Mapping multiple QTL in experimental crosses

Karl W Broman
Department of Biostatistics and Medical Informatics
University of Wisconsin – Madison

www.biostat.wisc.edu/~kbroman

[→ Teaching → Miscellaneous lectures]

Example

250 male mice from the backcross (A × B) × B
Blood pressure after two weeks drinking water with 1% NaCl
Genetic map

Genotype data
Goals

- Identify quantitative trait loci (QTL) (and interactions among QTL)
- Interval estimates of QTL location
- Estimated QTL effects

LOD curves
Estimated effects

Modeling multiple QTL

- Reduce residual variation → increased power
- Separate linked QTL
- Identify interactions among QTL (epistasis)
2-dim, 2-QTL scan

For all pairs of positions, fit the following models:

\[H_f : y = \mu + \beta_1 q_1 + \beta_2 q_2 + \gamma q_1 q_2 + \epsilon \]
\[H_a : y = \mu + \beta_1 q_1 + \beta_2 q_2 + \epsilon \]
\[H_1 : y = \mu + \beta_1 q_1 + \epsilon \]
\[H_0 : y = \mu + \epsilon \]

\(\log_{10} \) likelihoods:

\[l_f(s, t) \quad l_a(s, t) \quad l_1(s) \quad l_0 \]

LOD scores:

\[\text{LOD}_f(s, t) = l_f(s, t) - l_0 \]
\[\text{LOD}_a(s, t) = l_a(s, t) - l_0 \]
\[\text{LOD}_i(s, t) = l_f(s, t) - l_a(s, t) \]
\[\text{LOD}_1(s) = l_1(s) - l_0 \]
Results: LOD_i and LOD_f
Consider each pair of chromosomes, \((j, k)\), and let \(c(s)\) denote the chromosome for position \(s\).

\[
M_f(j, k) = \max_{c(s) = j, c(t) = k} LOD_f(s, t)
\]

\[
M_a(j, k) = \max_{c(s) = j, c(t) = k} LOD_a(s, t)
\]

\[
M_1(j, k) = \max_{c(s) = j \text{ or } k} LOD_1(s)
\]

\[
M_i(j, k) = M_f(j, k) - M_a(j, k)
\]

\[
M_{fv1}(j, k) = M_f(j, k) - M_1(j, k)
\]

\[
M_{av1}(j, k) = M_a(j, k) - M_1(j, k)
\]

Results: \(LOD_i\) and \(LOD_{fv1}\)
Estimated effects

1 x 4

Chr 1 genotype

<table>
<thead>
<tr>
<th>Blood Pressure</th>
<th>BB</th>
<th>BA</th>
</tr>
</thead>
<tbody>
<tr>
<td>95</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>100</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>105</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>110</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Chr 4 genotype

<table>
<thead>
<tr>
<th>Blood Pressure</th>
<th>BB</th>
<th>BA</th>
</tr>
</thead>
<tbody>
<tr>
<td>95</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>100</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>105</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>110</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

6 x 15

Chr 6 genotype

<table>
<thead>
<tr>
<th>Blood Pressure</th>
<th>BB</th>
<th>BA</th>
</tr>
</thead>
<tbody>
<tr>
<td>95</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>100</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>105</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>110</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Chr 1: LOD$_i$ and LOD$_{av1}$

Position (cM)

Chr 1: LOD$_i$ and LOD$_{av1}$
Hypothesis testing?

• In the past, QTL mapping has been regarded as a task of hypothesis testing.

Is this a QTL?

Much of the focus has been on adjusting for test multiplicity.

• It is better to view the problem as one of model selection.

What set of QTL are well supported?
Is there evidence for QTL-QTL interactions?

Model = a defined set of QTL and QTL-QTL interactions (and possibly covariates and QTL-covariate interactions).

Model selection

• Class of models
 – Additive models
 – + pairwise interactions
 – + higher-order interactions
 – Regression trees

• Model fit
 – Maximum likelihood
 – Haley-Knott regression
 – extended Haley-Knott
 – Multiple imputation
 – MCMC

• Model comparison
 – Estimated prediction error
 – AIC, BIC, penalized likelihood
 – Bayes

• Model search
 – Forward selection
 – Backward elimination
 – Stepwise selection
 – Randomized algorithms
- Selection of a model includes two types of errors:
 - Miss important terms (QTLs or interactions)
 - Include extraneous terms

- Unlike in hypothesis testing, we can make both errors at the same time.

- Identify as many correct terms as possible, while controlling the rate of inclusion of extraneous terms.

What is special here?

- Goal: identify the major players

- A continuum of ordinal-valued covariates (the genetic loci)

- Association among the covariates
 - Loci on different chromosomes are independent
 - Along chromosome, a very simple (and known) correlation structure
Exploratory methods

• Condition on a large-effect QTL
 – Reduce residual variation
 – Conditional LOD score:
 \[
 \text{LOD}(q_2 \mid q_1) = \log_{10} \left\{ \frac{\Pr(\text{data} \mid q_1, q_2)}{\Pr(\text{data} \mid q_1)} \right\}
 \]

• Piece together the putative QTL from the 1d and 2d scans
 – Omit loci that no longer look interesting (drop-one-at-a-time analysis)
 – Study potential interactions among the identified loci
 – Scan for additional loci (perhaps allowing interactions), conditional on these

Automation

• Assistance to the masses

• Understanding performance

• Many phenotypes
Additive QTL

Simple situation:

- Dense markers
- Complete genotype data
- No epistasis

\[y = \mu + \sum \beta_j q_j + \epsilon \quad \text{which } \beta_j \neq 0? \]

\[\text{pLOD}(\gamma) = \text{LOD}(\gamma) - T |\gamma| \]

0 vs 1 QTL: \(\text{pLOD}(\emptyset) = 0 \)

\[\text{pLOD}(\{\lambda\}) = \text{LOD}(\lambda) - T \]

Experience

- Controls rate of inclusion of extraneous terms
- Forward selection over-selects
- Forward selection followed by backward elimination works as well as MCMC
- Need to define performance criteria
- Need large-scale simulations

Broman & Speed, JRSS B 64:641-656, 2002
Epistasis

\[y = \mu + \sum \beta_j q_j + \sum \gamma_{jk} q_j q_k + \epsilon \]

\[p\text{LOD}(\gamma) = \text{LOD}(\gamma) - T_m |\gamma|_m - T_i |\gamma|_i \]

\(T_m = \) as chosen previously

\(T_i = ? \)

Idea 1

Imagine there are two additive QTL and consider a 2d, 2-QTL scan.

\(T_i = 95\text{th percentile of the distribution of} \]
\[\max \text{LOD}_f(s, t) - \max \text{LOD}_a(s, t) \]

For the mouse genome:

\(T_m = 2.69 \text{ (BC)} \) or \(3.52 \text{ (F}_2\text{)} \)

\(T^H_i = 2.62 \text{ (BC)} \) or \(4.28 \text{ (F}_2\text{)} \)
Imagine there is one QTL and consider a 2d, 2-QTL scan.

\[T_m + T_i = 95\text{th percentile of the distribution of} \]
\[\max \text{LOD}_i(s, t) - \max \text{LOD}_1(s) \]

For the mouse genome:

\[T_m = 2.69 \text{ (BC) or 3.52 (F}_2) \]
\[T_i^H = 2.62 \text{ (BC) or 4.28 (F}_2) \]
\[T_i^L = 1.19 \text{ (BC) or 2.69 (F}_2) \]
Results

\[T_m = 2.69 \quad T_i^H = 2.62 \quad T_i^L = 1.19 \quad T_m + T_i^H = 5.31 \quad T_m + T_i^L = 3.88 \quad 2T_m = 5.38 \]

Add an interaction?

\[T_m = 2.69 \quad T_i^H = 2.62 \quad T_i^L = 1.19 \quad T_m + T_i^H = 5.31 \quad T_m + T_i^L = 3.88 \quad 2T_m = 5.38 \]
Add another QTL?

Add a pair of QTL?
To do

- Improve search procedures
- Measuring model uncertainty
- Measuring uncertainty in QTL location

Summary

- QTL mapping is a model selection problem
- The criterion for comparing models is most important
- We’re focusing on a penalized likelihood method and are close to a practiceable solution