Lab 1 Statistics for Laboratory Scientists
Due: 8 Feb 2006

Introduction

This is the first of three computer labs for the coussistics for Laboratory Scientists. The aim of these labs is to
assist the student in learning to use the R software and ity cat basic statistical analyses.

The final page of each lab will contain several questions. Stients are to carry out the analyses in the lab and
submit answers to these questions. We encourage studentswork together, but expect each student to write
down his/her answers independently.

Note that the majority of the R code for this lab may be obt@diaga file [abl.R) at the following. Save this file to
your computer and then open it in R using, from the menu bl -FiDisplay file. You can then copy and paste from
the file into R, to save a bit of typing.

http://www.biostat.jhsph.edu/"kbroman/teaching/labs tat/third/labs.html
Alternatively, you can type

url.show("http://www.biostat.jhsph.edu/"kbroman/tea ching/labstat/third/labl1.R")
That URL is a bit long; you could find the file on the web, and tbpycand-paste the URL.

We cannot deny that R can be difficult to learn, but we feelnglythat it is a worthwhile venture. We recommend
the following five rules for learning a computer language:

Experiment.

Think about what you're doing.
Read the manuals

Ask questions.

Use it routinely.

arwbdppE

The aim of this first lab is to get a basic understanding of ghrtasx of R, and to learn some of the basic graphical
and statistical features of R. It is sure to be rather bormg, even frustrating. It can be hard to learn new computer
languages—there are so many details to remember.

Learning R

See the “Notes on R for Windows” webpage for information abostalling R in Windows and getting starting with
the language. The page includes a list of resources on tepamid using R.

http://www.biostat.jhsph.edu/"kbroman/Rintro/Rwin.h tml

If you become committed to using R regularly, we recommerattaoks:Introductory statistics with R by Dalgaard
andModern applied statistics with Sby Venables and Ripley.

Reading data into R

1. Download the following Excel file:
http://www.biostat.jhsph.edu/"kbroman/teaching/data /mathura.xls

2. Open the file in Excel and save it as a comma-delimited (GB/)
3. StartR (e.g., double-click on the R icon on the desktop).

4. Type the following at the R prompt, replacit@/mathura.csv” with the appropriate location/name of the
file. Note that in R you must use forward-slashes in place ®btickslashes that are usually used in Windows.
mat <- read.csv("c:/mathura.csv")

read.csv is afunction that reads in data from comma-delimited files. The pareethegslicate that it is a function
and contain it@rguments (here just one argument—the file to be read).

The symbok- is the “assignment” operator. (One can also use the sympbiit | prefer<-.) The output of the
functionread.csv (i.e., the contents of the file) are assigned to a data obgdletdmat .

One could instead use the more generic functead.table to read in these data, as follows.
mat <- read.table("c:/mathura.csv”, sep=",", header=TRU E)

Here we specified two additional argumerstsp="," indicates that the file is comma-delimited, whileader=TRUE
indicates that the first line of file is a header row (contairtime field names). The sign here is different from the-
sign; it is for assigning values to optional arguments inracfion.

If you type, at the R prompt, the name of a function without plagentheses, the code defining the function will be
printed. Typeread.csv to see its definition. You'll see arguments that may be spet#ind their default values;
you'll further see that this function simply calls the moengric functiorread.table

Type ?read.csv or help(read.csv) to view the help file for this function (describing and giviegamples
of its use). What comes up is the help file fead.table , which also describesad.csv and several similar
functions.

Note: You can usg@ead.csv to download and load data from a file directly from the web. Andas an alternative
to what we did above, you could type the following into R:

mat <- read.csv("http://www.biostat.jhsph.edu/"kbroma n/teaching/data/mathura.csv")

A few quick things
Before we delve into tedious details, let's look at a few caamis to explore the above data.

After reading the data froomathura.csv , the objectmat should now be in your workspace. Typ&) or
objects() tolist the objects in your workspace. (Note that these atle fumctions; another function &) , which
is used to exit R.)

If you typemat at the R prompt, it will print the contents of the object. Thekata are from Mathura et al., J Appl
Physiol 91:74-78, 2001, and consist of red blood cell (RB&)eity (in mm/s) and capillary diameter (iim), at rest
and during venous occlusion, as measured by capillarosmogOPS imaging.

First let’s get a quick summary and plot of the data.

summary(mat)
plot(mat)

The data has five variables: the measurement method, the BRBCity at rest and during venous occlusion, and the
capillary diameter at rest and during venous occlusion. fllhetionsummary gives the mean and the quartiles of
each numeric variable and the frequency distribution ferdhtegorical variable. The functigot gives a plot of
each variable against each other variable. This may alsttaéned with the functiopairs . The functionabline

is used below to plot a line with intercept 0 and slope 1 (ite line “y = x”).

plot(velo.vo ~ velo.rest, data=mat)

points(velo.vo ~ velo.rest, data=mat,
subset=(method=="capillaroscopy"), col="red")

abline(0,1)

Use of the functiorplot results in a scatter plot of the measurements of the RBC igldaring venous occlusion
against that at rest, for all measurements. Let’s worry atimisyntax of the command later. The second command
highlights in red the points corresponding to measurentgntsipillaroscopy. (Points corresponding to measurements
by OPS imaging remain in black.) We can do the same for thdlagpdiameter measurements, as follows.

plot(diam.vo ~ diam.rest, data=mat)

points(diam.vo ~ diam.rest, data=mat,
subset=(method=="capillaroscopy"), col="red")

abline(0,1)

Data objects
The following is likely to be rather boring, so beware.

In R, data can have several possitriades, including numeric (humbers), character (text), logiGdRUE or FALSE),

and factor (categorical). There are several differentgygfedata objects in R, including vectors, matrices, listg] a
“data frames.” A vector is an ordered set whose elementsa# the same mode. A matrix is a rectangular set whose
elements are all of the same mode. A list is an ordered sethef alata objects (the components of which may be
themselves vectors, matrices, lists, or whatever). A daaé is probably the most important data type; it can be
viewed as either a matrix whose columns are allowed to befigrdint modes, or as a list of vectors, each of the same
length.

The names of objects are case-sensitive (engt, is different thanMat). It's best to avoid using names that have
already been taken by standard R functions (e.gr,data).

The objectmat is an example of a data frame. The first column is a factor (ttasuring method used), while the
other columns are numeric (RBC velocity or capillary diaengat rest or under venuous occlusion).

R is distributed with a good amount of example data. You cdaiola list of these data sets by typidata() . To get
access to the datadelantGrowth , you must first typdibrary(datasets) and therdata(PlantGrowth)

Then typels() and you'll see that it is in your workspace. TypBlantGrowth or help(PlantGrowth) to
view a description of these data.

Creating simple data objects

Here we describe four extremely important functions foatiregy simple vectors. The most important is the function
¢, which combines a set of numbers or character strings inectou Type the following.

x <- c(1, 3.5, -28.4, 10)

X

animals <- c("cat", "dog", "mouse", "monkey")
avector <- ¢(TRUE, TRUE, TRUE, FALSE, FALSE)

The operator can be used to create a vector of numbers incremented by &.tfigdollowing:

1:10
3:8
-3:8
8:2
10:10
5.2:20

Of course, if you want to use these vectors, you need #ssign them to something (e.g.y <- 5.2:20).
The functionseq is somewhat more general thanConsider the following:

seq(1l, 10, by=1)

seq(3, 9, by=3)

seq(3, 9, length=10)
seq(2, by=0.2, length=8)

The functiorrep repeats stuffto create a vector. (The firstargument givestovto be repeated; the second argument
gives the number of times to repeat each element of the fyanaent.)

rep(2, 10)
rep(c(1,2,3), 5)
rep(c(1,2,3), c(2,4,5))
rep(1:3, 4)

rep(1:3, rep(4,3))

Subsetting vectors

One may refer to individual elements of a vector using sqbaaekets]] . For examplex[3] refers to the third
element of the vectot. Use vectors of positive integers to refer to multiple elate®f the vector, onegativeintegers
to refer to all elementexcept those indicated.

X <- seq(2, 40, by=2)
length(x)

X[5]

x[c(1,3,9)]

x[-(1:10)]

X[-5]

One reason to do this is to replace certain elements of tHeneith something new.

z <-c¢(1, 3,5, 9
z

z[2] <- -3

z

You may also index a vector using@gical vector with the same length as the vector under consideratidogical
vector is a vector of TRUE’s and FALSE’s.

y <- c(rep(TRUE,4), rep(FALSE,14), TRUE, TRUE)

length(y)
X[yl

The purpose of this is likely not immediately clear, so leexplain. The logical and othaperators are useful for
pulling out elements which meet certain criteria. Consfist the logical operators.

' not
& and (element-wise)
| or(element-wise)

Try out these examples, and play around a bit.

a <- c(rep(c(TRUE, FALSE), 2), NA)

b <- c(rep(c(TRUE, FALSE), ¢(2,2)), FALSE)
a

b

la

a&hb

alb

I(a | b)

la|b

Now consider the following, even more important operators.

== equal to

I= not equal to

< less than

> greater than

<= less than or equal to
>= greater than or equal to
is.na() is “missing” (NA

Here are some examples.

X <- ¢(1,5,3,NA,9,11,2,3)
x<=5

x>3 & x<11

is.na(x)

X[lis.na(x)]

X[lis.na(x) & x<5]

Subsetting matrices

You can also refer to portions of a matrix or data frame usigase brackets by including a comma; indices before
the comma refer to rows while indices after the comma refeotomns.

Let's do some similar things with the example datantGrowth

data(PlantGrowth)

summary(PlantGrowth)
PlantGrowth[PlantGrowth[,2]=="ctrl",]
summary(PlantGrowth[PlantGrowth[,2]=="ctrl",])
summary(PlantGrowth[PlantGrowth[,2]=="trt1",])
summary(PlantGrowth[PlantGrowth[,2]=="trt2",])

Hopefully your workspace still contains the objecat; if not, please read it into R again, usingad.csv . Note
that missing dataNAs) are almost always a bit of a pain—in statistics generalhd in fiddling with data in R in
particular.

mat[1:5,]

mat[,2]

mat[11:20, c(1,4:5)]
mat[is.na(mat[,2]),]
mat[is.na(mat[,2]) & is.na(mat[,3]),]
mat[is.na(mat[,2]) | is.na(mat[,3]),]
mat[mat[,1]=="OPS imaging",]

R as a calculator

You can use R as a fancy calculator. Most functions may be asagbctors or matrices, in which case they act on
each element of the vector or matrix.

2 +3-273

(2 + 3 -23)*4
2 + 3 - 273)4
34

2 + 34

2 + (1.4 4
sin(0.5)

log(seq(1, 2, length=11))

log10(seq(1, 100, length=11))
log2(c(1, 2, 4, 8, 16, 32))

X <- c(1, 5, 10, NA, 15)
sum(x)

sum(x, na.rm=TRUE)

prod(x, na.rm=TRUE)

Note that the functiomog calculates the natural logarithm. The functidogl0 andlog2 are used to calculate
logarithms base 10 and base 2, respectively.

The functionssum andprod calculate the sum and product, respectively, of the elesrerd vector.

Summary statistics
Of course, the basic summary statistics are available méan, median , sd, quantile , range .

data(PlantGrowth)

mean(PlantGrowth[PlantGrowth[,2]=="ctrl",1])
mean(PlantGrowth[PlantGrowth[,2]=="trt1",1])
mean(PlantGrowth[PlantGrowth[,2]=="trt2",1])

z <- PlantGrowth[PlantGrowth[,2]=="ctrl", 1]
median(z)

sd(z)

X <- quantile(z, ¢(0.25, 0.75))

X

diff(x)

range(z)

diff(range(z))

All of these functions accept an argumeatrm for dealing with missing data\As). By default,na.rm=FALSE ,
and these functions retuidA if the input has any missing data. If one usesrm=TRUE, any missing values are
removed prior to the calculations.

X <- mat[mat[,1]=="capillaroscopy",2]

X

sum(is.na(x))

mean(x)

mean(x, na.rm=TRUE)

median(x, na.rm=TRUE)

sd(x, na.rm=TRUE)

diff(quantile(x, ¢(0.25,0.75), na.rm=TRUE))
diff(range(x,na.rm=TRUE))

Loops

Here we give the briefest glimpse of programming in R. Thefiomfor may be used for repeating a task a number
of times. Consider the following code.

me <- 1:4
for(z in 1:4) me[z] <- mean(mat[,z+1], na.rm=TRUE)
me

The functionfor is used to calculate the mean of columns 2, 3, 4, and 5 of ttees#dinat and save them in the
vectorme

Such “loops” may benested. This allows us to calculate the averages of each of the faaremic columns omat

after they have been split into two groups, according to teéwd for measurement. (We use the functmrels
to obtain the different categories of the factoat[,1] .)

me <- matrix(hrow=2,ncol=4)
le <- levels(mat[,1])
for(i in 1:2)
for(j in 1:4)
me[i,j] <- mean(mat[mat[,1]==le[i], j+1], na.rm=TRUE)
me

Note thatfor loops may contain multiple commands, if those commandsrari®sed in curly brace$} .

S <- me <- matrix(nrow=2,ncol=4)
le <- levels(mat[,1])
for(i in 1:2) {
for(j in 1:4) {
me[i,j] <- mean(mat[mat[,1]==le[i], j+1], na.rm=TRUE)
s[i,j] <- sd(mat[mat[,1]==le][i], j+1], na.rm=TRUE)
}
}

me

The apply functions

Three functions which can make some tasks quite efficienf buRare commonly found rather confusing, apply
sapply andtapply . We attempt to describe these here.

The functionapply is used to “apply” another function to each column (or row)aahatrix or data frame. For
example, suppose we wish to obtain the average of each cdlexappt the first one) ahat[,-1] . We showed
above how to use for loop to do this. An alternative is the following.

me <- apply(mat[,-1], 2, mean, na.rm=TRUE)

The first argument tapply is the input matrix or data frame. The third argument is thecfion to “apply.” The
second argument is taken to be 2 if one wishes to apply thdiumto each column, (or 1 if one wishes to apply
the function to each row). Any arguments after the third aaespd to the function being applied. Here, we use
na.rm=TRUE so that any missing data is discarded.

As an alternative, we could have used the funcg8apply , which, for data frames, “applies” a function to each
column of the data frame. By usisgpply , we can get away without the “2.”

me <- sapply(mat[,-1], mean, na.rm=TRUE)

We can use this to get the mean and SD of each numeric colustrictieag attention to the measurements made by
capillaroscopy.

X <- mat[mat[,1]=="capillaroscopy",]
me <- sapply(x[,-1], mean, na.rm=TRUE)
sd <- sapply(x[,-1], sd, na.rm=TRUE)

The functiortapply is used to split a vector (sa) into groups defined by some other vector (band then apply
some function to each group. For example, consider theRlataGrowth . The first column is a measure of growth;
the second column is a factor with levétrl” (control),"trtl" (treatment one), andrt2" (treatment two).
The following calculates the group-specific means and Shiseoplant growth.

data(PlantGrowth)
tapply(PlantGrowth[,1], PlantGrowth[,2], mean)
tapply(PlantGrowth[,1], PlantGrowth[,2], sd)

We can use the functiorsapply andtapply together to get column means (and SDs) for each measurement
method for the datenat. This allows us to avoid the nested pairfof loops that we used above.

sapply(mat[,-1], tapply, mat[,1], mean, na.rm=TRUE)
sapply(mat[,-1], tapply, mat[,1], sd, na.rm=TRUE)

What are these commands doing? Let’s look at the first one.

1. mat[,-1] isthe data framenat with the first column (the measurement method) dropped.

2. The functiorsapply passes each column ofat[,-1] , one at a time, to the functicapply , along with
the remaining argumentsigan, na.rm=TRUE).

3. The functiortapply splits a column ofnat[,-1] into the two groups defined by the factoat[,1] , and
passes each group to the functimean, along with the remaining argumena.rm=TRUE .

4. Finally, the functioomean calculates the group-specific mean, after first droppingmisging values.

Simple graphics

Let's look at how to make dotplots, boxplots and histogramst’s start with dotplots, though there is no built-in

function to create dotplots the way | like them. Let's useitiegt data, and make a dotplot of the RBC velocities at
rest, as measured by capillaroscopy and OPS imaging. Riestreate a vectox containing these velocities and a

vectory that is 1 if the measurement method is capillaroscopy anti@raise.

X <- matl[,2]
y <- rep(2, length(x))
y[mat[,1]=="capillaroscopy"] <- 1

Now we can make the plot, using the functiglot .

plot(x, y)

We may wish to “jitter” the values iy, add a better label to the x-axis, change the limits of th&ig;and suspend
plotting of the y-axis and y-axis label. The functinmif returns a specified number of random numbers, uniformly
distributed between specified limits.

u <- runif(length(y), -0.1, 0.1)
plot(x, y+u, xlab="RBC velocity (at rest)", ylim=c(0.5, 2. 5),

yaxt="n", ylab=

We can also add some horizontal lines at 1 and 2. The funatiine adds lines to a plot. The argumeénts used
to get horizontal linedty=2 makes them dashed lines, azw="gray" makes them gray.

abline(h=c(1,2), Ity=2, col="gray")
Boxplots can be easier.

boxplot(velo.rest © method, data=mat)
We can also do histograms.

par(mfrow=c(2,1))

hist(mat[mat[,1]=="capillaroscopy", 2], main="Capilla roscopy",
xlab="RBC velocity (at rest)")

hist(mat[mat[,1]=="OPS imaging", 2], main="OPS imaging" ,
xlab="RBC velocity (at rest)")

The functionpar is used for detailed control of graphics in R. The argumrmefibw is used to make multiple plots
in one plotting windowmfrow=c(2,1) is used to get two rows in one column of plots.

R commands discussed in this lab

<-

?
objects
plot

c

rep
log10
prod
sd

diff
apply
abline
hist

read.csv
help

q
points

sin
log2
mean
guantile
for
sapply
boxplot

read.table
Is
summary
data
seq
log
sum
median
range
levels
tapply
par

Lab 1 Statistics for Laboratory Scientists
Due: 8 Feb 2006

[

. Specify R code, using the functioep , to create the vector
(1,1,1,1,1,2,2,2,2,3,3,3,4,4,5).

2. Specify R code for pulling out the rows of the mat objecttrich the fourth column isot missing and is less
than 9.

3. Use R to calculate the following sum. Please give the coaleytou used.
log,p2 4 log;y 4 + log,y 6 + log,; 8 + .. . log;, 1000

4. Specify R code for converting 50, 65, 80, and 95 degreeeRaRit to the corresponding temperatures in celsius
using the formulal = 5(F — 32)/9.

5. Fill'in [a], [b], [c], and [d] in the following table for thelata semat.
mean (SD) of

method rest/'v.o. RBC velocity (mm/s) capillary diamefem]
capillaroscopy rest 0.77 (0.24) [c]
Vv.0. [a] 12.0 (1.6)
OPS imaging rest [b] 11.2 (2.0)
Vv.0. 0.15 (0.09) [d]

10

