Estimating the mean response

We can use the regression results to predict the expected response for a new concentration of hydrogen peroxide. But what is its variability?

Variability of the mean response

Let y be the predicted mean for some x, i.e.

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$$

Then

$$E(\hat{y}) = \beta_0 + \beta_1 x$$

$$\text{var}(\hat{y}) = \sigma^2 \left(\frac{1}{n} + \frac{(x - \bar{x})^2}{SXX} \right)$$

where y is the true mean response.
Why?

\[E(\hat{y}) = E(\hat{\beta}_0 + \hat{\beta}_1 x) \]
\[= E(\hat{\beta}_0) + x E(\hat{\beta}_1) \]
\[= \beta_0 + x \beta_1 \]

\[\text{var}(\hat{y}) = \text{var}(\hat{\beta}_0 + \hat{\beta}_1 x) \]
\[= \text{var}(\hat{\beta}_0) + \text{var}(\hat{\beta}_1 x) + 2 \text{cov}(\hat{\beta}_0, \hat{\beta}_1 x) \]
\[= \text{var}(\hat{\beta}_0) + x^2 \text{var}(\hat{\beta}_1) + 2x \text{cov}(\hat{\beta}_0, \hat{\beta}_1) \]
\[= \sigma^2 \left(\frac{1}{n} + \frac{\bar{x}^2}{SXX} \right) + \sigma^2 \left(\frac{x^2}{SXX} \right) - \frac{2x \bar{x} \sigma^2}{SXX} \]
\[= \sigma^2 \left[\frac{1}{n} + \frac{(x - \bar{x})^2}{SXX} \right] \]

Confidence intervals

Hence

\[\hat{y} \pm t_{(1 - \frac{\alpha}{2}), n-2} \times \hat{\sigma} \times \sqrt{\frac{1}{n} + \frac{(x - \bar{x})^2}{SXX}} \]

is a \((1 - \alpha)\times 100\%\) confidence interval for the mean response given \(x\).
Prediction

Now assume that we want to calculate an interval for the predicted response y^* for a value of x.

There are two sources of uncertainty:

(a) the mean response

(b) the natural variation σ^2

The variance of \hat{y}^* is

$$\text{var}(\hat{y}^*) = \sigma^2 + \sigma^2 \left(\frac{1}{n} + \frac{(x - \bar{x})^2}{SXX} \right) = \sigma^2 \left(1 + \frac{1}{n} + \frac{(x - \bar{x})^2}{SXX} \right)$$
Prediction intervals

Hence

\[\hat{y}^\star \pm t_{(1-\frac{\alpha}{2}),n-2} \times \hat{\sigma} \times \sqrt{1 + \frac{1}{n} + \frac{(x - \bar{x})^2}{SXX}} \]

is a \((1 - \alpha)\times100\%\) prediction interval for the predicted response given \(x\).

Note: When \(n\) is very large, we get just

\[\hat{y}^\star \pm t_{(1-\frac{\alpha}{2}),n-2} \times \hat{\sigma} \]
Span and height

With just 100 individuals
Regression for calibration

That prediction interval is for the case that the x’s are known without error while

\[y = \beta_0 + \beta_1 x + \epsilon \quad \text{where } \epsilon = \text{error} \]

A more common situation:

We have a number of pairs (x,y) to get a calibration line/curve. x’s basically without error; y’s have measurement error

We obtain a new value, \(y^\ast \), and want to estimate the corresponding \(x^\ast \).

\[y^\ast = \beta_0 + \beta_1 x^\ast + \epsilon \]

Example

![Graph showing the relationship between fluorescence and quinine concentration with a point indicating a predicted value.](image-url)
Regression for calibration

Data: \((x_i, y_i)\) for \(i = 1, \ldots, n\)

with \(y_i = \beta_0 + \beta_1 x_i + \epsilon_i, \epsilon_i \sim \text{iid Normal}(0, \sigma)\)

\(y_j^*\) for \(j = 1, \ldots, m\)

with \(y_j^* = \beta_0 + \beta_1 x^* + \epsilon_j^*, \epsilon_j^* \sim \text{iid Normal}(0, \sigma)\)

for some \(x^*\)

Goal: Estimate \(x^*\) and give a 95% confidence interval.

The estimate: Obtain \(\hat{\beta}_0\) and \(\hat{\beta}_1\) by regressing the \(y_i\) on the \(x_i\).

Let \(\hat{x}^* = (\bar{y}^* - \hat{\beta}_0)/\hat{\beta}_1\) where \(\bar{y}^* = \sum_j y_j^*/m\)
95% CI for \hat{x}^*

Let T denote the 97.5th percentile of the t distr’n with $n-2$ d.f.

Let $g = T / [\hat{\beta}_1 / (\hat{\sigma} / \sqrt{S_{XX}})] = (T \hat{\sigma}) / (|\hat{\beta}_1| \sqrt{S_{XX}})$

If $g \geq 1$, we would fail to reject $H_0 : \beta_1 = 0$!

In this case, the 95% CI for \hat{x}^* is $(-\infty, \infty)$.

If $g < 1$, our 95% CI is the following:

$$
\hat{x}^* \pm \frac{(\hat{x}^* - \bar{x}) g^2 + (T \hat{\sigma} / |\hat{\beta}_1|) \sqrt{(\hat{x}^* - \bar{x})^2 / S_{XX} + (1 - g^2) \left(\frac{1}{m} + \frac{1}{n}\right)}}{1 - g^2}
$$

For very large n, this reduces to $\hat{x}^* \pm (T \hat{\sigma}) / (|\hat{\beta}_1| \sqrt{m})$

Example

![Graph showing fluorescence vs. quinine concentration]
Another example

Infinite m
Infinite n