Introduction to QTL mapping in model organisms

Karl W Broman
Department of Biostatistics and Medical Informatics
University of Wisconsin – Madison

www.biostat.wisc.edu/~kbroman

[→ Teaching → Miscellaneous lectures]
Intercross

\[P_1 \times P_2 \]

\[F_1 \times F_1 \]

\[F_2 \]

Phenotype data

Body weight

\[30 \ 35 \ 40 \ 45 \]

Heart weight

\[80 \ 100 \ 120 \ 140 \ 160 \ 180 \ 200 \]

Sugiyama et al. (2002) Physiol Genomics 10:5–12
Goals

- Identify quantitative trait loci (QTL) (and interactions among QTL)
- Interval estimates of QTL location
- Estimated QTL effects

Statistical structure

The missing data problem: Markers \leftrightarrow QTL

The model selection problem: QTL, covariates \rightarrow phenotype
ANOVA at marker loci

- Also known as marker regression.
- Split mice into groups according to genotype at a marker.
- Do a t-test / ANOVA.
- Repeat for each marker.

Advantages
- Simple.
- Easily incorporates covariates.
- Easily extended to more complex models.
- Doesn’t require a genetic map.

Disadvantages
- Must exclude individuals with missing genotype data.
- Imperfect information about QTL location.
- Suffers in low density scans.
- Only considers one QTL at a time.
Interval mapping

Lander & Botstein (1989)

• Assume a single QTL model.
• Each position in the genome, one at a time, is posited as the putative QTL.
• Let q denote the (unobserved) QTL genotype

Assume $y|q \sim N(\mu_q, \sigma)$

• Given genotypes at linked markers, $y \sim$ mixture of normal dist’ns with mixing proportions $P(q \mid \text{marker data})$:

<table>
<thead>
<tr>
<th>QTL genotype</th>
<th>M_1</th>
<th>M_2</th>
<th>BB</th>
<th>AB</th>
</tr>
</thead>
<tbody>
<tr>
<td>BB BB</td>
<td>$(1 - r_L)(1 - r_R)/(1 - r)$</td>
<td>$r_L r_R/(1 - r)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BB AB</td>
<td>$(1 - r_L)r_R/r$</td>
<td>$r_L(1 - r_R)/r$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AB BB</td>
<td>$r_L(1 - r_R)/r$</td>
<td>$(1 - r_L)r_R/r$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AB AB</td>
<td>$r_L r_R/(1 - r)$</td>
<td>$(1 - r_L)(1 - r_R)/(1 - r)$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$r = \text{recombination fractions between markers}$

$r_L, r_R = \text{recombination fractions between markers and QTL}$

Genotype probabilities

Calculate $P(q \mid \text{marker data})$, assuming

• No crossover interference
• No genotyping errors

Or use the hidden Markov model (HMM) technology

• To allow for genotyping errors
• To incorporate dominant markers
• (Still assume no crossover interference.)
The normal mixtures

Two markers separated by 20 cM, with the QTL closer to the left marker.

The figure at right shows the distributions of the phenotype conditional on the genotypes at the two markers.

The dashed curves correspond to the components of the mixtures.

Interval mapping

Let $p_{ij} = \Pr(q_i = j|\text{marker data})$

$y_i|q_i \sim N(\mu_{q_i}, \sigma^2)$

$\Pr(y_i|\text{marker data}, \mu, \sigma) = \sum_j p_{ij} f(y_i; \mu_j, \sigma)$

where $f(y; \mu, \sigma) = \exp[-(y - \mu)^2/(2\sigma^2)]/\sqrt{2\pi}\sigma^2$

Log likelihood: $l(\mu, \sigma) = \sum_i \log \Pr(y_i|\text{marker data}, \mu, \sigma)$

Maximum likelihood estimates (MLEs) of μ, σ: values for which $l(\mu, \sigma)$ is maximized.
EM algorithm

Dempster et al. (1977)

E step:
Let \(w^{(k)}_{ij} = P(q_i = j|y_i, \text{marker data}, \hat{\mu}^{(k-1)}, \hat{\sigma}^{(k-1)}) \)
\[= \frac{p_{ij} f(y_i; \hat{\mu}^{(k-1)}_j, \hat{\sigma}^{(k-1)}_j)}{\sum_j p_{ij} f(y_i; \hat{\mu}^{(k-1)}_j, \hat{\sigma}^{(k-1)}_j)} \]

M step:
Let \(\hat{\mu}^{(k)}_j = \frac{\sum_i y_i w^{(k)}_{ij}}{\sum_i w^{(k)}_{ij}} \)
\[\hat{\sigma}^{(k)} = \sqrt{\frac{\sum_i \sum_j w^{(k)}_{ij} (y_i - \hat{\mu}^{(k)}_j)^2}{n}} \]

The algorithm:
Start with \(w^{(1)}_{ij} = p_{ij} \); iterate the E & M steps until convergence.

LOD scores

The LOD score is a measure of the strength of evidence for the presence of a QTL at a particular location.

\[\text{LOD}(\lambda) = \log_{10} \text{likelihood ratio comparing the hypothesis of a QTL at position } \lambda \text{ versus that of no QTL} \]
\[= \log_{10} \left\{ \frac{\Pr(y|\text{QTL at } \lambda, \hat{\mu}_\lambda, \hat{\sigma}_\lambda)}{\Pr(y|\text{no QTL}, \hat{\mu}, \hat{\sigma})} \right\} \]
\[\hat{\mu}_\lambda, \hat{\sigma}_\lambda \text{ are the MLEs, assuming a single QTL at position } \lambda. \]

No QTL model: The phenotypes are independent and identically distributed (iid) \(N(\mu, \sigma^2) \).
Interval mapping

Advantages

- Takes proper account of missing data.
- Allows examination of positions between markers.
- Gives improved estimates of QTL effects.
- Provides pretty graphs.

Disadvantages

- Increased computation time.
- Requires specialized software.
- Difficult to generalize.
- Only considers one QTL at a time.
Large LOD scores indicate evidence for the presence of a QTL

Question: How large is large?

LOD threshold = 95 \text{\%ile of distr\'n of max LOD, genome-wide, if there are no QTLs anywhere}

Derivation:

• Analytical calculations (L & B 1989)
• Simulations (L & B 1989)
• Permutation tests (Churchill & Doerge 1994)

Null distribution of the LOD score

• Null distribution derived by computer simulation of backcross with genome of typical size.
• Dashed curve: distribution of LOD score at any one point.
• Solid curve: distribution of maximum LOD score, genome-wide.
Haley-Knott regression

A quick approximation to Interval Mapping.

\[E(y_i|q_i) = \mu_q \]
\[E(y_i|M_i) = E[E(y_i|q_i) |M_i] \]
\[= \sum_j Pr(q = j|M_i)\mu_j \]
\[= \sum_j p_{ij}\mu_j \]

Regress \(y \) on \(p_i \), pretending the residual variation is normally distributed (with constant variance).

\[LOD = \left(\frac{n}{2} \right) \log_{10} \left(\frac{RSS_0}{RSS_1} \right) \]
Haley-Knott results

H-K with selective genotyping
Selection bias

- The estimated effect of a QTL will vary somewhat from its true effect.
- Only when the estimated effect is large will the QTL be detected.
- Among those experiments in which the QTL is detected, the estimated QTL effect will be, on average, larger than its true effect.
- This is selection bias.
- Selection bias is largest in QTLs with small or moderate effects.
- The true effects of QTLs that we identify are likely smaller than was observed.

Implications

- Estimated % variance explained by identified QTLs
- Repeating an experiment
- Congenics
- Marker-assisted selection
Non-normal traits

• Standard interval mapping assumes normally distributed residual variation. (Thus the phenotype distribution is a mixture of normals.)

• In reality: we see dichotomous traits, counts, skewed distributions, outliers, and all sorts of odd things.

• Interval mapping, with LOD thresholds derived from permutation tests, generally performs just fine anyway.

• Alternatives to consider:
 – Nonparametric approaches (Kruglyak & Lander 1995)
 – Transformations (e.g., log, square root, normal quantiles)
 – Specially-tailored models (e.g., a generalized linear model, the Cox proportional hazard model, and the model in Broman et al. 2000)

Data diagnostics

• Plot phenotypes
• Look for sample duplicates
• Look for excessive missing data
• Investigate segregation distortion
• Verify genetic maps/marker positions
• Look for genotyping errors
• Look at counts of crossovers
• Marker regression
 – do t-test or ANOVA at each marker

• Interval mapping
 – deals with missing genotypes at putative QTL

• LOD scores
 – measure of evidence for a QTL

• Permutation-based significance thresholds
 – to account for genome scan

• LOD support intervals
 – approximate confidence interval for QTL location

• Haley-Knott regression
 – quick approximation to interval mapping

• Selection bias
 – Estimated QTL effects generally biased

• Non-normal traits
 – Consider transformations

• Data diagnostics
 – critical component of QTL analysis