Outline

- Mitosis and meiosis
- Chiasmata, crossovers
- Genetic distance
- Genetic markers, recombination
- Chromatid and chiasma interference
- Mather’s formula
- The count-location model
- The gamma model and the χ^2 model
- Data: humans and mice
Mitosis: ordinary cell division
Mitosis: ordinary cell division

Chromosomes duplicate
Mitosis: ordinary cell division

- Chromosomes duplicate
- Chromosomes line up
Mitosis: ordinary cell division

1. Chromosomes duplicate
2. Chromosomes line up
3. Chromosome's pull apart and cell divides
Meiosis: production of sex cells
Meiosis: production of sex cells

Chromosomes duplicate
Meiosis: production of sex cells

Chromosomes duplicate

Chromosomes pair up
Meiosis: production of sex cells

- Chromosomes duplicate
- Chromosomes pair up
- Chr’s exchange material and cell divides
Meiosis: production of sex cells

- Chromosomes duplicate
- Chromosomes pair up
- Chr’s exchange material and cell divides
- Chr’s pull apart and cells divide
The exchange process

Vocabulary

Four-strand bundle
Meiotic products

Sister chromatids
Non-sister chromatids

Chiasma, chiasmata
Crossovers

Obligate chiasma
Genetic distance

Two points are d Morgans apart if the average number of crossovers per meiotic product in the intervening interval is d.

Usual units: centiMorgan (cM); 100 cM = 1 Morgan

Genetic distance \neq Physical distance

The intensity of the crossover process varies by

- Sex
- Individual
- Chromosome
- Position on chromosome
- Temperature
But we don’t observe crossovers

- Crossovers generally not observeable
- We instead observe the origin of DNA at marker loci.

odd no. crossovers = recombination event

even no. crossovers = no recombination

Recombination fraction = Pr(recombination event in interval)
Microsatellite markers

aka Short Tandem Repeat Polymorphisms (STRPs)

- Tandem repeat of something like GATA at a specific position in the genome.
- Number of repeats varies
- Use PCR to “amplify” region
- Use gel electrophoresis to determine length of region
Map functions

Connect **genetic distance** (average no. crossovers) to **recombination fraction** (chance of an odd no. crossovers).

\[r = M(d) \quad d = M^{-1}(r) \]

We require a model for the crossover process.
Interference

Chromatid interference:
- strand choice

Chiasma interference:
- positions of chiasmata
Mather’s formula

Assuming no chromatid interference (NCI):

\[
\Pr(\text{no rec’n in interval}) = \frac{1}{2} \{ 1 - \Pr(\text{no chiasma in interval}) \}
\]

↑

[in random meiotic product]

↑

[on 4-strand bundle]

Let \(n \) = no. chiasmata in interval on 4-strand bundle and \(m \) = no. crossovers in interval on random meiotic product

Under NCI, \(m \mid n \sim \text{Binomial}(n, 1/2) \)

Thus \(\Pr(m \text{ is odd} \mid n) = \begin{cases} 0 & \text{if } n = 0 \\ 1/2 & \text{if } n \geq 1 \end{cases} \)
Haldane map function

Under no interference, the locations of chiasmata on the 4-strand bundle are according to a Poisson process (rate: 2 per Morgan).

Thus $n \sim \text{Poisson}(2 \ d)$
where d is the genetic length of the interval (in Morgans)

Thus $\Pr(n = 0) = \exp(-2 \ d)$

Thus

$$r = \frac{1}{2} \left\{ 1 - \exp(-2 \ d) \right\}$$
Models for recombination

- Assuming NCI, thin χ-process by 1/2, independently, to get the XO-process.
- Models:
 - Count-location model
 - Gamma model, χ^2 model
Count-location (CL) model

Let \(n \) = no. chiasmata on 4-strand bundle

Model: \(n \sim \mathbf{p} = (p_0, p_1, p_2, \ldots) \)

locations \(n \sim \text{iid uniform}(0,L) \)

Note: \(\mathbf{p} = \text{Poisson}(2L) \rightarrow \text{no interference} \)

Under NCI, crossovers on random meiotic product will also follow a count-location model.

Let \(m \) = no. crossovers on random meiotic product

Then \(m \mid n \sim \text{Binomial}(n, 1/2) \) and

\[
\Pr(m = i) = \sum_{n=0}^{\infty} p_n(i) (\frac{1}{2})^n
\]
The CL model stinks

Advantage: Can easily incorporate obligate chiasma

Disadvantage: Fits data poorly!

→ Allows crossovers to be too close together.
Gamma model

Locations of chiasmata according to a stationary gamma renewal process.

Increments are iid gamma\((\text{shape } = \nu, \text{ rate } = 2\nu)\)
(Constrained to have mean 1/2 Morgan.)

\[
\nu \begin{cases}
1 & \text{no interference} \\
> 1 & \text{positive chiasma interference}
\end{cases}
\]

Locations of crossovers on random meiotic product also a stationary renewal process.

Inter-arrival distribution is a mixture of gammas
Chi-square model

Special case of the gamma model when the parameter is a non-negative integer (take $m = \nu - 1$).

Computer simulations and many calculations are easier.

Chiasmata on the 4-strand bundle: take every mth point from a Poisson process with rate $2m$ per Morgan.

Inter-arrival distribution is a scaled version of a χ^2 distribution.

Example: ($m = 4$)
The gamma model

Advantage: Fits data reasonably well

Disadvantage: Doesn’t account for obligate chiasma
Human data

- http://research.marshfieldclinic.org/genetics
- 8 CEPH families
 - three generations
 - 11 to 15 progeny
 - 92 meioses, total
- ~8000 STRP markers (~90% typed)
- Average spacing:
 - Female: 0.6 ± 1.2 cM
 - Male: 0.4 ± 1.0 cM
- Data cleaning
 - Removed 764/954,425 (~0.08%) genotypes resulting in tight double recombinants
<table>
<thead>
<tr>
<th>CEPH individual 1331–11</th>
<th>maternal chr 10 haplotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>11111111--- 11-111-11-- 11-11---1111 1-11---11-11</td>
<td></td>
</tr>
<tr>
<td>11111111--1 11-11111-11 1111111111 1111-111111</td>
<td></td>
</tr>
<tr>
<td>11--111111 111-11111-1 1111111111 10000-0-00</td>
<td></td>
</tr>
<tr>
<td>0---000-000 0000-000000 0000--0000 0000--0000</td>
<td></td>
</tr>
<tr>
<td>0000-000000 000-0--0-- 0---0-11-11-11111111-1</td>
<td></td>
</tr>
<tr>
<td>---1-1-1-1-1 1111-1--11 111111-1111 -111-111111</td>
<td></td>
</tr>
<tr>
<td>-1-----1111 111111-111 -1111-111-- 11-11111111</td>
<td></td>
</tr>
<tr>
<td>111-111111-11111111-1 11111111-11 11-1111111-11</td>
<td></td>
</tr>
<tr>
<td>11--1-11-1 111-11-1-1 1-1-----1-1 11-11111111</td>
<td></td>
</tr>
<tr>
<td>11--1-11-11-111111--111 11--1111111 1111-111111</td>
<td></td>
</tr>
<tr>
<td>1-0---0000 00000-0000 0-0-000</td>
<td></td>
</tr>
</tbody>
</table>
The data

Progeny

Location on female genetic map (cM)
MLEs of interference parameter

![Graph showing MLEs of interference parameter across different chromosomes for female and male subjects.]

- Female (open circles)
- Male (filled circles)

Chromosome axis ranges from 1 to 22, and the y-axis represents the interference parameter, ranging from 0 to 15.
Goodness of fit?
Maternal chromosome 1

Inter-crossover distance (cM)
Paternal chromosome 1

Inter-crossover distance (cM)
Maternal chromosome 2

Inter-crossover distance (cM)
Paternal chromosome 2
Mouse data

- **Two interspecific backcrosses with common F$_1$ parent**
 - BSB: (C57BL/6J × M. spretus) × C57BL/6J
 - BSS: (C57BL/6J × SPRET/Ei) × SPRET/Ei
 - 94 individuals from each cross

- **High-density STRP markers**
 - BSB: 1372 markers
 - BSS: 4913 markers

- **Average spacing:**
 - BSB: 1.0 cM
 - BSS: 0.3 cM
Mouse data

Backcross individuals

Chromosome position (cM)
MLEs: mouse
Crossover locations: Chr 1
Crossover locations: Chr 4
Inter-XO distances: Chr 1

Chr. 1

(n = 46)

Count

0 20 60 100

Inter–crossover distance
Inter-XO distances: Chr 4

Chr. 4
(n = 33)

Count

Inter–crossover distance
Acknowledgements

Terry Speed, University of California, Berkeley, and WEHI

Hongyu Zhao, Yale University

Mary Sara McPeek, University of Chicago

Jim Weber, Marshfield Medical Research Foundation
References

