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Summary. We consider the problem of identifying the genetic loci (called quantitative trait
loci (QTLs)) contributing to variation in a quantitative trait, with data on an experimental cross.
A large number of different statistical approaches to this problem have been described; most
make use of multiple tests of hypotheses, and many consider models allowing only a single
QTL. We feel that the problem is best viewed as one of model selection. We discuss the use
of model selection ideas to identify QTLs in experimental crosses. We focus on a back-cross
experiment, with strictly additive QTLs, and concentrate on identifying QTLs, considering the
estimation of their effects and precise locations of secondary importance.We present the results
of a simulation study to compare the performances of the more prominent methods.

Keywords: Bayesian information criterion; Composite interval mapping; Markov chain Monte
Carlo methods; Model selection; Quantitative trait loci; Regression

1. Introduction

The identification of the genetic loci that are responsible for variation in traits that are quantita-
tive in nature (such as the yield from an agricultural crop, the number of abdominal bristles on
a fruit-fly and the survival time of a mouse following an infection) is a problem of great impor-
tance to biologists. The number and effects of such loci (called quantitative trait loci (QTLs))
help us to understand the biochemical basis of these traits, and of their evolution in populations
over time. Moreover, knowledge of these loci may aid in the design of selection experiments to
improve these traits.
Repeated sibling mating (or, in plants, selfing) of experimental organisms has led to the

establishment of panels of well-defined strains. The process of inbreeding has fixed a large num-
ber of biomedically (or agriculturally) relevant traits in these strains. If two strains, raised in
a common environment, show consistent differences in a trait, we may be confident that the
difference has a genetic basis. The genetic loci contributing to such a trait difference may be
revealed by performing a series of experimental crosses, of which the simplest is the back-cross.
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Fig. 1. A back-cross experiment begins with two inbred strains that differ in the trait of interest: the two
strains are crossed to produce the F1-generation, which is then crossed back to one of the parental strains
to obtain the back-cross generation, the back-cross generation exhibits genetic variation

In a back-cross (Fig. 1), an investigator chooses two inbred strains that differ in the trait of
interest (we shall call these the high (H) and low (L) parental strains). All individuals within an
inbred strain are genetically identical and are homozygous at all loci. The two parental strains
are crossed to form the first filial (F1-) generation. The F1-individuals are also genetically iden-
tical, and are heterozygous at loci at which the parental strains differ. The F1-individuals are
crossed to one of the two parental strains (e.g. theH-strain) to obtain the back-cross generation.
The back-cross individuals receive one chromosome from the H-strain and one from the F1.
Thus, at each locus, they have genotype either HL or HH. The chromosome received from the
F1-parent is a mosaic of the two grandparental chromosomes, as a result of recombination
during meiosis.
The investigator produces a number of back-cross progeny and determines the quantitative

phenotype for each individual. Each individual is genotyped at a number of genetic markers
(generally 100–300), chosen to cover the genome uniformly. At each marker and for each indi-
vidual, it is observed whether the F1-parent transmitted the H- or the L-allele. A genetic map
for the marker loci will either be known or estimated on the basis of the current experiment.
Such a map specifies the linear order of the marker loci along each chromosome and the dis-
tances between markers, measured in genetic distance. The genetic distance between two loci
is d centimorgans (cM), if d is the average number of crossovers (points of exchange) in the
intervening interval, in 100 products of meiosis.
The objective of the experiment is to identify the genomic regions for which there is an

association between the phenotype of a back-cross individual and whether it received the H- or
L-allele from the F1-parent in the region. Although other experiments, such as the intercross,
are more commonly used in practice, we focus on the back-cross for simplicity.
Consider a back-cross with n individuals. Let yi denote the phenotype (trait value) of indi-

vidual i, and let xij = 1 or xij = 0, according to whether individual i has genotype HH or HL
respectively at marker j.
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The locations of crossovers inmeiosis are oftenmodelled as a Poisson process (an assumption
of no crossover interference). In this case, the xij for each chromosome form a Markov chain,
with transition probabilities Pr.xi;j+1 = 1|xij = 0/ = Pr.xi;j+1 = 0|xij = 1/ = rj, where
rj is called the recombination fraction between markers j and j + 1. We further assume that
Pr.xij = 1/ = Pr.xij = 0/ = 1

2 , in accordance with Mendel’s rules.
Imagine that there is a reasonably small number, p, of genetic loci (QTLs) that influence

the trait. Let us temporarily suspend the index i for individuals and consider the relationship
between an individual’s genotypes at the QTLs and its phenotype (trait value). Let z = .z1; : : :;

zp/, with zj = 1 or zj = 0, according to whether the individual has genotype HH or HL re-
spectively at the jth QTL. In principle, E.y|z/ = µz and var.y|z/ = σ2z are arbitrary functions
of z. Generally, we assume that the trait is homoscedastic—that the variance is constant within
genotype groups, var.y|z/ = σ2. It is often further assumed that the residual variation is nor-
mally distributed, that y|z ∼ N.µz;σ

2/.
There remains the possibility that each of the 2p possible genotypes has a distinct trait

mean. However, often it is assumed that the QTLs act additively; we imagine that E.y|z/ =
µ + Σp

j=1 βjzj:Deviation from additivity (i.e. interactions between the QTLs) is called epistasis
(Frankel and Schork, 1996). Many studies have provided strong evidence for the presence of
interactions between QTLs (e.g. Shrimpton and Robertson (1988), Roberts et al. (1999) and
Shimomura et al. (2001)). In this paper, however, we shall focus on the case of strict additivity.
This is not because we feel that it is the best approach, but rather because this simple case is still
not well solved.
With the assumption of additivity, the aim of QTL mapping is to identify the number and

locations of the QTLs. One may further seek interval estimates of QTL locations and estimates
of QTL effects; although these are both clearly important, we consider them of secondary
interest and focus on the identification of QTLs. In the following section, we describe the cur-
rent approaches to this problem. In Section 3, we frame the problem as one of model selec-
tion and describe an approach for QTL mapping that makes use of a modified version of the
Bayesian information criterion BIC (Schwarz, 1978). In Section 4, we present the results of a
large computer simulation to assess the performance of several major approaches to QTL
mapping.

2. Current approaches

In this section, we describe the commonly used approaches for QTL mapping. For a more
extensive review of the statistical methods for QTL mapping, see Doerge et al. (1997), Lynch
and Walsh (1998) or Broman and Speed (1999).
The simplest approach to identifying QTLs, with data on an experimental cross, is to per-

form analysis of variance (ANOVA) at each of the marker loci (see Soller et al. (1976)). At each
genetic marker, we split the back-cross progeny into two groups, according to their genotypes at
the marker, and compare the two group phenotype means, by a t-test. Geneticists often prefer
to report a LOD score, defined as the (base 10) log-likelihood ratio comparing the hypotheses

(a) the phenotypes in the two groups are normally distributed with distinct means but a
common variance and

(b) the phenotypes for all individuals follow a common normal distribution, independent of
genotype.

Marker loci giving large LOD scores are indicated to be linked to a QTL.
This approach has several weaknesses. First, if a QTL is not located exactly at a marker, its
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effect will be attenuated as a result of recombination between the marker and the QTL. Second,
at each genetic marker, we must discard individuals whose genotypes are missing. Third, when
the markers are widely spaced, a QTL may be quite far from all markers, and so the power
for QTL detection will decrease. Fourth, the approach considers only one locus at a time; in
the presence of several QTLs, approaches that model multiple QTLs will give greater power for
QTL detection, better separate linked QTLs and allow the examination of interactions between
QTLs (though such interactions will not be considered here).
Lander andBotstein (1989) developed intervalmapping, which overcomes the first threeweak-

nesses of ANOVA at marker loci, described above. The method, which continues to be the most
popular approach for QTL mapping, makes use of a genetic map of the typed markers, and,
like ANOVA, assumes the presence of a single QTL. Each location in the genome is posited,
one at a time, as the location of the putative QTL.
Given the marker genotype data (and assuming no crossover interference), one may calculate

the probability that an individual has genotype HH (or HL) at a putative QTL. These QTL
probabilities depend only on the genotypes at the flanking markers and may be found in Table
2 of Doerge et al. (1997). In interval mapping, one assumes that, given the QTL genotype, the
phenotype follows a normal distribution with mean µH or µL, according to whether the QTL
genotype is HH or HL respectively, and common standard deviation σ. Given the genotypes at
the markers flanking the QTL, the conditional phenotype distribution is then a mixture of the
two normal distributions, with the conditional QTL genotype probabilities, given the marker
genotype data, asmixing proportions. At each position in the genome (or, in practice, at steps of
0.5 cM), onemay use a version of the EMalgorithm (Dempster et al., 1977) to estimate the three
parameters, µH, µL and σ, and may calculate a LOD score: the (base 10) log-likelihood ratio,
comparing the hypothesis that there is a single QTL at the given location with the hypothesis
that there is no QTL anywhere in the genome. The LOD score, as a function of chromosome
position, forms a profile log-likelihood. Genomic regions for which the LOD score is large are
indicated as harbouring QTLs.
The advantages of interval mapping, over ANOVA at marker loci, are that it makes more

complete use of the marker genotype data (making proper allowance for missing data), and it
considers positions between markers as putative locations for a QTL, thus providing increased
power in the case of widely spaced markers, as well as improved estimates of QTL effects. How-
ever in the case of dense genetic markers and relatively complete marker genotype data, interval
mapping provides little advantage over ANOVA. Moreover, interval mapping, like ANOVA,
makes use of a single-QTL model and so is not ideal in the presence of multiple (especially
linked) QTLs.
Both ANOVA at marker loci and interval mapping make use of multiple tests of hypoth-

eses and so require some adjustment for test multiplicity. Much effort has been expended on
this problem, the aim being to obtain an approximate genome-wide LOD threshold, defined
as the 95th percentile of the distribution of the maximum LOD score, genome wide, under the
hypothesis that there are no QTLs (i.e. that the phenotypes are simply normally distributed,
independent of the marker data). Lander and Botstein (1989) performed extensive computer
simulations to estimate the appropriate LOD threshold for various genome sizes and marker
densities, and gave analytical calculations for the case of a very dense marker map. Another
approach is to perform a permutation test (Churchill and Doerge, 1994).
As mentioned above, methods that make use of multiple-QTL models can provide increased

sensitivity, better separate linked QTLs and allow the examination of interactions between
QTLs. The simplest multiple-QTL method is multiple regression, the obvious extension of
ANOVA at marker loci. Cowen (1989) appears to be the first to have recommended the use
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of multiple regression in this context (see also Whittaker et al. (1995)). We shall defer further
discussion of this approach to the next section.
Jansen and Zeng independently developed a method which attempts to reduce the multi-

dimensional search for identifying multiple QTLs to a one-dimensional search (Jansen, 1993;
Jansen and Stam, 1994; Zeng, 1993, 1994). This is done using a hybrid of interval mapping and
multiple regression onmarker genotypes.One includes othermarkers (on the same chromosome
and on different chromosomes) as regressors while performing interval mapping, in an effort
to control for the effects of QTLs in other intervals, so that there will be greater power for QTL
detection, and so that the effects of the QTLs will be estimated more precisely. Zeng called this
approach composite interval mapping (CIM).
The method is performed as follows. We choose a subset of markers, S, to control for back-

ground genetic variation. Then,we performagenome scan, as in intervalmapping.At each locus
in the genome, we hypothesize the presence of a QTL and write y = µ+ βz + Σj∈S*βjxj + "

where y is the phenotype, z = 1 or z = 0 according to whether the genotype at the putative
QTL is HH or HL, xj = 1 or xj = 0 according to whether the genotype at the jth marker
is HH or HL and S* is a subset of the marker regressors, S, where we exclude any markers
that are within, say, 10 cM of the putative QTL. The residual, ", is assumed to be distributed
N.0;σ2/.
As in interval mapping, at each locus, a LOD score is calculated, comparing the hypothesis

that there is a QTL at the putative locus with the hypothesis that there is not a QTL there, in
which case we imagine that all progeny have phenotypes which are normally distributed with
meanµ+Σj∈S*βjxj and variance σ2. The LOD score is plotted as a function of genome position
and compared with a genome-wide threshold. (Such a threshold should take into account the
selection of the set of marker regressors, S.) Areas of the genome for which the LOD score
exceeds a genome-wide threshold are said to contain a QTL.
The key problem with CIM is the choice of the set of markers to use as regressors: using too

many markers will increase the variance of the LOD score and thus will decrease the power
for QTL detection. Jansen (1993) and Jansen and Stam (1994) used backward elimination with
Akaike’s information criterion (Akaike, 1969), or a slight variant, to pick the subset of markers.
Basten et al. (2000), in a manual for the program QTL Cartographer, recommended using for-
ward selection up to a fixed number of markers, and then dropping any markers that are within
10 cM of the putative QTL.
More recently, Kao et al. (1999) proposed multiple-interval mapping (see also Zeng et al.

(1999)), which is much like CIM, but the additional regressors are not required to reside at
marker loci. In multiple-interval mapping, Kao et al. (1999) have adopted a more standard
model selection approach, making use of stepwise selection.
Several othermethods have been described, including Bayesianmethods (e.g. Satagopan et al.

(1996), Sillanpää and Arjas (1998), Ball (2001) and Sen and Churchill (2001)) and the use of
genetic algorithms (e.g. Carlborg et al. (2000)). These approaches are more in line with our view
that QTL mapping is a model selection problem.

3. Model selection

We consider a back-cross and assume that the genotype data are complete, and that the genetic
markers are sufficiently dense, so that we may dispense with interval mapping, considering only
the marker loci as putative locations for QTLs. Let yi denote the phenotype of individual i, and
let xij = 1 or xij = 0 according to whether individual i has genotype HH or HL respectively, at
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marker j. We assume the linear model yi = µ + ΣM
j=1βjxij + "i, where the "i are independent

and identically distributed N.0;σ2/.
The problem of identifying QTLs in an experimental cross is one of model selection: in the

above linear model, we seek to identify the subset of markers for which βj �= 0. By viewing
the problem in this way, we may hope to take advantage of the extensive literature on subset
selection in regression. However, much of the model selection literature has focused on the
minimization of prediction error, whereas we are not so much interested in prediction as in the
identification of an appropriate model.
We split the model selection problem into four distinct parts:

(a) select a class of models,
(b) compare models,
(c) search through the space of models and
(d) assess the performance of a model selection procedure.

We focus here on the class of additive models, though one might also consider linear models
with pairwise interactions, or regression trees. The inclusion of the assessment of a procedure’s
performance as part of the model selection problem may be viewed as unusual but is clearly
integral to the problem. Whether we choose to minimize the prediction error or to maximize
the number of correctly identified QTLs while controlling the rate of inclusion of extraneous
loci at a fixed level, a clearly stated objective is a prerequisite for making informed choices on a
model selection procedure.

3.1. Model comparison
Consider the case of a linear model with normally distributed residual variation. Let Γ denote
the set of models, with γ ∈ Γ written as an M-vector with jth element 1 or 0 according to
whether the jth marker is included in the model. Let |γ| denote the number of markers in model
γ, and let RSS.γ/ denote the residual sum of squares after fitting γ by least squares. Imagine
that we can fit all possible models.
For models with the same number of regressors k, we choose that with the smallest RSS. We

write γk = argminγ:|γ|=k{RSS.γ/}. Thus γM is the full model, with all markers included, and
γ0 is the model including no markers. RSS.γk/must be non-increasing in k. The key problem is
to determine the decrease in RSS that must accompany the inclusion of an additional regressor.
Our aim is to balance the errors of excluding important loci and of including extraneous loci.
Classical criteria for choosing the appropriate size of the model include Mallows’s Cp and

adjusted R2 (Miller, 1990). In our experience, these criteria tend to include a large number of
extraneous regressors and so are unsatisfactory for our purposes.
Two more modern approaches for choosing subsets of regressor variables include cross-

validation and the bootstrap. In both of these approaches, an estimate of the mean-squared
error of prediction is obtained. The chosen model has the smallest estimated mean-squared
error of prediction. Because we are interested in identifying a reasonable model rather than
minimizing the prediction error, we have not studied the performance of these approaches.
An additional approach for model comparison is the use of sequential permutation tests,

appropriate in the context of a nested sequence of models, such as would be obtained by for-
ward selection (see Doerge and Churchill (1996)). One works from the null model γ0 to the
full model γM , performing a permutation test at each step, testing whether the inclusion of an
additional regressor is accompanied by a statistically significant decrease in the RSS. The first
time that the null hypothesis is not rejected, one stops.
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The approach that we favour is to minimize a criterion of the form

Φ.γ/ = log{RSS.γ/} + |γ|D.n/=n

where D.n/ is some function of the sample size n. (This is equivalent to maximum likelihood
with a penalty on the model complexity, since in the case of normally distributed residuals
−.n=2/ log{RSS.γ/} is the log-likelihood for the model γ.) The choiceD.n/ = 2 gives Akaike’s
information criterion (Akaike, 1969), whereas D.n/ = log.n/ gives BIC (Schwarz, 1978), and
D.n/ = log{log.n/} gives the criterion of Hannan and Quinn (1979).
Minimization of Φ.γ/ is approximately equivalent to the use of a threshold on the condi-

tional LOD score .n=2/ log10{RSS.γk−1/=RSS.γk/}, the threshold being D.n/=2 log.10/. Con-
sider our sequence of models γ0;γ1; : : :;γM . In the case that RSS.γk/=RSS.γk−1/ is strictly
increasing in k, minimization of Φ.γ/ is equivalent to choosing the largest value of k for which
RSS.γk/=RSS.γk−1/ is greater than− exp{D.n/=n}. Note that it is sufficient, but not necessary,
that the ratios RSS.γk/=RSS.γk−1/ be strictly increasing, for this equivalence.
When viewed in this way, the criterion appears quite reasonable. Further support lies in the

consistency of the resulting procedures. With a fixed number of possible regressors (i.e. genetic
markers), and provided thatD.n/=n → 0 andD.n/= log{log.n/} → ∞, the criterionΦ.γ/ gives
a consistent estimate of the underlying model, meaning that, as the sample size increases, the
probability that the correct model is chosen converges to 1 (Rao and Wu, 1989).
We have concentrated on the case D.n/ = δ log.n/, which we call BICδ:

BICδ.γ/ = log{RSS.γ/} + δ|γ| log.n/=n:

Letting δ = 1, this gives BIC. We have found that δ = 1 performs poorly, including far too
many extraneous regressor variables. A larger value of δ can give improved results, as a greater
penalty on the size of the model leads to the inclusion of fewer extraneous regressors. We shall
discuss the choice of δ in Section 3.3.
A further approach to the model selection problem is to place prior probabilities on each of

the possible models, as well as on the model parameters, and to use Bayes’s theorem to calculate
the posterior distribution of the models given the data. If the goal were to pick out just one
model, we could choose that which gives the largest posterior probability.
As an example, consider the priors discussed in Smith (1996). We let y|γ;βγ;σ2 = Xγβγ + "

where " ∼ N.0;σ2/, and use the prior βγ ∼ N{0; cσ2.X′
γXγ/−1}, p.σ2|γ/ ∝ 1=σ2, p.γ/ ∝

.c=d/|γ|=2. Let c → ∞, resulting in a diffuse improper prior, and integrate out βγ and σ2. Smith
(1996) showed that the resulting posterior for γ gives −.2=n/ log{p.γ|y/} = log{RSS.γ/} +
|γ| log.d/=n. Taking D.n/ = log.d/, we see that the model with maximum posterior is that
which minimizes the above-described criterion, Φ.γ/. We may consider this as further support
for the use of the criterion Φ.γ/. The only real justification for a criterion, however, is its per-
formance. We shall study the performance of this criterion in Section 4.

3.2. Search of model space
The number of possible additive models is very large. If there are more than around 40 genetic
markers, it will be infeasible to fit each of the 240 ≈ 1012 possible models. Thus, we must form
a strategy for searching this large space of models, hopefully so that we may identify the good
ones—those that would have been chosen if we could fit all possible models.
In the case that the number of markers is only marginally large, we may use a branch-and-

bound procedure to pick out the best subsets of each size, without actually fitting all possible
subsets (Miller, 1990), thus gaining considerable savings in computation over an exhaustive
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search. However, with many markers, this type of procedure is still not feasible. We are thus led
to techniques such as forward selection and backward elimination.
In forward selection, one begins with the null model and builds a nested sequence of models

of increasing size; at each step, one adds the marker that gives the greatest decrease in the RSS.
In backward elimination, one begins with the full model and builds a nested sequence of models
of decreasing size; at each step, one drops the marker that gives the smallest increase in the RSS.
These two sequences of models may be quite different.
Forward selection and backward elimination provide great savings in computation, since only

a small fraction of the possible models are fitted. This saving is also a cost, however: we see only
a fraction of the possible models, and we might not see the good ones. With forward selection,
once a regressor has been included, it will be retained in all further models. With backward
elimination, once a regressor has been dropped, it will be excluded from all further models.
Stepwise selection procedures, which iteratively add or subtract regressors, are commonly

used for subset selection in regression. In such procedures, the ‘stopping rule’, for choosing the
appropriate model size, is generally intertwined with the search through the model space. We
prefer to keep separate the criteria for model comparison and the procedures for model search.
Forward selection has a particularly bad reputation. One can find quite simple situations in

which forward selection will miss the correct model, even when the sample size is extremely
large. This occurs as a result of collinearity in the regressor variables, where a regressor that
does not belong in the model mimics a set of regressors that do. Backward elimination does
not suffer from this problem, at least with large samples. An and Gu (1985) showed that, when
using BIC, and in the case of a fixed number of regressors, the backward elimination proce-
dure is consistent, meaning that, as the sample size increases, the probability of choosing the
correct model converges to 1. The result also applies to BICδ. Forward selection, however, is
overconsistent; in the limit, the selected model will contain the true model, but may also include
additional, extraneous, regressors.
However, in the situation considered here, the regressors are genetic markers that, under the

assumption of no crossover interference, form a Markov chain. Given the genotypes at any
one marker, the genotypes at markers to its left are conditionally independent of the genotypes
at markers to its right. This suggests that the sort of collinearity among regressors that may
cause forward selection to include extraneous regressors, even with large samples, will not be
a problem in the context of QTL mapping. Indeed, Broman (1997) showed that, in the case of
a strictly additive QTL model, forward selection with BICδ is consistent. In computer simula-
tions, Broman (1997) found that forward selection also worked reasonably well in samples of
more typical size. We shall see below, however, that forward selection can still suffer from the
inclusion of extraneous loci.
A different approach to searching the space of models is to use a randomized algorithm,

such as a Markov chain Monte Carlo (MCMC), simulated annealing or a genetic algorithm.
We shall consider only the MCMC method, in which one places a prior on each model and
on the model parameters, and then forms a Markov chain whose stationary distribution is the
posterior distribution of the models given the data. Simulations of the Markov chain give a
sequence of models (a sort of walk through the space of models) which will, eventually, spend
more time at models that have a high posterior probability. Whereas this method is usual-
ly used to obtain an approximation of the posterior distribution, and especially to find the
region with highest posterior, here we consider it simply as a method for searching the space of
models.
There are several standard ways to form aMarkov chain with the desired stationary distribu-

tion. With the prior discussed above (Section 4.1), Smith (1996) used a Gibbs sampler to obtain
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a Markov chain whose stationary distribution satisfies −.2=n/ log{p.γ|y/} = log{RSS.γ/} +
|γ| log.d/=n. The method, which is much like stepwise selection, is as follows. First, pick an
initial model γ.0/ (e.g. the null model or the model obtained by forward selection). Then, at step
t, cycle through theM different markers; for each j = 1; : : :; M, draw γ

.t/
j from the distribution

p.γj|γ.t/
−j; y/where γ

.t/
−j is composed of all the elements of γ, except for γj, at their current values.

For i < j, it contains the γi for the current step t and, for i > j, it contains the γi for the previous
step t − 1. For the posterior written above,

Pr.γj = 1|γ−j; y/ = RSS.γ1; : : :;γj−1; 1;γj; : : :;γM/−n=2

RSS.: : :;1; : : :/−n=2 + √
d RSS.: : :; 0; : : :/−n=2 :

The most important characteristic for the Markov chain is that it mixes well—that it travels
through the space of models with relative ease, not becoming stuck in local modes. We have
implemented the above MCMC sampler and have found that it works well. In 1000 steps of the
chain, it will visit around 300–500 distinct models and will almost always visit the best of those
models (i.e. that giving the largest posterior probability) within the first 100 steps.

3.3. Recommended approach
It is best to consider model comparison and model search separately. One should devote the
greatest effort to the formulation of a criterion formodel comparison, as this is themost difficult
aspect of model selection. It is helpful to imagine that we could examine all possible models.
In choosing between them, we must balance the errors of excluding important regressors and
including extraneous ones. The appropriate balance of these errors will vary according to the
goals of the experiment, and so the appropriate criterion for comparing models should also
vary.
We prefer the BICδ criterion, for its simplicity and its reasonable interpretability. One

approach for choosing an appropriate δ is through the connection between BICδ and con-
ditional LOD scores: we may choose the value of δ that corresponds to a genome-wide LOD
threshold for interval mapping or ANOVA at marker loci. Let L denote such a threshold (the
95th percentile of the maximum LOD score, genome wide, under the hypothesis that there are
no QTLs); then we may let δ = 2L= log10.n/. Use of the derived BICδ criterion should, in the
case of no QTLs, result in the selection of one or more extraneous loci, approximately 5% of
the time. In the presence of QTLs, the rate at which extraneous loci are included is not neces-
sarily under control, though we show in the next section, through computer simulations, that it
performs adequately. Of course, such a choice of δ results in a procedure that is not consistent,
as the rate of inclusion of extraneous loci will continue to be 5%, in spite of increasing sample
size. If one desires a smaller false positive rate, a larger value of δ should be chosen.
The searchofmodel space is amatter of exhaustingor repetitivework.More extensive searches

are better, though the improvement may not be sufficient to compensate for the increased com-
putation. Forward selection and backward elimination are quick and simple to implement. The
MCMC sampler described above is also simple to implement, and the increase in computation
may be sufficiently small to justify its use.

4. Simulations

Computer simulation studies are crucial for understanding the relative performance of different
model selection procedures, because such procedures aretoo complex to be assessed by analy-
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tical means, at least in the situations in which they would be used in practice. It is unfortunate
that large scale computer simulations are not routinely included in statistical methodological
papers on QTL mapping. Many researchers have used simulations to illustrate methods for
finding QTLs, but most have either presented the results on a single simulation replicate or data
set or considered only very simple situations. In some cases, the value of a new approach has
simply been declared on the basis of increased complexity.
Any simulation study is necessarily incomplete and artificial. Real QTL experiments do not

have equally spaced markers and exhibit complex patterns of missing genotype data. The num-
ber, effects and locations of QTLs are not known; the QTLs have effects of varying size, and the
QTLs may interact in complex ways. The simulation study reported here includes a small num-
ber of additively acting QTLs located exactly at marker loci and having equal-sized effects; the
genetic markers were equally spaced and the genotype data were complete. Although this study
may be criticized as not being sufficiently realistic, we believe that it is among the most complete
and realistic such studies, and that the results are of considerable value for the assessment of
the performance of the QTL mapping methods included.

4.1. Methods
We simulated a back-cross obtained from inbred lines, composed of 100, 250 or 500 proge-
ny, with nine chromosomes, each of length 100 cM and having 11 equally spaced markers (at
a spacing of 10 cM). The recombination process was assumed to exhibit no crossover inter-
ference. The marker data were complete and without errors. For each sample size, we per-
formed 2000 simulation replicates.
We considered a model with seven QTLs of equal effect, 0.76, with all QTLs positioned

exactly at marker loci. Two QTLs were located at markers 4 and 8 on chromosome 1 (separated
by 40 cM), linked in coupling (i.e. their effects had the same sign). Two QTLs were located at
markers 4 and 8 on chromosome 2, linked in repulsion (i.e. their effects had opposite signs).
Three further QTLs were located at markers 6, 4 and 1, on chromosomes 3, 4 and 5 respectively.
Four chromosomes contained no QTLs. The environmental variation followed a normal distri-
bution with standard deviation σ = 1. As a result, the heritability of the trait (the proportion
of the phenotypic variance attributable to the QTLs) was 50%.
We compared seven methods for identifying QTLs: ANOVA at marker loci, a simplified ver-

sion ofCIM, forward selectionwith permutation tests and theBICδ criterionwith forward selec-
tion, backward elimination, forward selection followed by backward elimination, and MCMC
sampling. Interval mapping was not considered, because it provides little improvement in power
over simple ANOVA in the case of a relatively dense marker map and a moderate number of
progeny, and because it would require a great increase in computation time.
For CIM, we used forward selection up to either 3, 5, 7, 9 or 11 markers to obtain the set of

regressors, and we limited the search for QTLs to marker loci. With both ANOVA and CIM,
we obtained genome-wide LOD thresholds (specific for the case of nine chromosomes of length
100 cM with 11 equally spaced markers on each chromosome) by performing 50000 simula-
tions under the null hypothesis of no QTLs. The estimated thresholds were obtained as the 95th
percentile of the maximumLOD score across all markers and appear in Table 1. In addition, for
these methods, we required that the LOD score dropped by at least 1.5 between ‘peaks’ before
we declared that two QTLs were identified. This value was obtained empirically and may not
be ideal. Note that this prevents these methods from identifying adjacent markers as QTLs.
The value of δ for the BICδ criterion was chosen to correspond to the LOD threshold for

ANOVA in Table 1: δ = 2 LOD= log10.n/. For n = 100, 250, 500, the value of δ was 2.56, 2.10
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Table 1. Estimated LOD thresholds, based on 50000 simulation
replicates, for a back-cross with nine chromosomes, each 100 cM
long and containing 11 equally spaced markers†

n ANOVA Thresholds from CIM for the
following numbers of markers:

3 5 7 9 11

100 2.56 3.50 4.12 4.64 5.13 5.60
250 2.52 3.23 3.56 3.77 3.95 4.09
500 2.50 3.15 3.38 3.51 3.60 3.67

†Standard errors are approximately 0.01.

and 1.85 respectively. The permutation tests used 1000 replicates with α = 0:05. In the use of
forward selection, amaximumof 25markers were considered. Backward elimination was begun
at the full model. We further applied forward selection up to a model with 25 markers followed
by backward elimination; the model with the minimum value of BICδ, among all fitted models,
was chosen. For theMCMCmethod, we used 1000 steps of the sampler described in Section 3.2
and chose the model giving the minimum BICδ value. In the first 1000 of the 2000 simulation
replicates performed, the MCMC sampler was started at the null model; in the second 1000
replicates, the sampler was started at the model obtained by forward selection with BICδ. The
results were indistinguishable and thus were pooled.
The result of the application of eachmethodwas a set of marker loci indicated to be at or near

QTLs. In assessing the results, we defined a chosen marker to be correctly identifying a QTL if
it was within 10 cM of a QTL (i.e. if the marker was at or adjacent to the QTL); otherwise it
was deemed extraneous. If more than one chosen marker were within 10 cM of the same QTL,
one was called correct and the others were called extraneous.

4.2. Results
The results of the simulations are displayed in Figs 2 and 3. In terms of the number of QTLs
correctly identified (upper panels in Fig. 2), MCMC sampling with the BICδ criterion per-
formed best, though it was only slightly better than forward selection, and it was essentially
indistinguishable from forward selection followed by backward elimination. Forward selection
with BICδ was slightly better than with permutation tests. Backward elimination performed
poorly at the smallest sample size. CIM performed slightly worse than forward selection with
BICδ. CIMperformed best when the number ofmarkers used as regressors was 7, the number of
simulatedQTLs; a considerable attenuation of power was accompanied by a choice of toomany
or too few markers to serve as regressors in CIM. ANOVA, as might be expected, performed
rather poorly for this model of multiple QTLs.
Fig. 3 provides greater detail on the number of QTLs that are correctly identified, giving

separate results on the QTLs linked in coupling (upper panels), the QTLs linked in repul-
sion (centre panels) and the three other QTLs (lower panels). The inferior performance of
ANOVA and of CIM with three or five markers serving as regressors, in the cases n = 250 or
n = 500, was due largely to their poor ability to detect the QTLs linked in repulsion. In the case
n = 250, forward selection with permutation tests also performed poorly on the QTLs linked
in repulsion, because, for this method, forward selection was stopped when the first test in the
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(a) (b) (c)

Fig. 2. Results of simulations of a back-cross with (a) n D 100, (b) n D 250 or (c) n D 500 individuals, under
a seven-QTL model, including two QTLs linked in coupling (effects of the same sign) and two QTLs linked in
repulsion (effects of opposite sign) (the upper panels indicate the average number of QTLs that are correctly
identified; the centre panels indicate the average number of extraneous loci that were linked to a QTL; the
lower panels indicate the average number of extraneous loci that were not linked to a QTL): the methods
considered were ANOVA, CIM, preceded by forward selection up to a fixed number of loci, forward selection
with permutation tests and the BICδ criterion with forward selection, backward elimination, forward selection
followed by backward elimination, and MCMC sampling

sequence was not rejected, while the loci in repulsion appear important only when considered
jointly.
All the methods except CIM chose a rather high proportion of extraneous loci linked to a

QTL (centre panels in Fig. 2). For the MCMC sampling, backward elimination, and forward
selection followed by backward elimination, this effect went away at high sample sizes, but
ANOVA and forward selection continued to include a high proportion of extraneous linked
loci even at n = 500. For the case n = 100, these extraneous linked loci were largely imprecisely
localized (but correctly identified) QTLs. If a QTL was considered to be correctly identified
when a marker within 20 cM was chosen (versus the 10 cM criterion used to create Fig. 2), the
proportion of extraneous linked loci was reduced from around 30% to around 10%. For the
case n = 500, however, these loci were truly extraneous. Forward selection identified all the
QTLs but also included additional marker loci; if a more complete search of the model space
was undertaken (as in the MCMC method or by following forward selection with backward
elimination), these additional loci were excluded.
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(a) (b) (c)

Fig. 3. Detailed results on the upper panels of Fig. 2, displaying the average number of QTLs correctly
identified in a seven-QTL model, including two QTLs linked in coupling and two QTLs linked in repulsion (the
upper, centre and lower panels indicate the average number of QTLs correctly identified, for the two QTLs
linked in coupling, the two QTLs linked in repulsion and the three other QTLs respectively): (a) n D 100;
(b) n D 250; (c) n D 500

The lower panels in Fig. 2 display the proportion of extraneous loci not linked to aQTL. CIM
was quite conservative, delivering only about 0.5% of such extraneous unlinked loci, whereas
the other methods all delivered approximately 2–3% of such extraneous unlinked loci (which
might be expected, given that a 5% genome-wide threshold was used, and four out of the nine
chromosomes contained no QTLs). Under the null hypothesis of no QTLs, all these methods
will identify at least one extraneous QTL, 5% of the time. These results illustrate that the per-
formance of a procedure in the presence of QTLs may be rather different from what might be
expected, given its behaviour under the null hypothesis of no QTLs.
In summary, MCMC sampling with the BICδ criterion performed best. The key advan-

tage of MCMC sampling over forward selection was the elimination of extraneous linked loci,
which forward selection included at a reasonably high rate at n = 500. The same benefit could
be obtained by following forward selection with backward elimination. CIM performed only
slightly worse than forward selection and did not suffer from the inclusion of extraneous loci,
but a correct choice of the number of markers included as regressors was extremely impor-
tant; the use of too few or too many such marker regressors was accompanied by a loss of
power.
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5. Discussion

There are four key points that we wish to make in this paper. First, QTLmapping is best viewed
as a problem of model selection. Second, the comparison of models is the most difficult part
of the model selection problem. Third, large scale computer simulation studies are important
for understanding the relative performance of different model selection procedures, and they
should be routinely included in papers describing new approaches for QTL mapping. Fourth,
more refined procedures will not necessarily provide sufficiently improved results to justify
their added complexities and increased computational requirements; the choice of adopting
such procedures should be based on honest estimates of the gains in performance that they
provide.
We have focused on the problem of identifying QTLs. Although we have not considered the

precise localization of QTLs and the estimation of QTL effects, it cannot be denied that these
are important (and not always straightforward) problems in practice. However, the selection
of the number and approximate locations of QTLs is a prerequisite, and so we are justified in
considering only this essential part of the problem. In the case of inbred strains of mice, the step
following localization of a QTL is frequently the creation of a congenic strain incorporating the
relevant region onto a desired background. This is done in the hope of recovering the phenotype
in this strain; only when this happens will the search for actual genes begin.
We have discussed back-cross designs because they are the simplest, but of course our study

could and should be repeated for other common designs such as the intercross. Although we
expect the broad conclusions to be similar to the case considered here, the work needs to be
done.
We have also focused on the unrealistic situation in which QTLs are located exactly at marker

loci, and in which markers are densely and regularly spaced and exhibit no missing genotype
data. This was done to make plain the essence of the QTL mapping problem, and to illustrate
the performance of several approaches to the problem. It may happen that our quantitative con-
clusions change if the markers are not densely and regularly spaced, though we do not expect
this. In the case of missing genotype data and/or gaps between markers, the multiple-regression
approach that we have considered will not be appropriate. One may confront this missing data
problem by multiple-interval mapping (Kao et al., 1999; Zeng et al., 1999) or multiple impu-
tation (Ball, 2001; Sen and Churchill, 2001); the model selection issues that we have discussed
remain the essence of the problem.
We considered the case of QTLs acting strictly additively. Of course, one cannot know in

advance that this will be appropriate, and a growing number of experiments provide strong
evidence for the presence of interactions between QTLs. Thus we recommend that, in prac-
tice, one pursues the possibility of interactions. This may be done by the inclusion of pairwise
interactions in a linearmodel, or the consideration of tree-basedmodels. The BICδ criterion will
probably remain useful in this situation, though a larger value for δ (a larger penalty for model
complexity) may be required, and one may wish to place different penalties on main effects and
interactions. More complex, randomized search algorithms, such as an MCMC sampler, may
be especially valuable for the search of these expanded spaces of models.
We have recommended the use of the BICδ criterion, with the value of δ chosen by the

approximate correspondence between BICδ and a genome-wide threshold on the LOD score.
We hope that this is not interpreted as a recommendation for strict adherence to thresholds. In
particular, 5% significance thresholds may not be in accordance with the goals of the exper-
imenter. A consideration of the models selected with larger and smaller values of δ provides
valuable information regarding the strength of evidence for QTLs.
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Our computer simulations demonstrate the value of the BICδ criterion. TheMCMC sampler
performed best. Forward selection was nearly as good, and its tendency to include extraneous
loci could be alleviated by following forward selection with backward elimination. CIM per-
formed reasonably well, though it has the disadvantage of requiring a choice of the number
of markers to serve as regressors. The sensitivity of the results of CIM to this choice suggests
that, although its conversion of a multidimensional into a single-dimensional search is enviable,
the approach should not be recommended. There are various schemes for selecting variables
in CIM, and it may be true that one of these, different from the one that we have used, gives
generally better results and invalidates this conclusion.
The improved performance of these multiple-QTL approaches, over ANOVA at marker

loci, is clear but is not nearly as fantastic as we might have hoped. It is difficult to deny that a
genome scan by interval mapping can give quite reasonable results. The advantages of multiple-
QTL methods are the better separation of linked QTLs and the ability to examine interactions
between QTLs.
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