
Lab 1 Statistics for Laboratory Scientists
Due: 8 Feb 2006

Introduction

This is the first of three computer labs for the courseStatistics for Laboratory Scientists. The aim of these labs is to
assist the student in learning to use the R software and to carry out basic statistical analyses.

The final page of each lab will contain several questions. Students are to carry out the analyses in the lab and
submit answers to these questions. We encourage students towork together, but expect each student to write
down his/her answers independently.

Note that the majority of the R code for this lab may be obtained as a file (lab1.R) at the following. Save this file to
your computer and then open it in R using, from the menu bar, File→ Display file. You can then copy and paste from
the file into R, to save a bit of typing.

http://www.biostat.jhsph.edu/˜kbroman/teaching/labs tat/third/labs.html

Alternatively, you can type

url.show("http://www.biostat.jhsph.edu/˜kbroman/tea ching/labstat/third/lab1.R")

That URL is a bit long; you could find the file on the web, and the copy-and-paste the URL.

We cannot deny that R can be difficult to learn, but we feel strongly that it is a worthwhile venture. We recommend
the following five rules for learning a computer language:

1. Experiment.
2. Think about what you’re doing.
3. Read the manuals
4. Ask questions.
5. Use it routinely.

The aim of this first lab is to get a basic understanding of the syntax of R, and to learn some of the basic graphical
and statistical features of R. It is sure to be rather boring,and even frustrating. It can be hard to learn new computer
languages—there are so many details to remember.

Learning R

See the “Notes on R for Windows” webpage for information about installing R in Windows and getting starting with
the language. The page includes a list of resources on learning and using R.

http://www.biostat.jhsph.edu/˜kbroman/Rintro/Rwin.h tml

If you become committed to using R regularly, we recommend two books:Introductory statistics with R by Dalgaard
andModern applied statistics with S by Venables and Ripley.

Reading data into R

1. Download the following Excel file:
http://www.biostat.jhsph.edu/˜kbroman/teaching/data /mathura.xls

2. Open the file in Excel and save it as a comma-delimited (CSV)file.

3. Start R (e.g., double-click on the R icon on the desktop).

4. Type the following at the R prompt, replacing"c:/mathura.csv" with the appropriate location/name of the
file. Note that in R you must use forward-slashes in place of the backslashes that are usually used in Windows.

mat <- read.csv("c:/mathura.csv")

1

read.csv is a function that reads in data from comma-delimited files. The parentheses indicate that it is a function
and contain itsarguments (here just one argument—the file to be read).

The symbol<- is the “assignment” operator. (One can also use the symbol=, but I prefer<- .) The output of the
functionread.csv (i.e., the contents of the file) are assigned to a data object calledmat .

One could instead use the more generic functionread.table to read in these data, as follows.

mat <- read.table("c:/mathura.csv", sep=",", header=TRU E)

Here we specified two additional arguments.sep="," indicates that the file is comma-delimited, whileheader=TRUE
indicates that the first line of file is a header row (containing the field names). The= sign here is different from the<-
sign; it is for assigning values to optional arguments in a function.

If you type, at the R prompt, the name of a function without theparentheses, the code defining the function will be
printed. Typeread.csv to see its definition. You’ll see arguments that may be specified and their default values;
you’ll further see that this function simply calls the more generic functionread.table .

Type ?read.csv or help(read.csv) to view the help file for this function (describing and givingexamples
of its use). What comes up is the help file forread.table , which also describesread.csv and several similar
functions.

Note: You can useread.csv to download and load data from a file directly from the web. Andso, as an alternative
to what we did above, you could type the following into R:

mat <- read.csv("http://www.biostat.jhsph.edu/˜kbroma n/teaching/data/mathura.csv")

A few quick things

Before we delve into tedious details, let’s look at a few commands to explore the above data.

After reading the data frommathura.csv , the objectmat should now be in your workspace. Typels() or
objects() to list the objects in your workspace. (Note that these are both functions; another function isq() , which
is used to exit R.)

If you typemat at the R prompt, it will print the contents of the object. These data are from Mathura et al., J Appl
Physiol 91:74–78, 2001, and consist of red blood cell (RBC) velocity (in mm/s) and capillary diameter (inµm), at rest
and during venous occlusion, as measured by capillaroscopyand OPS imaging.

First let’s get a quick summary and plot of the data.

summary(mat)
plot(mat)

The data has five variables: the measurement method, the RBC velocity at rest and during venous occlusion, and the
capillary diameter at rest and during venous occlusion. Thefunctionsummary gives the mean and the quartiles of
each numeric variable and the frequency distribution for the categorical variable. The functionplot gives a plot of
each variable against each other variable. This may also be obtained with the functionpairs . The functionabline
is used below to plot a line with intercept 0 and slope 1 (i.e.,the line “y = x”).

plot(velo.vo ˜ velo.rest, data=mat)
points(velo.vo ˜ velo.rest, data=mat,

subset=(method=="capillaroscopy"), col="red")
abline(0,1)

Use of the functionplot results in a scatter plot of the measurements of the RBC velocity during venous occlusion
against that at rest, for all measurements. Let’s worry about the syntax of the command later. The second command
highlights in red the points corresponding to measurementsby capillaroscopy. (Points corresponding to measurements
by OPS imaging remain in black.) We can do the same for the capillary diameter measurements, as follows.

2

plot(diam.vo ˜ diam.rest, data=mat)
points(diam.vo ˜ diam.rest, data=mat,

subset=(method=="capillaroscopy"), col="red")
abline(0,1)

Data objects

The following is likely to be rather boring, so beware.

In R, data can have several possiblemodes, including numeric (numbers), character (text), logical (TRUE or FALSE),
and factor (categorical). There are several different types of data objects in R, including vectors, matrices, lists, and
“data frames.” A vector is an ordered set whose elements all have the same mode. A matrix is a rectangular set whose
elements are all of the same mode. A list is an ordered set of other data objects (the components of which may be
themselves vectors, matrices, lists, or whatever). A data frame is probably the most important data type; it can be
viewed as either a matrix whose columns are allowed to be of different modes, or as a list of vectors, each of the same
length.

The names of objects are case-sensitive (e.g.,mat is different thanMat). It’s best to avoid using names that have
already been taken by standard R functions (e.g.,c or data).

The objectmat is an example of a data frame. The first column is a factor (the measuring method used), while the
other columns are numeric (RBC velocity or capillary diameter, at rest or under venuous occlusion).

R is distributed with a good amount of example data. You can obtain a list of these data sets by typingdata() . To get
access to the datasetPlantGrowth , you must first typelibrary(datasets) and thendata(PlantGrowth) .
Then typels() and you’ll see that it is in your workspace. Type?PlantGrowth or help(PlantGrowth) to
view a description of these data.

Creating simple data objects

Here we describe four extremely important functions for creating simple vectors. The most important is the function
c , which combines a set of numbers or character strings into a vector. Type the following.

x <- c(1, 3.5, -28.4, 10)
x
animals <- c("cat", "dog", "mouse", "monkey")
avector <- c(TRUE, TRUE, TRUE, FALSE, FALSE)

The operator: can be used to create a vector of numbers incremented by 1. Type the following:

1:10
3:8
-3:8
8:2
10:10
5.2:20

Of course, if you want to use these vectors, you need toassign them to something (e.g.,v <- 5.2:20).

The functionseq is somewhat more general than: . Consider the following:

seq(1, 10, by=1)
seq(3, 9, by=3)
seq(3, 9, length=10)
seq(2, by=0.2, length=8)

The functionrep repeats stuff to create a vector. (The first argument gives a vector to be repeated; the second argument
gives the number of times to repeat each element of the first argument.)

3

rep(2, 10)
rep(c(1,2,3), 5)
rep(c(1,2,3), c(2,4,5))
rep(1:3, 4)
rep(1:3, rep(4,3))

Subsetting vectors

One may refer to individual elements of a vector using squarebrackets,[] . For example,x[3] refers to the third
element of the vectorx . Use vectors of positive integers to refer to multiple elements of the vector, ornegative integers
to refer to all elementsexcept those indicated.

x <- seq(2, 40, by=2)
length(x)
x[5]
x[c(1,3,9)]
x[-(1:10)]
x[-5]

One reason to do this is to replace certain elements of the vector with something new.

z <- c(1, 3, 5, 9)
z
z[2] <- -3
z

You may also index a vector using alogical vector with the same length as the vector under consideration. A logical
vector is a vector of TRUE’s and FALSE’s.

y <- c(rep(TRUE,4), rep(FALSE,14), TRUE, TRUE)
length(y)
x[y]

The purpose of this is likely not immediately clear, so let usexplain. The logical and otheroperators are useful for
pulling out elements which meet certain criteria. Considerfirst the logical operators.

! not
& and (element-wise)
| or (element-wise)

Try out these examples, and play around a bit.

a <- c(rep(c(TRUE, FALSE), 2), NA)
b <- c(rep(c(TRUE, FALSE), c(2,2)), FALSE)
a
b
!a
a & b
a | b
!(a | b)
!a | b

Now consider the following, even more important operators.

4

== equal to
!= not equal to
< less than
> greater than
<= less than or equal to
>= greater than or equal to
is.na() is “missing” (NA)

Here are some examples.

x <- c(1,5,3,NA,9,11,2,3)
x<=5
x>3 & x<11
is.na(x)
x[!is.na(x)]
x[!is.na(x) & x<5]

Subsetting matrices

You can also refer to portions of a matrix or data frame using square brackets by including a comma; indices before
the comma refer to rows while indices after the comma refer tocolumns.

Let’s do some similar things with the example dataPlantGrowth .

data(PlantGrowth)
summary(PlantGrowth)
PlantGrowth[PlantGrowth[,2]=="ctrl",]
summary(PlantGrowth[PlantGrowth[,2]=="ctrl",])
summary(PlantGrowth[PlantGrowth[,2]=="trt1",])
summary(PlantGrowth[PlantGrowth[,2]=="trt2",])

Hopefully your workspace still contains the objectmat ; if not, please read it into R again, usingread.csv . Note
that missing data (NA’s) are almost always a bit of a pain—in statistics generally, and in fiddling with data in R in
particular.

mat[1:5,]
mat[,2]
mat[11:20, c(1,4:5)]
mat[is.na(mat[,2]),]
mat[is.na(mat[,2]) & is.na(mat[,3]),]
mat[is.na(mat[,2]) | is.na(mat[,3]),]
mat[mat[,1]=="OPS imaging",]

R as a calculator

You can use R as a fancy calculator. Most functions may be usedon vectors or matrices, in which case they act on
each element of the vector or matrix.

2 + 3 - 2ˆ3
(2 + 3 - 2ˆ3)*4
(2 + 3 - 2ˆ3)/4
3ˆ4
2 + 3ˆ4
2 + (1:4)ˆ4
sin(0.5)
log(seq(1, 2, length=11))

5

log10(seq(1, 100, length=11))
log2(c(1, 2, 4, 8, 16, 32))
x <- c(1, 5, 10, NA, 15)
sum(x)
sum(x, na.rm=TRUE)
prod(x, na.rm=TRUE)

Note that the functionlog calculates the natural logarithm. The functionslog10 and log2 are used to calculate
logarithms base 10 and base 2, respectively.

The functionssum andprod calculate the sum and product, respectively, of the elements of a vector.

Summary statistics

Of course, the basic summary statistics are available in R:mean, median , sd , quantile , range .

data(PlantGrowth)
mean(PlantGrowth[PlantGrowth[,2]=="ctrl",1])
mean(PlantGrowth[PlantGrowth[,2]=="trt1",1])
mean(PlantGrowth[PlantGrowth[,2]=="trt2",1])

z <- PlantGrowth[PlantGrowth[,2]=="ctrl", 1]
median(z)
sd(z)
x <- quantile(z, c(0.25, 0.75))
x
diff(x)
range(z)
diff(range(z))

All of these functions accept an argumentna.rm for dealing with missing data (NA’s). By default,na.rm=FALSE ,
and these functions returnNA if the input has any missing data. If one usesna.rm=TRUE , any missing values are
removed prior to the calculations.

x <- mat[mat[,1]=="capillaroscopy",2]
x
sum(is.na(x))
mean(x)
mean(x, na.rm=TRUE)
median(x, na.rm=TRUE)
sd(x, na.rm=TRUE)
diff(quantile(x, c(0.25,0.75), na.rm=TRUE))
diff(range(x,na.rm=TRUE))

Loops

Here we give the briefest glimpse of programming in R. The function for may be used for repeating a task a number
of times. Consider the following code.

me <- 1:4
for(z in 1:4) me[z] <- mean(mat[,z+1], na.rm=TRUE)
me

The functionfor is used to calculate the mean of columns 2, 3, 4, and 5 of the data setmat and save them in the
vectorme.

Such “loops” may benested. This allows us to calculate the averages of each of the four numeric columns ofmat

6

after they have been split into two groups, according to the method for measurement. (We use the functionlevels
to obtain the different categories of the factormat[,1] .)

me <- matrix(nrow=2,ncol=4)
le <- levels(mat[,1])
for(i in 1:2)

for(j in 1:4)
me[i,j] <- mean(mat[mat[,1]==le[i], j+1], na.rm=TRUE)

me

Note thatfor loops may contain multiple commands, if those commands are enclosed in curly braces,{} .

s <- me <- matrix(nrow=2,ncol=4)
le <- levels(mat[,1])
for(i in 1:2) {

for(j in 1:4) {
me[i,j] <- mean(mat[mat[,1]==le[i], j+1], na.rm=TRUE)
s[i,j] <- sd(mat[mat[,1]==le[i], j+1], na.rm=TRUE)

}
}
me

The apply functions

Three functions which can make some tasks quite efficient in R, but are commonly found rather confusing, areapply ,
sapply andtapply . We attempt to describe these here.

The functionapply is used to “apply” another function to each column (or row) ofa matrix or data frame. For
example, suppose we wish to obtain the average of each column(except the first one) ofmat[,-1] . We showed
above how to use afor loop to do this. An alternative is the following.

me <- apply(mat[,-1], 2, mean, na.rm=TRUE)

The first argument toapply is the input matrix or data frame. The third argument is the function to “apply.” The
second argument is taken to be 2 if one wishes to apply the function to each column, (or 1 if one wishes to apply
the function to each row). Any arguments after the third are passed to the function being applied. Here, we use
na.rm=TRUE so that any missing data is discarded.

As an alternative, we could have used the functionsapply , which, for data frames, “applies” a function to each
column of the data frame. By usingsapply , we can get away without the “2.”

me <- sapply(mat[,-1], mean, na.rm=TRUE)

We can use this to get the mean and SD of each numeric column, restricting attention to the measurements made by
capillaroscopy.

x <- mat[mat[,1]=="capillaroscopy",]
me <- sapply(x[,-1], mean, na.rm=TRUE)
sd <- sapply(x[,-1], sd, na.rm=TRUE)

The functiontapply is used to split a vector (saya) into groups defined by some other vector (sayb) and then apply
some function to each group. For example, consider the dataPlantGrowth . The first column is a measure of growth;
the second column is a factor with levels"ctrl" (control),"trt1" (treatment one), and"trt2" (treatment two).
The following calculates the group-specific means and SDs ofthe plant growth.

data(PlantGrowth)
tapply(PlantGrowth[,1], PlantGrowth[,2], mean)
tapply(PlantGrowth[,1], PlantGrowth[,2], sd)

7

We can use the functionssapply and tapply together to get column means (and SDs) for each measurement
method for the datamat . This allows us to avoid the nested pair offor loops that we used above.

sapply(mat[,-1], tapply, mat[,1], mean, na.rm=TRUE)
sapply(mat[,-1], tapply, mat[,1], sd, na.rm=TRUE)

What are these commands doing? Let’s look at the first one.

1. mat[,-1] is the data framemat with the first column (the measurement method) dropped.

2. The functionsapply passes each column ofmat[,-1] , one at a time, to the functiontapply , along with
the remaining arguments (mean, na.rm=TRUE).

3. The functiontapply splits a column ofmat[,-1] into the two groups defined by the factormat[,1] , and
passes each group to the functionmean, along with the remaining argument,na.rm=TRUE .

4. Finally, the functionmean calculates the group-specific mean, after first dropping anymissing values.

Simple graphics

Let’s look at how to make dotplots, boxplots and histograms.Let’s start with dotplots, though there is no built-in
function to create dotplots the way I like them. Let’s use themat data, and make a dotplot of the RBC velocities at
rest, as measured by capillaroscopy and OPS imaging. First,we create a vectorx containing these velocities and a
vectory that is 1 if the measurement method is capillaroscopy and 2 otherwise.

x <- mat[,2]
y <- rep(2, length(x))
y[mat[,1]=="capillaroscopy"] <- 1

Now we can make the plot, using the functionplot .

plot(x, y)

We may wish to “jitter” the values iny , add a better label to the x-axis, change the limits of the y-axis, and suspend
plotting of the y-axis and y-axis label. The functionrunif returns a specified number of random numbers, uniformly
distributed between specified limits.

u <- runif(length(y), -0.1, 0.1)
plot(x, y+u, xlab="RBC velocity (at rest)", ylim=c(0.5, 2. 5),

yaxt="n", ylab="")

We can also add some horizontal lines at 1 and 2. The functionabline adds lines to a plot. The argumenth is used
to get horizontal lines.lty=2 makes them dashed lines, andcol="gray" makes them gray.

abline(h=c(1,2), lty=2, col="gray")

Boxplots can be easier.

boxplot(velo.rest ˜ method, data=mat)

We can also do histograms.

par(mfrow=c(2,1))
hist(mat[mat[,1]=="capillaroscopy", 2], main="Capilla roscopy",

xlab="RBC velocity (at rest)")
hist(mat[mat[,1]=="OPS imaging", 2], main="OPS imaging" ,

xlab="RBC velocity (at rest)")

The functionpar is used for detailed control of graphics in R. The argumentmfrow is used to make multiple plots
in one plotting window.mfrow=c(2,1) is used to get two rows in one column of plots.

8

R commands discussed in this lab

<- read.csv read.table
? help ls
objects q summary
plot points data
c : seq
rep sin log
log10 log2 sum
prod mean median
sd quantile range
diff for levels
apply sapply tapply
abline boxplot par
hist

9

Lab 1 Statistics for Laboratory Scientists
Due: 8 Feb 2006

1. Specify R code, using the functionrep , to create the vector
(1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 4, 5).

2. Specify R code for pulling out the rows of the mat object forwhich the fourth column isnot missing and is less
than 9.

3. Use R to calculate the following sum. Please give the code that you used.

log
10

2 + log
10

4 + log
10

6 + log
10

8 + . . . log
10

1000

4. Specify R code for converting 50, 65, 80, and 95 degrees Fahrenheit to the corresponding temperatures in celsius
using the formulaC = 5(F − 32)/9.

5. Fill in [a], [b], [c], and [d] in the following table for thedata setmat .

mean (SD) of
method rest/v.o. RBC velocity (mm/s) capillary diameter (µm)

capillaroscopy rest 0.77 (0.24) [c]
v.o. [a] 12.0 (1.6)

OPS imaging rest [b] 11.2 (2.0)
v.o. 0.15 (0.09) [d]

10

