Gene mapping in model organisms

Karl W Broman
Department of Biostatistics
Johns Hopkins University

http://www.biostat.jhsph.edu/~kbroman

Goal

• Identify genes that contribute to common human diseases.
Advantages of the mouse

- Small and cheap
- Inbred lines
- Large, controlled crosses
- Experimental interventions
- Knock-outs and knock-ins
The mouse as a model

• Same genes?
 – The genes involved in a phenotype in the mouse may also be involved in similar phenotypes in the human.

• Similar complexity?
 – The complexity of the etiology underlying a mouse phenotype provides some indication of the complexity of similar human phenotypes.

• Transfer of statistical methods.
 – The statistical methods developed for gene mapping in the mouse serve as a basis for similar methods applicable in direct human studies.

The intercross
The data

- Phenotypes, y_i
- Genotypes, $x_{ij} = \text{AA/AB/BB}$, at genetic markers
- A genetic map, giving the locations of the markers.

Phenotypes

133 females
(NOD × B6) × (NOD × B6)
Agouti coat

Genetic map
Genotype data

Goals

- Identify genomic regions (QTLs) that contribute to variation in the trait.
- Obtain interval estimates of the QTL locations.
- Estimate the effects of the QTLs.
Statistical structure

QTL

Markers ----> Phenotype

• Missing data: markers ↔ QTL
• Model selection: genotypes ↔ phenotype

Models: recombination

Underlying process

Markers: ↑↑ ↑↑ ↑↑ ↑↑

Data: ●○●○●○●○

• No crossover interference
 – Locations of breakpoints according to a Poisson process.
 – Genotypes along chromosome follow a Markov chain.

• Clearly wrong, but super convenient.
Models: gen ↔ phe

Phenotype = y, whole-genome genotype = g

Imagine that p sites are all that matter.

$$E(y \mid g) = \mu(g_1, \ldots, g_p) \quad \text{SD}(y \mid g) = \sigma(g_1, \ldots, g_p)$$

Simplifying assumptions:

- $\text{SD}(y \mid g) = \sigma$, independent of g
- $y \mid g \sim \text{normal}(\mu(g_1, \ldots, g_p), \sigma)$
- $\mu(g_1, \ldots, g_p) = \mu + \sum \alpha_j 1\{g_j = \text{AB}\} + \beta_j 1\{g_j = \text{BB}\}$

Before you do anything…

Check data quality

- Genetic markers on the correct chromosomes
- Markers in the correct order
- Identify and resolve likely errors in the genotype data
The simplest method

“Marker regression”
• Consider a single marker
• Split mice into groups according to their genotype at a marker
• Do an ANOVA (or t-test)
• Repeat for each marker

Marker regression

Advantages
+ Simple
+ Easily incorporates covariates
+ Easily extended to more complex models

Disadvantages
– Must exclude individuals with missing genotypes data
– Imperfect information about QTL location
– Suffers in low density scans
– Only considers one QTL at a time
Interval mapping

Lander and Botstein 1989

- Imagine that there is a single QTL, at position \(z \).
- Let \(q_i \) = genotype of mouse \(i \) at the QTL, and assume
 \[
 y_i \mid q_i \sim \text{normal}(\mu(q_i), \sigma)
 \]
- We won’t know \(q_i \), but we can calculate (by an HMM)
 \[
 p_{ig} = \Pr(q_i = g \mid \text{marker data})
 \]
- \(y_i \), given the marker data, follows a mixture of normal distributions with known mixing proportions (the \(p_{ig} \)).
- Use an EM algorithm to get MLEs of \(\theta = (\mu_{AA}, \mu_{AB}, \mu_{BB}, \sigma) \).
- Measure the evidence for a QTL via the LOD score, which is the \(\log_{10} \) likelihood ratio comparing the hypothesis of a single QTL at position \(z \) to the hypothesis of no QTL anywhere.

Interval mapping

Advantages

- Takes proper account of missing data
- Allows examination of positions between markers
- Gives improved estimates of QTL effects
- Provides pretty graphs

Disadvantages

- Increased computation time
- Requires specialized software
- Difficult to generalize
- Only considers one QTL at a time
LOD thresholds

- To account for the genome-wide search, compare the observed LOD scores to the distribution of the maximum LOD score, genome-wide, that would be obtained if there were no QTL anywhere.

- The 95th percentile of this distribution is used as a significance threshold.

- Such a threshold may be estimated via permutations (Churchill and Doerge 1994).
Permutation test

- Shuffle the phenotypes relative to the genotypes.
- Calculate $M^* = \max \text{LOD}^*$, with the shuffled data.
- Repeat many times.

- LOD threshold = 95th percentile of M^*
- P-value = $\Pr(M^* \geq M)$

Permutation distribution

![Histogram showing the permutation distribution with a marked 95th percentile]
Chr 9 and 11

Epistasis
Going after multiple QTLs

- Greater ability to detect QTLs.
- Separate linked QTLs.
- Learn about interactions between QTLs (epistasis).

Multiple QTL mapping

Simplistic but illustrative situation:
- No missing genotype data
- Dense markers (so ignore positions between markers)
- No gene-gene interactions

Which $\beta_j \neq 0$?

→ Model selection in regression
Model selection

• Choose a class of models
 – Additive; pairwise interactions; regression trees

• Fit a model (allow for missing genotype data)
 – Linear regression; ML via EM; Bayes via MCMC

• Search model space
 – Forward/backward/stepwise selection; MCMC

• Compare models
 – $\text{BIC}_\delta(\gamma) = \log L(\gamma) + \frac{\delta}{2} |\gamma| \log n$

 Miss important loci ↔ include extraneous loci.

Special features

• Relationship among the covariates

• Missing covariate information

• Identify the key players vs. minimize prediction error
Opportunities for improvements

• Each individual is unique.
 – Must genotype each mouse.
 – Unable to obtain multiple invasive phenotypes (e.g., in multiple environmental conditions) on the same genotype.

• Relatively low mapping precision.

→ Design a set of inbred mouse strains.
 – Genotype once.
 – Study multiple phenotypes on the same genotype.

Recombinant inbred lines
LOD curves

Chr 7 and 19
Pairwise recombination fractions

Upper-tri: rec. fracs.
Lower-tri: lik. ratios
Red = association
Blue = no association

RI lines

Advantages
- Each strain is a eternal resource.
 - Only need to genotype once.
 - Reduce individual variation by phenotyping multiple individuals from each strain.
 - Study multiple phenotypes on the same genotype.
- Greater mapping precision.

Disadvantages
- Time and expense.
- Available panels are generally too small (10-30 lines).
- Can learn only about 2 particular alleles.
- All individuals homozygous.
The RIX design

The “Collaborative Cross”
Genome of an 8-way RI

The “Collaborative Cross”

Advantages

- Great mapping precision.
- Eternal resource.
 - Genotype only once.
 - Study multiple invasive phenotypes on the same genotype.

Barriers

- Advantages not widely appreciated.
 - Ask one question at a time, or Ask many questions at once?
- Time.
- Expense.
- Requires large-scale collaboration.
To be worked out

- Breakpoint process along an 8-way RI chromosome.
- Reconstruction of genotypes given multipoint marker data.
- QTL analyses.
 - Mixed models, with random effects for strains and genotypes/alleles.
- Power and precision (relative to an intercross).

Haldane & Waddington 1931

\(r = \) recombination fraction per meiosis between two loci

\[\begin{align*}
\text{Autosomes} & \\
\Pr(G_1=AA) &= \Pr(G_1=BB) = \frac{1}{2} \\
\Pr(G_2=BB \mid G_1=AA) &= \Pr(G_2=AA \mid G_1=BB) = \frac{4r}{1+6r}
\end{align*} \]

\[\begin{align*}
\text{X chromosome} & \\
\Pr(G_1=AA) &= \frac{2}{3} \quad \Pr(G_1=BB) = \frac{1}{3} \\
\Pr(G_2=BB \mid G_1=AA) &= \frac{2r}{1+4r} \\
\Pr(G_2=AA \mid G_1=BB) &= \frac{4r}{1+4r} \\
\Pr(G_2 \neq G_1) &= \frac{(8/3) r}{1+4r}
\end{align*} \]
8-way RILs

Autosomes
\[
\begin{align*}
\Pr(G_1 = i) &= 1/8 \\
\Pr(G_2 = j \mid G_1 = i) &= r / (1+6r) \quad \text{for } i \neq j \\
\Pr(G_2 \neq G_1) &= 7r / (1+6r)
\end{align*}
\]

X chromosome

\[
\begin{align*}
\Pr(G_1 = AA) &= \Pr(G_1 = BB) = \Pr(G_1 = EE) = \Pr(G_1 = FF) = 1/6 \\
\Pr(G_1 = CC) &= 1/3 \\
\Pr(G_2 = AA \mid G_1 = CC) &= r / (1+4r) \\
\Pr(G_2 = CC \mid G_1 = AA) &= 2r / (1+4r) \\
\Pr(G_2 = BB \mid G_1 = AA) &= r / (1+4r) \\
\Pr(G_2 \neq G_1) &= (14/3) r / (1+4r)
\end{align*}
\]

Areas for research

- Model selection procedures for QTL mapping
- Gene expression microarrays + QTL mapping
- Combining multiple crosses
- Association analysis: mapping across mouse strains
- Analysis of multi-way recombinant inbred lines
References

More references

• Broman KW. The genomes of recombinant inbred lines. Genetics, in press
Software

- R/qtl
 http://www.biostat.jhsph.edu/~kbroman/qtl

- Mapmaker/QTL
 http://www.broad.mit.edu/genome_software

- Mapmanager QTX
 http://www.mapmanager.org/mmQTX.html

- QTL Cartographer
 http://statgen.ncsu.edu/qtlcart/index.php

- Multimapper
 http://www.rni.helsinki.fi/~mjs