X ~ normal(mean=5, SD=3). Let Z = (X - 5)/3.
Pr(X < 6) = Pr[Z < (6 - 5)/3] = Pr(Z < 1/3) = (approx) 63%.
Pr(X > 0) = Pr(Z > -5/3) = Pr(Z < 5/3) = (approx) 95%.
Pr(0 < X < 5) = Pr(X > 0) - 1/2 = (approx) 45%.
Pr(2 < X < 8) = Pr[(2-5)/3 < Z < (8-5)/3] = Pr(-1 < Z < 1) = (approx) 68%.
Pr(|X - 5| > 2) = Pr(|Z| > 2/3) = 2 × Pr(Z < -2/3) = (approx) 50%.
Y ~ normal(mean=200, SD=18). Let Z = (Y - 200)/18.
Pr(Y > 250) = Pr[Z > (250-200)/18] = 1 - Pr[Z < (250-200)/18] = (approx) 3/1000.
Pr(180 < Y < 220) = Pr(-20/18 < Z < 20/18) = Pr(Z < 20/18) - Pr(Z < -20/18) = (approx) 73%.
Pr(|Y - 180| > 20) = Pr(Y > 200) + Pr(Y < 160) = 50% + Pr[Z < (160 - 200)/18] = (approx) 51%.
Let L ~ normal(mean=3.2, SD=0.8). Let Z = (L - 3.2)/0.8.
Pr(L > 4.5) = Pr[Z > (4.5 - 3.2)/0.8] = 1 - Pr(Z < 1.625) = (approx) 5%.
Pr(L > 1.78) = 1 - Pr[Z < (1.78 - 3.2)/0.8] = (approx) 96%.
Pr(2.9 < L < 3.6) = Pr[(2.9-3.2)/0.8 < Z < (3.6-3.2)/0.8] = (approx) 34%.
X and Y are independent, X ~ binomial(n=5, p=0.1), and Y ~ binomial(n=5, p=0.4).
Thus, E(X) = 0.5 and SD(X) = sqrt{5 × 0.1 × 0.9} = (approx) 0.67.
Similarly, E(Y) = 2.0 and SD(Y) = (approx) 1.10.
E(X + Y) = E(X) + E(Y) = 0.5 + 2.0 = 2.5.
Since X and Y are independent, SD(X + Y) = sqrt{SD(X)2 + SD(Y)2 = sqrt{0.672 + 1.102} = (approx) 1.28.
E[(X+Y)/2] = 2.5/2 = 1.25
SD[(X+Y)/2] = (approx) 1.28/2 = 0.64.
Note that X - Y = X + (-Y), and that E(-Y) = -E(Y) = -2.5 and SD(-Y) = E(Y) = (approx) 1.10.
Thus, E(X-Y) = 0.5 - 2.0 = -1.5.
SD(X - Y) = SD(X + Y) = (approx) 1.28.
X1, X2, X3, ..., X10 are iid with mean=3 and SD=3.
E(X1 + X2 + ... + X10) = 10 × 3 = 30.
SD(X1 + X2 + ... + X10) = sqrt{10} × 3 = (approx) 9.5.
E[(X1 + X2 + ... + X10)/10] = 3.
SD[(X1 + X2 + ... + X10)/10] = 3 / sqrt{10} = (approx) 0.95.
Last modified: Wed Feb 22 09:44:07 EST 2006 |