Dense markers
- Complete genotype data
- No epistasis

\[y = \mu + \sum \beta_j q_j + \epsilon \quad \text{which } \beta_j \neq 0? \]

\[\text{BIC}(\gamma) = \log \text{RSS}(\gamma) + \left(\frac{\log n}{n} \right) |\gamma| \]
Additive QTL

Simple situation:

- Dense markers
- Complete genotype data
- No epistasis

\[y = \mu + \sum \beta_j q_j + \epsilon \]

which \(\beta_j \neq 0? \)

\[\text{BIC}_\delta(\gamma) = \log \text{RSS}(\gamma) + \left(\delta \cdot \frac{\log n}{n} \right) |\gamma| \]
Additive QTL

Simple situation:

- Dense markers
- Complete genotype data
- No epistasis

\[y = \mu + \sum \beta_j q_j + \epsilon \quad \text{which } \beta_j \neq 0? \]

\[\text{LOD}_\delta(\gamma) = \text{LOD}(\gamma) - (2\delta \log n) |\gamma| \]
Additive QTL

Simple situation:

- Dense markers
- Complete genotype data
- No epistasis

\[y = \mu + \sum \beta_j q_j + \epsilon \quad \text{which } \beta_j \neq 0? \]

\[\text{LOD}_{\delta}(\gamma) = \text{LOD}(\gamma) - T |\gamma| \]
Additive QTL

Simple situation:

- Dense markers
- Complete genotype data
- No epistasis

\[y = \mu + \sum \beta_j q_j + \epsilon \]
which \(\beta_j \neq 0 \)?

\[\text{LOD}_{\delta}(\gamma) = \text{LOD}(\gamma) - T |\gamma| \]

0 vs 1 QTL: \(\text{LOD}_{\delta}(\emptyset) = 0 \)

\[\text{LOD}_{\delta}(\{\lambda\}) = \text{LOD}(\{\lambda\}) - T \]
Additive QTL

Simple situation:
- Dense markers
- Complete genotype data
- No epistasis

\[y = \mu + \sum \beta_j q_j + \epsilon \quad \text{which } \beta_j \neq 0? \]

\[\text{LOD}_\delta(\gamma) = \text{LOD}(\gamma) - T |\gamma| \]

For the mouse genome:
\[T = 2.69 \, (\text{BC}) \, \text{or} \, 3.52 \, (F_2) \]
Experience

- Controls rate of inclusion of extraneous terms
- Forward selection over-selects
- Forward selection followed by backward elimination works as well as MCMC
- Need to define performance criteria
- Need large-scale simulations

Broman & Speed, JRSS B 64:641-656, 2002
Epistasis

\[y = \mu + \sum \beta_j q_j + \sum \gamma_{jk} q_j q_k + \epsilon \]

\[\text{LOD}_{\delta \epsilon}(\gamma) = \text{LOD}(\gamma) - T_m |\gamma|_m + T_i |\gamma|_i \]

\[T_m = \text{as chosen previously} \]

\[T_i = ? \]
Imagine there are two additive QTL and consider a 2d, 2-QTL scan.

\[T_i = 95\text{th percentile of the distribution of} \]
\[\max \text{LOD}_f(s, t) - \max \text{LOD}_a(s, t) \]
Imagine there are two additive QTL and consider a 2d, 2-QTL scan.

\[T_i = 95\text{th percentile of the distribution of } \max \text{LOD}_f(s, t) - \max \text{LOD}_a(s, t) \]

For the mouse genome:

\[T_m = 2.69 \text{ (BC) or 3.52 (F}_2) \]
\[T_i^H = 2.62 \text{ (BC) or 4.28 (F}_2) \]
Imagine there is one QTL and consider a 2d, 2-QTL scan.

\[T_m + T_i = 95\text{th percentile of the distribution of } \max \text{LOD}_f(s, t) - \max \text{LOD}_1(s) \]
Imagine there is one QTL and consider a 2d, 2-QTL scan.

\[T_m + T_i = 95\text{th percentile of the distribution of} \]
\[\max \text{LOD}_f(s, t) - \max \text{LOD}_1(s) \]

For the mouse genome:

\[T_m = 2.69 \text{ (BC) or } 3.52 \text{ (F}_2\text{) } \]
\[T_i^H = 2.62 \text{ (BC) or } 4.28 \text{ (F}_2\text{) } \]
\[T_i^L = 1.19 \text{ (BC) or } 2.69 \text{ (F}_2\text{) } \]
Models as graphs

A

B

C

D
Results

LOD = 23.1
Results

LOD = 23.1
Results

\[T_m = 2.69 \quad T_i^H = 2.62 \quad T_i^L = 1.19 \quad T_m + T_i^H = 5.31 \quad T_m + T_i^L = 3.88 \]
Add an interaction?

\[
T_m = 2.69 \quad T_i^H = 2.62 \quad T_i^L = 1.19 \quad T_m + T_i^H = 5.31 \quad T_m + T_i^L = 3.88
\]
Add an interaction?

$T_m = 2.69 \quad T_i^H = 2.62 \quad T_i^L = 1.19 \quad T_m + T_i^H = 5.31 \quad T_m + T_i^L = 3.88$
Add an interaction?

\[T_m = 2.69 \quad T_i^H = 2.62 \quad T_i^L = 1.19 \quad T_m + T_i^H = 5.31 \quad T_m + T_i^L = 3.88 \]
Add an interaction?

\[T_m = 2.69 \quad T_i^H = 2.62 \quad T_i^L = 1.19 \quad T_m + T_i^H = 5.31 \quad T_m + T_i^L = 3.88 \]
Add an interaction?

\[T_m = 2.69 \quad T_i^H = 2.62 \quad T_i^L = 1.19 \quad T_m + T_i^H = 5.31 \quad T_m + T_i^L = 3.88 \]
Add another QTL?

\[T_m = 2.69 \quad T_{iH} = 2.62 \quad T_{iL} = 1.19 \quad T_m + T_{iH} = 5.31 \quad T_m + T_{iL} = 3.88 \]
Add another QTL?

\[T_m = 2.69 \quad T_i^H = 2.62 \quad T_i^L = 1.19 \quad T_m + T_i^H = 5.31 \quad T_m + T_i^L = 3.88 \]
Add a pair of QTL?

\[T_m = 2.69 \quad T_i^H = 2.62 \quad T_i^L = 1.19 \quad T_m + T_i^H = 5.31 \quad T_m + T_i^L = 3.88 \]
To do

• Improve search procedures

• Study performance
 (especially relative to other approaches)

• Measuring model uncertainty

• Measuring uncertainty in QTL location
Summary

- QTL mapping is a model selection problem
- The criterion for comparing models is most important
- We’re focusing on a penalized likelihood method and are close to a practiceable solution
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ani Manichaikul</td>
<td>Johns Hopkins University</td>
</tr>
<tr>
<td>Gary Churchill</td>
<td>Jackson Laboratory</td>
</tr>
<tr>
<td>Saunak Sen</td>
<td>University of California, San Francisco</td>
</tr>
<tr>
<td>Terry Speed</td>
<td>University of California, Berkeley</td>
</tr>
<tr>
<td>Brian Yandell</td>
<td>University of Wisconsin – Madison</td>
</tr>
<tr>
<td>Fumihiro Sugiyama</td>
<td>now at University of Tsukuba, Japan</td>
</tr>
<tr>
<td>Bev Paigen</td>
<td>Jackson Laboratory</td>
</tr>
</tbody>
</table>