Lab 2 Statistics for Laboratory Scientists
Due: 22 Feb 2006

Introduction

In this lab, we will consider a couple of probability-reldteasks in R: computer simulations and calculations of
probability distributions. The simulation-related taskgolve quite complex R code. Some students may want to
learn enough R to completely understand this code and vingtie dwn code of similar complexity. Others may wish
to take the code for granted and focus entirely on its usel@dessults it produces. The direction you take is entirely
up to you. We hope that the complex code does not get in the fwayun understanding of (or your pleasure in) this
lab.

Regarding the questions whose responses should be handed in this lab, they will be typed in bold (and
marked with the symbol =) within the lab, and then collected again on the last page.

The code for this lab will again be available at the followimgbpage.
http://www.biostat.jhsph.edu/"kbroman/teaching/labs tat/third/labs.html

For this lab, we will separate out the code for the m#jmctionsthat will be used from the other code that you will
be typing in.

The file func2.R contains the major functions. Download this fileddfunc2.R  , or some other convenient
location. I'd recommend going to the above page, rightkatig on the file, and selecting “Save Target As...”

When you start R, type the following command, replaarlg with whatever is appropriate, considering the directory
in which you placed the file.

source("c:/func2.R")
Alternatively, you may Source " the file directly from the web as follows:
source("http://www.biostat.jhsph.edu/"kbroman/teach ing/labstat/third/func2.R")
If you typels() you should now see a number of new objects—the functionsitbatill be using.

The filelab2.R contains all of the other code. As with the first lab, you maghwtio download this file (saving it
asc:\lab2.R ) and open it within R using, from the menu bar, FileDisplay file, so that you may copy and paste
commands from the file into the R console window.

Functions in R

In R, we usdunctionsto perform all sorts of tasks, including calculations, theripulation of data, and graphics. One
of the advantages of R is that you can create your own furgtionwrite modified versions of built-in functions, in
order to more efficiently perform complex tasks.

A new function can be defined using the functfomction , as in the following example—a function to calculate
the coefficient of variation of a vector (CV = SD/mean).

cv <-
function(x, na.rm=FALSE)
{

m <- mean(x, na.rm)

s <- sd(x, na.rm)

s/m

}

The stuff within the parentheses affanction  are the functionarguments The use oha.rm=FALSE specifies
thedefault valueof that argument—if, when the function is used, the valuéiEfargument is not specified, the default



value will be assumed.

The value of the last command inside the function is what getsirned.” Note the use of brackefs in order to
define the set of commands that comprise the function.

To define this function within R, one can either type the abosmands in the R console window, or type the
commands into a text file and use the functimurce to load it into R. The latter is better, because the functiam c
be more easily modified, plus it will be saved for future use.

To use this function, type it into R or copy and paste it fromfite lab2.R , and then type, for example:

X <- runif(100)
cv(x)

The first line generates 100 random numbers between 0 and 4edond line calculates the coefficient of variation of
those numbers.

A population genetics simulation

In this section, we will use R to perform computer simulasaf the genetic drift in the allele frequency at a locus, in
a small population, under quite unrealistic assumptiong. @imary aim is to get an appreciation for the value of R
for computer simulation.

Consider a population dfm diploid individuals, composed of: males andn females. Suppose that generations
are non-overlapping, and that at each generation, theithdils form, at randomy couples, and that each couple
produces exactly one male and one female offspring. (Theséndeed completely unrealistic assumptions, but
hopefully this will still be interesting to you.)

We are interested in following the allele frequency at aleli@l, autosomal locus. Suppose the alleles/aemda, and
let us keep track of the proportion of thealleles in the population.

Suppose further that the genotypes of individuals in thiaingeneration are assigned at random, according to the
probabilities for Hardy-Weinberg equilibriuni(1 — p)2, 2p(1 — p), p?] for genotypesAA, Aaandaa, respectively,
wherep is the frequency of tha allele.

Simulating the initial generation

The functioninit  can be used to simulate the genotypes for the individualsdrinitial generation. In order to save
space, | won'tinclude the code here; look at thefiilec2.R  or type the name of the function within R.

The function takes as input two argumentss the number of pairs of individuals ampdis the allele frequency with
which to simulate the initial generation. The output is anmawith two columns—the genotypes of the males and
the females, respectively. The numbers in the matrix aredd,2l, according to whether the individual has genotype
AA, Aa, or ag, respectively. Note that the functi@ample is used to simulate the actual genotypegl=TRUE

is used to specify “sample with replacement” gmdb=genop is used to specify the sampling probabilities for the
elements of the vectdr:2 .

Typedat <- init(25,0.2) to simulate an initial population with 15 pairs of individsausing an allele fre-
qguency of 20%. Typéat on its own to see the result. Typable(dat) to get the observed genotype frequencies.
mean(dat)/2  returns the observed allele frequency. Repeat this a feastim

Let’s look at how much the observed allele frequency in tliginpopulation varies. The following may be used to
get the observed allele frequency in 1000 replicates of ialipopulation of 25 pairs of individuals, generated @sin
an allele frequency of 20%.

freq <- 1:1000

for(i in 1:1000)
freq[i] <- mean(init(25,0.2))/2



hist(freq, breaks=seq(0, 1, 0.01))
abline(v=0.2, lwd=2)

The first command is used to create a vector in which to plaessitihulation results. We then usda loop to
repeatedly call the functiaonit . hist plots a histogram of the results; the argumeanetaks is used to specify the
endpoints of the bins in the histograabline is used to plot a vertical line at the allele frequency usegkinerating
these individuals.

Repeat the above fan = 250 pairs of individuals, and for an allele frequencywf 50%.

How are the results different for different sample sizes andlifferent allele frequencies?

Simulating further generations

We now consider two functions which may be used to simulateréugenerations. The first functiosimkids , is
used to simulate the genotypes for a pair of children, gitiergenotypes of the parents. The inputis a vector of length
2, each element of which is expected to be 0, 1, or 2, correpgio the genotypes of the parents. The output is also
a vector of length two—the genotypes for the two children.

The second functiorsimnewgen , is used to simulate the genotypes for the next generatieen ghe genotypes of
the individuals in the current generation. In the functithe genotypes of the males are shuffled, corresponding to
the random choices of mates. Then #pply function is used to pasmne rowof the data at a time to the function
simkids , to simulate the generation of two offspring for each couplee output o6imnewgen is of the same form

as the input: a matrix with two columns, whose elements ate @, 2, according to the genotypes of the individuals.

Let us simulate 30 generations using the above functionksave the observed allele frequency in each generation.

freq <- 1:30
dat <- init(25,0.2)
freq[1] <- mean(dat)/2
for(i in 2:30) {
dat <- simnewgen(dat)
freq[i] <- mean(dat)/2

}
plot(freq, type="I", ylim=c(0,1), lwd=2)

Note the use of bracke{$ in thefor loop. These must be used in order to have multiple commanttéwaach
iteration of the loop.

In order to more easily repeat these simulations, it'd béebéb create a function to do all of this. The function
simfreq has input arguments, the number of generations} the number of couples in each generation; pnd
the allele frequency used to generate the initial populatioreturns a vector containing the allele frequencey ehea
generation.

Let's add 25 additional “realizations” of this simulatioaf (30 generations) to our plot. Note how these different
realizations are more spread out at 30 generations thamthieyat the initial generation.

plot(freq, type="I", ylim=c(0,1), lwd=2)
for(i in 1:25)

lines(simfreq(30, 25, 0.2), col="gray")
lines(freq, lwd=2)

Plot the results for 100 generations, using both 25 coupld<l80 couples. Repeat this several times, so that you can
get a sense of what is going on. Here is some code that you nnéght

freq.sm <- simfreq(100, 25, 0.2)
freq.lg <- simfreq(100, 100, 0.2)
plot(freg.sm, type="I", ylim=c(0,1))



I

lines(freq.lg, col="red")

How is the case of 100 couples different than the case of 25 gaes, in terms of the fluctuation in the observed
allele frequency across time/generation?

Allele fixation

Plot the results for several simulation replicates, follmyva population of 25 couples per generation out to 500
generations, again using 20% allele frequency to gendratmitial population.

plot(simfreq(500, 25, 0.2), type="I", ylim=c(0,1))

Two questions that may come to mind when looking at thesdtsesWhat is the distribution of the generation at
which the allele frequency becomes fixed at 0 or 100% (allviddials homozygous with the same genotype)? What
is the chance that the frequency is fixed at 100% (versus at 0)?

In order to get approximate answers to these questions, wewisa to create another functiofixtime , which
follows the population until the allele frequency is fixedb @nsure that the function doesn’t run forever, we stop at
2,000 generations, if the frequency still hasn’t been fixed.

We can use the following code to run 100 simulations of theutatipn up to the generation at which the allele
frequency becomes fixed. This may take a while (depending®sgeed of your computer). That is why we included
the line withcat (below), which allows us to follow the progress of the sintiglas. In R for Windows, this only
works if you turn off “buffered output,” which otherwise whilsuspend any printing to the console until the command
has been completely carried out. To turn off buffered oytglick (on the menu bar, while the console window is “in
focus”) “Misc” and then de-select “Buffered output.” Altetively, you can turn buffered output on and off by typing
Ctrl-W.

res <- matrix(hrow=100,ncol=2)
colnames(res) <- c("allele", "generation")
for(i in 1:100) {

res[i,] <- fixtime(25, 0.2)

cat(i, "\n")

}

We may now see what proportion of the time the allele frequevas fixed at 100%, and plot a histogram of the
generations at which fixation occured.

mean(res[,1]==1)
hist(res[,2], breaks=20)

What proportion of the time was the allele frequency fixed at D0%?

What was the average and SD of the generations at which fixatiooccurred?

Binomial, Poisson and normal probabilities

One benefit of statistical software is that one no longer segatistical tables for various distributions, such as the
normal, binomial and Poisson.

Binomial random variables

Consider the number of headsiirindependent tosses of a biased coin, where the probalfiligytting a head in each
toss isp. In this case, the number of headsréadom variablé follows a binomial distribution. For the binomial
distribution, you'll want to know about the functionlsinom , dbinom , pbinom andgbinom . Type?rbinom to
view the help file for all of these functions.

The functionrbinom is used to simulate data from (i.e., independent realimataf) a binomial distribution. The
following will simulate 1000 realizations of a binomial @om variable with parameters= 120 andp = 0.3. The



second line draws a histogram of the results.

X <- rbinom(1000, 120, 0.3)
hist(x, breaks=30)

The functiondbinom is used to calculate the probability distribution for a birial random variable. For example,
suppose the chance that a newborn human is male is 0.512inknsgmpling 6 newborns at random. What is the
chance that exactly 3 of them are male? This is calculated by

dbinom(3, 6, 0.512)

You can get multiple probabilities by giving it a vector. Foample, you could get the entire distribution by typing
dbinom(0:6, 6, 0.512)

You might want to round these off; round them to the hundregdthce by typing
round(dbinom(0:6, 6, 0.512), 2)

The functionpbinom is used to calculate theumulative distribution functioof a binomial random variable—the
probability that the random variableless than or equal ta given value. For example, the chance of observing three
or fewer males among 6 randomly selected newborns is cééclibgy

pbinom(3, 6, 0.512)

The chance of observing fewer than three males is obtained by
pbinom(2, 6, 0.512)

The chance of observing 40 or fewer males in a sample of 120oms is obtained by
pbinom(40, 120, 0.512)

Note that these calculations could also be performed wiiirgom , though it would be somewhat less efficient. For
example, the last calculation could also be perfomed byntypi

sum(dbinom(0:40, 120, 0.512))

If you wanted to know the chance of observing between 55 anthéles {nclusive in a random sample of 120
newborns, you could type either of the following.

pbinom(65, 120, 0.512) - pbinom(54, 120, 0.512)
sum(dbinom(55:65, 120, 0.512))

The functiongbinom is the inverse opbinom . It returnsquantilesfor the binomial distribution. What is the 75th
percentile of the number of males to expect in a random saafdl20 newborns? Type

gbinom(0.75, 120, 0.512)
Note that there is a issue here related to the granularitgigoreteness) of the binomial distribution. Type
pbinom( gbinom(0.75,120,0.512), 120, 0.512)

Explain why this last command doesn’t return exactly 0.75.

Screening rats

Suppose | wanted to perform some sort of analysis on ratathdnown to be infected with a particular virus. | want
ten such rats. If | were to obtain a random sample of rats fraitirBore City, and 10% of Baltimore rats are infected
with this virus, how many rats should | sample in order to obéd least 10 infected ones?

One thought would be to sample 100 rats.

If | sample 100 rats, what is the chance that at least 10 of therare infected?



How many rats should | obtain in order for there to be a gretatar 90% chance that | will obtain at least 10 infected
ones? This can be answered by the following code. (The arisvid0. 139 is still too few.) Try to figure out why.

X <- gbinom(0.1, 100:200, 0.1)
max( (100:200)[x < 10]) + 1

Poisson random variables

The functiongpois , dpois , ppois andqgpois give the same sort of information for Poisson random vagigbl
Type?rpois to view the help file. Instead of the argumentandp (size andprob in the fourbinom functions),
there’s a single argumentor lambda , which is the mean of the Poisson random variable.

Find the probability that a Poisson random variable with mean 0.5 will exceed (i.e., is strictly greater than) 1.
Give both the answer and the code.

Consider tossing Erge number (say» = 5000) of extremelybiased coins, so that the probability of heads on each
toss is very small (say = 0.001). The number of heads will follow a binomial distributionttviparameters andp,

but if n is large ang is small, this will be well approximated by a Poisson disitibn with parametek = np. Let's

plot the distributions binomiat(= 5000, p = 0.001) and Poissor{ = 5000 x 0.001).

plot(0:10, dbinom(0:10, 5000, 0.001))
lines(0:10, dpois(0:10, 5000*0.001))

The points are the probabilities for the binomial distribat The line goes through the probabilities for the Poisson
distribution. Itis hard to see any difference at all. Letsk at the ratio, instead.

X <- dbinom(0:10, 5000, 0.001)
y <- dpois(0:10, 5000*0.001)
plot(0:10, x/y, ylab="binomial/Poisson")

Normal random variables

It should come as no surprise that there are functinagn , dnorm, pnorm andgnorm for getting these same sorts
of things for normally distributed random variables.

Suppose that the heights of adult men in the United Stat&srf@ln approximately normal distribution with mean 69
inches (that is, 5 feet 9 inches, or 175 cm) and SD 3 inches J8logtis draw this normal distribution.

X <- seq(55, 80, by=0.5)
plot(x, dnorm(x, 69, 3), type="I")

If I pick (at random) an adult male from this population, what 's the chance that he will be over 67 inches? over
72 inches? Give both the answers and the R code.

A tiny bit of sampling

Suppose we sample 4 adult males from the U.S. What's the etihattheir average heightis great than 70 in? What's
the chance that all 5 are above 70 in? We could do a simulatifigure this out. First, we do it witfor loops. Let’s
do 1000 replicates.

me <- 1:1000

mi <- 1:1000

for(i in 1:1000) {
X <- rnorm(4, 69, 3)
me[i] <- mean(x)
mi[i] <- min(x)

}

Note that we perform the above task without e loop.



X <- matrix( rnorm(4000, 69, 3), ncol=4)
me <- apply(x, 1, mean)
mi <- apply(x, 1, min)

Now let’s calculate the proportion of times that the mean thiedminimum exceeded 70.

mean(me > 70)
mean(mi > 70)

These last two lines calculate theoportion of replicates where the mean height and the minimum heightabave
70. The codene > 70results in a vector of RUE andFALSEs. The functiormean treatsTRUEas 1 and-ALSE
as 0, and theneanof these 1's and 0’s is the same as gineportionof 1's.

Draw histograms of these sample means and minimums. Repefthas for sample sizes of 20 and 100. You might
try to write a function to do all of this.

Built-in R commands used in this lab

source function runif
table for hist
abline mean plot
lines colnames rbinom
dbinom pbinom gbinom
sum rpois dpois
ppois gpois rnorm
dnorm pnorm gnorm
max min apply



Lab 2 Statistics for Laboratory Scientists
Due: 22 Feb 2006

Questions to be answered

Population genetics simulation

1. Concerning the distribution of the observed allele fesguies in the initial population, how do they vary for
different sample sizes and different generating allelgdemncies?

2. Concerning the trace of the observed allele frequenci@sa generation, how is the case of 100 couples differ-
entthan the case of 25 couples, in terms of the fluctuatidreiobserved allele frequency across time/generation?
3. Concerning the investigation of allele fixation:
(a) What proportion of the time was the allele frequency fiae#l00%?
(b) What was the average and SD of the generation time at Viixation occurred?

Binomial, Poisson and normal probabilities

4. Explain why the commanpbinom( gbinom(0.75,120,0.512), 120, 0.512) doesn't return ex-
actly 0.75.

5. If 10% of rats in Baltimore are infected with a particulanus, and | obtain a random sample of 100 rats, what
is the chance that at least 10 of them are infected?

6. Use the functioppois to find the probability that a Poisson random variable wittam®@.5 will exceed (i.e.,
is strictly greater than) 1. Give both the answer and the Rcod

7. Suppose the heights of adult men in the US follow a nornstitiution with mean 69 in and SD 3 in. If | pick
a random adult male, what is the chance that he will be oven@7eis? over 72 inches? Give both the answers

and the R code.



