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INTRODUCTION

Many important human disease-related pheno-
types (e.g., blood pressure) are quantitative in
nature. There are a plethora of approaches for
linkage analysis of quantitative traits in human
data, but until recently, there was a dearth of
understanding of the advantages and disadvan-
tages of the different approaches; two recent
reviews [Feingold, 2001, 2002] were especially
valuable in improving this understanding.
Two of the most commonly used approaches for

quantitative trait linkage analysis are Haseman-
Elston regression [Haseman and Elston, 1972] and
the use of variance components models [Amos,
1994; Almasy and Blangero, 1998]. Previously,
these approaches were viewed as completely
separate methods. In this paper, we describe a
general method for quantitative trait linkage
analysis that makes use of generalized estimating
equations (GEE) [Liang and Zeger, 1986], for
which the variance components method and
Haseman-Elston regression (including many of
its extensions) are special cases. This work has

several important implications: it provides new
insights into the relationship between these
methods, it leads to asymptotic sample-size
approximations that allow clear comparisons
between methods, and it suggests important
extensions to Haseman-Elston regression, both
for its application in general pedigrees and for the
incorporation of environmental and other covariates.

SIBLING PAIRS

We first illustrate our general approach in the
special case of randomly ascertained sibling pairs
with known population mean phenotype
(assumed, without loss of generality, to be 0),
under the assumption that there is a single
putative quantitative trait locus (QTL) with no
dominance effect. Let yk1, yk2 denote the pheno-
types for the kth sibling pair, with yk ¼ ðyk1; yk2Þ0.
Let pk denote, for the kth pair, the proportion of
alleles shared identical by descent (IBD) at a
putative QTL. Let Mk denote the available multi-
point marker data for the pair, and let
p̂pk ¼ EðpkjMkÞ, the expected proportion of alleles
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shared IBD given the marker data. Let s2a denote the
additive variance due to the putative QTL, let s2

denote the overall phenotypic variance, and let r
denote the correlation between siblings’ phenotypes.
In the variance components approach to quantita-

tive trait linkage analysis [Amos, 1994; Almasy and
Blangero, 1998], the phenotypes for a sibling pair,
conditional on the marker data, are assumed to
follow a bivariate normal distribution with the
covariancematrix for the kth pair being the following:

Ok ¼
Ok1 Ok2

Ok2 Ok1

� �

¼
s2 rs2 þ s2aðp̂pk � 1

2Þ
rs2 þ s2aðp̂pk � 1

2Þ s2

 !
: ð1Þ

The log likelihood function for this model is
lðs2a ; s2; rÞ ¼ �ð1=2Þ

P
k lnjOkj þ ykO

�1
k yk

� �
. The

maximum likelihood estimates (MLEs) of the
parameters, s2a , r, and s2 are the values for which
this function achieves its maximum, and are
obtained as the solutions of the score equations:
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A more general method, making use of general-
ized estimating equations (GEE) [Liang and Zeger,
1986, Prentice and Zhao, 1991], can lead to this
same set of equations. GEE were developed for
the analysis of longitudinal data, where there are
multiple measurements with known correlation
structure, but for which the correlations may
depend on a set of parameters that are to be
estimated. Consider as the outcome for the kth
sibling pair zk ¼ ðy2k1; y2k2; yk1yk2Þ

0. With our simpli-
fying assumption that the population phenotype
mean is 0, zk has expected value, given the
observed marker data, EðzkjMkÞ ¼ ðOk1;Ok1;Ok2Þ0.
(Recall, from Equation (1), that Ok1 ¼ s2 and
Ok2 ¼ rs2 þ s2aðp̂pk � 1=2Þ.)
GEE make use of a working covariance matrix,

Wk, which is a set of presumed variances and
covariances for the elements of zk, and which may
include unknown parameters that are to be
estimated. Having specified Wk, which can be
any symmetric, positive definite matrix, the GEE
estimators of the parameters, s2a , r, and s2, are
obtained by solving the equationX

k

DkW
�1
k Sk ¼ 0 ð5Þ

where Sk ¼ zk � EðzkjMkÞ and Dk is a matrix
whose columns consist of the derivatives of the
vector EðzkjMkÞ with respect to each parameter, so
that, in the case under consideration, and with the
parameters ordered s2a , r, s

2,

Dk ¼
0 0 1
0 0 1

p̂pk � 1=2 s2 r

0
@
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Different choices of working covariance matrix,
Wk, lead to different parameter estimates. In
particular, if the working covariance matrix has
the form

WVC
k ¼

2O2
k1 2O2

k2 2Ok1Ok2

2O2
k2 2O2
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then, through relatively straightforward algebra
(e.g., by use of the computer program MATHE-
MATICA), one may show that Equation (5)
corresponds exactly to the score equations for
the variance components approach, (2)–(4). Thus
the variance components method is a special case
of this more general GEE method.
Note that the usual estimated standard errors

(SEs) for the variance components method may be
obtained via the matrix ð

P
k D

0
kðWVC

k Þ�1DkÞ�1.
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Alternatively, we recommend the use of the more
robust ‘‘sandwich’’ estimates, commonly used for
the GEE method,
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In the original Haseman-Elston method [Hase-
man and Elston, 1972], one uses linear regression
of the squared difference between the siblings’
phenotypes, ðyk1 � yk2Þ2, on the expected propor-
tion of alleles shared IBD at the putative QTL, p̂pk.
The slope obtained by ordinary least squares
(OLS) is an estimate of �2s2a . (Note that one
cannot obtain separate estimates of r and s2 by
this approach, but only of the combination
ð1� rÞs2.) Consider the following working covar-
iance matrix

WHE ¼
1 0 1=2
0 1 1=2
1=2 1=2 3=2

0
@

1
A:

The insertion of WHE as the working covariance
matrix in Equation (5) leads to the following:
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Equation (9) turns out to be redundant, and the
solution of Equations (7) and (8) for s2a and ð1�
rÞs2 give estimates that are identical to those
derived from the original Haseman-Elston
method. Thus, Haseman-Elston is a special case
of our general GEE approach, corresponding
to the use of the working covariance matrix
WHE.
The usual estimated SE used with Haseman-

Elston regression is that from ordinary least

squares (OLS), based on the assumption of
constant variance, which is correct under the null
hypothesis of no linkage, but is generally not
correct under the alternative hypothesis that the
site under test is linked to a QTL. The estimated
SE from our GEE method, based on the sandwich
estimate of the variance matrix, does not rely on
the constant variance assumption and provides a
consistent estimate of the SE even in the case of
linkage.
Wright [1997] pointed out that further

information may be obtained by considering
the squared sum of the siblings’ quantitative
phenotypes, in addition to the squared
difference. Several extensions to the original
Haseman-Elston method take advantage of this
observation. In the Haseman-Elston revisited
method [Elston et al., 2000], the product of the
siblings’ phenotypes, yk1yk2, is regressed on
the expected proportion of alleles shared IBD at
the putative QTL, p̂pk. This approach is also
a special case of our general GEE method,
corresponding to use of the identity matrix as
the working covariance matrix.
A further extension of the original Haseman-

Elston method is the combined Haseman-Elston
regression method (denoted HE-COM) of Sham
and Purcell [2001]. In this method, r and s2 are
assumed known, and one regresses ðyk1 þ
yk2Þ2=ð1þ rÞ2 � ðyk1 � yk2Þ2=ð1� rÞ2 on p̂pk to ob-
tain an estimate of s2a . Consider the following
working covariance matrix:

WCOM ¼

1þr2

ð1�r2Þ2s4
� 1þr2

ð1�r2Þ2s4
0

� 1þr2

ð1�r2Þ2s4
ð1þr2Þð1þ4ð1þr2Þs4Þ

ð1�r2Þ2s4
4rð1þr2Þ
ð1�r2Þ2

0 4rð1þr2Þ
ð1�r2Þ2

ð1þr2Þ2

ð1�r2Þ2

0
BBB@

1
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Inserting the working covariance matrix WCOM

into Equation (5) (though here we take only the
first column of the matrix Dk, as only the
parameter s2a remains to be estimated), one can
show that this approach is also a special case of
our general GEE method.
Thus, for the case of randomly ascertained

sibling pairs, and with the assumption that the
population phenotype mean is known (made in
order to simplify the algebraic expressions), we
have shown that the variance components method
for quantitative trait linkage analysis, as well as
the original Haseman-Elston, Haseman-Elston
revisited, and HE-COM methods, are all special
cases of a general GEE method.
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GENERAL PEDIGREES

While we focused above on the case of sibling
pairs, the results may be seen to apply more
generally. Consider a set of general pedigrees
with no inbreeding, and let yki denote the
quantitative phenotype for the ith individual
in the kth pedigree. Let Fkij and Dkij denote
the kinship and fraternity coefficients, respec-
tively, for individuals i and j in pedigree k, and
let p̂pkij and k̂kkij denote their expected proportion
of alleles shared IBD and the probability that
they share two alleles IBD, respectively, at a
putative QTL, given multipoint marker data.
Let s2a and s2d denote the additive and dominance
variance, respectively, due to the putative QTL,
and let s2pa, s2pd, and s2e denote the additive
polygenic variance, dominance polygenic
variance, and residual environmental variance,
respectively. (Note that, for the sibling pairs
case considered above, we used a different
but equivalent parameterization: we assumed
that s2d ¼ 0 and considered s2 ¼ s2a þ s2pa þ s2pd þ
s2e and r ¼ ðs2a=2þ s2pa=2þ s2pd=4Þ=s2.)
Consider a set of p covariates (including an

intercept term), and assume that EðykiÞ ¼
EðykijMkiÞ ¼ x0kib. The covariance of the pheno-
types for individuals i and j in pedigree k, given
the available marker data, is

Okij ¼
s2a þ s2d þ s2pa þ s2pd þ s2e if i ¼ j

p̂pkijs2a þ k̂kkijs2d þ 2Fkijs2pa þ Dkijs2pd if i 6¼ j

(

ð10Þ

For mathematical convenience, we consider as
the outcome for the kth pedigree
zk ¼ ½yki; ðyki � x0kibÞ2; ðyki � x0kibÞðykj � x0kjbÞ�0, a
vector of length mk¼2nk+nk(nk�1)/2, where nk is
the number of phenotyped individuals in pedi-
gree k. (There are a variety of other equivalent
formulations, but this leads to somewhat simpler
algebraic expressions.) Note that EðzkjMkÞ ¼
ðx0kib; Okii; OkijÞ0.
With our GEE method, the pþ5 parameters

(s2a , s2d, s2pa, s2pd, s2e , and b) are estimated as
the solutions to the same Equation (5) for
some choice of working covariance matrix Wk,
and again with Sk¼zk�E(zk|Mk) (a vector of
length mk) and Dk a matrix (of dimension
mk� (p+5)) whose columns consist of the deriva-
tives of the vector E(zk|Mk) with respect to
each parameter (in the order referred to above),

as follows:

Dk ¼
0 0 0 0 0 Xk

1 1 1 1 1 0
p̂pkij
� �

k̂kkij
� �

2Fkij

� �
Dkij

� �
0 0

0
@

1
A:

Again, different choices for the working covar-
iance matrix, Wk, lead to different estimates, and
robust SEs for the GEE estimates can again be
obtained via Equation (6).
In the variance components approach for

quantitative trait linkage analysis in general
pedigrees [Almasy and Blangero, 1998], the
phenotypes yk are assumed to follow a multi-
variate normal distribution with mean Xkb and
covariance matrix as in Equation (10), and the
parameters are estimated by maximum likelihood.
Through relatively straightforward but tedious
algebra, it can be shown that the MLEs under the
normal model correspond to the estimates from
our general GEE method, for the case that the
working covariance matrix is the following:

WVC
k ¼

Ok 0 0
0 Ak Bk

0 B0
k Ck

0
@

1
A:

Here Ak is a matrix of dimension nk�nk with
Akij=2O2

kij. Bk is a matrix of dimension
nk� nk(nk�1)/2 whose columns correspond to
pairs of individuals; let (s:t) denote the column
corresponding to the pair (s, t) with sot. Then the
value in the ith row and (s:t)th column of Bk is
2OkisOkit, the covariance, given the marker data, of
y2ki and yksykt under the assumption of multivariate
normality. Finally, Ck is a square, symmetric
matrix with nk(nk�1)/2 rows and columns; the
value in the [(i:j), (s:t)] position is OkisOkjt+OkitOkjs.
It should be noted that Amos [1994] and Amos

et al. [1996] applied GEE for quantitative trait
linkage analysis, with the working covariance
matrix, WVC

k , though it was not recognized that
this approach is identical to maximum likelihood
under a normal model.
Olson and Wijsman [1993] extended the original

Haseman-Elston method for use with general
pedigrees, considering the squared phenotype
differences for all relative pairs, and using a
GEE approach with a working covariance matrix
denoted here as VHE

k . This can also be shown to be
a special case of our general GEE method, with
working covariance matrix

WHE
k ¼

I 0 0
0 I 1

2Ek

0 1
2E

0
k

1
4ðVHE

k þ E0
kEkÞ

0
@

1
A
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where Ek is a matrix of dimension nk� nk(nk�1)/2
whose j, (s:t) element is 1 if j¼s or j¼t, and is 0
otherwise.

DISCUSSION

We have described a general method, making
use of generalized estimating equations (GEE), for
quantitative trait linkage analysis in human
pedigrees, which unifies the variance components
and Haseman-Elston methods, as each is a
special case of our general method, corresponding
to different choices for the working covariance
matrix. Our GEE method is similar to, but
more general than, the GEE method recently
described by Shete et al. [2003]. They focused
on sibships, considered the squared differences
and squared sums of all sibling pairs’ phenotypes,
and used a particular working covariance
matrix.
Our GEE method generalizes and unifies the

variance components and Haseman-Elston meth-
ods in the sense that the parameter estimates
obtained as solutions to the GEE are identical to
the MLEs for the variance components method if
WVC is used as the working covariance matrix, or
identical to the OLS estimates for Haseman-Elston
regression if WHE is used as the working covar-
iance matrix. However, the usual test statistics for
linkage for the variance components and Hase-
man-Elston methods do not follow immediately
from the GEE method.
In variance components, one typically uses the

likelihood ratio test statistic, which requires that
one consider directly the normal likelihood. In
Haseman-Elston regression, one typically uses a
Wald statistic based on the SE from ordinary least
squares. Alternatively, one may use a score
statistic derived from the normal likelihood, such
as the robust score statistic of Wang and Huang
[2002], developed particularly for sibships. While
GEE method we have described does not lead
directly to any of these test statistics, it does
provide the parameter estimates that are the basis
of any test statistic, and so any such statistic may
be calculated immediately using the results of
GEE. We are currently investigating the relative
performance, in terms of power and robustness, of
a variety of such test statistics in the case of
sibships and larger pedigrees.
Sham et al. [2002] described a new method for

quantitative trait linkage analysis in human
pedigrees, in which the IBD status for all relative

pairs is regressed on the squared differences and
squared sums of the pairs’ phenotypes. The
method was implemented in the software
MERLIN [Abecasis et al., 2002], and was
shown to have power similar to the variance
components approach but to be robust to depar-
tures from normality. It is intriguing to note
that this method corresponds exactly to a robust
score statistic that may be derived from our
GEE method with the Gaussian working
covariance matrix, WVC. The details are deferred
to the Appendix. We implemented this score
test in our own software and confirmed the
mathematical result: with simulated data, the test
statistic was identical to the results of the software
MERLIN-REGRESS.
This work has several implications, the most

important of which is the new insight that it
provides on the connection between the Haseman-
Elston and variance components methods: choos-
ing between these approaches is equivalent to
choosing a working covariance matrix for the GEE
method. In the case of multivariate normality, the
variance components method will have improved
power over Haseman-Elston regression, as it is
based on the correct covariance matrix with no
additional parameters [Liang et al., 1992]. In the
absence of normality, the use of the likelihood
ratio statistic with the variance components
method can give an inflated type I error rate
[e.g., Allison et al., 1999]. The use of GEE with
robust SEs (i.e., based on the sandwich estimator)
will control the type I error rate; as a special case,
Haseman-Elston regression is robust. As the
working covariance matrix for the variance
components method, WVC, will still likely be
closer to the truth than that of Haseman-Elston
regression, WHE, even when the normal model is
not correct, one may use GEE with the working
covariance matrix WVC to obtain a method that is
as robust as Haseman-Elston regression in terms
of type I error, but has higher power [Liang et al.,
1992].
In addition, our general GEE method provides

an approach for extending the Haseman-Elston
method to general pedigrees that makes more full
use of the available data than the method of Olson
and Wijsman [1993], and allows the incorporation
of environmental covariates. A careful assessment
of the advantages and disadvantages of different
choices for a working covariance matrix deserves
further exploration.
Finally, the unification of a variety of quantita-

tive trait linkage analysis methods within a single
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general framework enables a more simple com-
parison of the relative performance of the meth-
ods. As an example, we consider the case of n
sibling pairs (though note that these results may
be easily extended for the case of general
pedigrees). We assume that the siblings’ pheno-
types approximately follow a bivariate normal
distribution. In this case, the Wald test statistics,
with SEs from the sandwich estimator of the
variance matrix, for the four methods considered
above each follow, approximately, a noncentral w2

distribution with one degree of freedom, with
noncentrality parameter (NCP) according to the
following formula:

NCP ¼
s4a
P

k D
0
kW

�1
k Dk

	 
2P
k D

0
kW

�1
k WVC

k W�1
k Dk

where WVC
k is the working covariance matrix for

the variance components method, which is the
true covariance matrix under the assumption of
bivariate normality. For the case of sibling pairs,
algebraic expressions for the NCP may be
obtained; they are displayed in Table I. Note that
in the case that the QTL under study explains a
small proportion of the total genetic effect (i.e.,
s2a=s

2 � 2r), these formulas reduce to the approx-
imate formulas of Sham and Purcell [2001], listed
in the third column of Table I, in which case their
method, HE-COM, was seen to be equivalent to
the variance components method. With the more
precise formulas in the middle column of Table I,
the HE-COM method can be seen to have slightly
lower power than the variance components
method.
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Fig. 1. Number of sibling pairs required to achieve 80% power to detect a QTL, for four different linkage analysis methods. A: Sample

size as a function of proportion of phenotypic variance due to the QTL, with an overall heritability of 60%. B: Sample size as a function

of overall heritability, with 20% of phenotypic variance due to the QTL.

TABLE I. Noncentrality parameters for case of n sibling pairs, under a normality assumption

Method Noncentrality parameter Approximation

H-E
nðs2a=s2Þ

2

16ð1�rÞ2þ4ðs2a=s2Þ2
n

16ð1�rÞ2
s2a
s2

� �2
H-E revisited

nðs2a=s2Þ
2

8ð1þr2Þþ2ðs2a=s2Þ2
n

8ð1þrÞ2
s2a
s2

� �2
HE-COM nð1þr2Þ2ðs2a=s2Þ

2

8ð1�r2Þ2ð1þr2Þþ2ð1þ6r2þr4Þðs2a=s2Þ2
nð1þr2Þ
8ð1�r2Þ2

s2a
s2

� �2
VC n

16
s2a
s2

� �2
1þðrþs2a=2s

2Þ2

1�ðrþs2a=2s2Þ2½ �2
þ 1þðr�s2a=2s

2Þ2

1�ðr�s2a=2s2Þ2½ �2
� �

nð1þr2Þ
8ð1�r2Þ2

s2a
s2

� �2
aApproximation for case s2a=s

2 � 2r.
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The sample size required to achieve power 1�b
with significance level a is obtained by solving the
equation NCP ¼ ðZa � Z1�bÞ2 for the sample size,
n. Figure 1 displays the number of sibling pairs
required to achieve 80% power to detect a QTL. In
Figure 1A, the overall heritability is taken to be
60%, and the effect of the QTL is varied. In Figure
1B, the effect of the QTL is fixed at 20%, and the
overall heritability is varied. As observed pre-
viously [e.g., Allison et al., 1999], the variance
components approach is seen to have the greatest
power in this situation; the HE-COM method
performs nearly as well.
There is a great deal of flexibility in the general

GEE method, as described in this paper. It will be
valuable to explore the power and robustness
properties of this method with different choices
for the working covariance matrix, in order to
identify a quantitative trait linkage analysis
procedure that is as robust as Haseman-Elston
regression but maintains the power of the variance
components approach.
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APPENDIX

Sham et al. [2002] proposed a method for
quantitative trait linkage analysis in which IBD
status is regressed upon the squared differences
and squared sums of relative-pairs’ phenotypes.
Here we show that this method is equivalent to a
score test that may be derived from our GEE
approach.
For a family with n individuals, let Y denote a

vector containing the n(n�1)/2 squared sums and
n of the squared differences of the phenotypes for
all relative pairs, and let P̂P denote a matrix of IBD
probabilities for all pairs. Let Yc¼Y�E(Y),
P̂Pc ¼ P̂P� 2F, where F is a matrix of kinship
coefficients, and let SY denote the covariance
matrix for Y, assuming that the trait values follow
a multivariate normal distribution. Further define
a matrix SP̂Pc

with elements

Cov½p̂pij; p̂plm� ¼CovðE½pijjM�;E½plmjM�Þ
�Covðpij; plmÞ � Covðpij;plmjMÞ
¼Covðpij; plmÞ � ðE½pijplmjM� � p̂pijp̂plmÞ

where Cov(pij,plm) can be calculated given only
the pedigree structure and E[pij,plm|M] can be
calculated based on the posterior distribution
conditional on marker information M. Finally,
define

H ¼ 2In 0 �2In
0 2Inðn�3Þ=2 0

� �
:
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Then the test statistic of Sham et al. [2002] is the
following:

T ¼
P

P̂P0
cHS�1

Y Y c

	 
2P
Y 0

c S
�1
Y H0SP̂PHS�1

Y Y c

� � : ð11Þ

We seek to show that statistic (11) is identical to
the following score test statistic:

S ¼
P

0 P̂P0
c

	 

G�1

0 ðz� E½z�Þ
	 
2

P
ðz� E½z�Þ0G�1

0

0 0
0 SP̂P

� �
G�1

0 ðz� E½z�Þ
� �

ð12Þ
where z is a vector consisting of all squares and
cross products of trait values, and G0 is the
covariance matrix of z, assuming that the trait
values follow a multivariate normal distribution.
There exists a nonsingular matrix A such

that Y¼Az. Thus Yc¼A(z�E[z]) and SY¼AG0A
0.

By straightforward algebra, we can show the
following:

qE½Y jM�
qs2a

¼H0P̂Pc

qE½zjM�
qs2a

¼
0

P̂Pc

� �
:

It follows that

H0P̂Pc ¼A
0

P̂Pc

� �

H0SP̂PH ¼A
0 0

0 SP̂P

� �
A0:

Thus, the square root of the numerator of
statistic (11) isX

P̂P0
cHS�1

Y Y c

¼
X

0 P̂P0
c

	 

A0ðAG0A

0Þ�1Aðz� E½z�Þ

¼
X

0 P̂P0
c

	 

G�1

0 ðz� E½z�Þ

which can be shown to correspond to the general-
ized estimating equations with a Gaussian work-
ing covariance matrix (equivalently, to the score
function) evaluated s2a ¼ 0.
The denominator of (11) isX

Y 0
c S

�1
Y H0SP̂PHS�1

Y Y c

	 

¼
X

ðz� E½z�Þ0G�1
0 A�1H0SP̂PHA0�1G�1

0 ðz� E½z�Þ
	 


¼
X

ðz� E½z�Þ0G�1
0

0 0

0 SP̂P

� �
G�1

0 ðz� E½z�Þ
� �

which is a robust variance estimator for the score
under the null hypothesis of no linkage. It follows
that the test statistic (11) is identical to the score
test statistic (12).
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