Introduction to QTL mapping in model organisms

Karl Broman
Biostatistics and Medical Informatics
University of Wisconsin – Madison

kbroman.org
github.com/kbroman
@kwbroman

Backcross

\[P_1 \quad \times \quad P_2 \]

\[P_1 \quad \times \quad F_1 \]

BC
Intercross

\[P_1 \times P_2 \]

\[F_1 \times F_2 \]

Phenotype data

Sugiyama et al. (2002) Physiol Genomics 10:5–12
Goals

- Identify quantitative trait loci (QTL) (and interactions among QTL)
- Interval estimates of QTL location
- Estimated QTL effects

Statistical structure

The missing data problem: Markers \leftrightarrow QTL
The model selection problem: QTL, covariates \rightarrow phenotype
ANOVA at marker loci

• Also known as marker regression.
• Split mice into groups according to genotype at a marker.
• Do a t-test / ANOVA.
• Repeat for each marker.

Advantages
• Simple.
• Easily incorporates covariates.
• Easily extended to more complex models.
• Doesn’t require a genetic map.

Disadvantages
• Must exclude individuals with missing genotype data.
• Imperfect information about QTL location.
• Suffers in low density scans.
• Only considers one QTL at a time.
Lander & Botstein (1989)

- Assume a single QTL model.
- Each position in the genome, one at a time, is posited as the putative QTL.

Let \(q = 1/0 \) if the (unobserved) QTL genotype is BB/AB.
(Or 2/1/0 if the QTL genotype is BB/AB/AA in an intercross.)
Assume \(y|q \sim N(\mu_q, \sigma) \)

- Given genotypes at linked markers, \(y \sim \) mixture of normal dist'ns with mixing proportions \(\Pr(q | \text{marker data}) \):

Genotype probabilities

Calculate \(\Pr(q | \text{marker data}) \), assuming
- No crossover interference
- No genotyping errors

Or use the hidden Markov model (HMM) technology
- To allow for genotyping errors
- To incorporate dominant markers
- (Still assume no crossover interference.)
The normal mixtures

<table>
<thead>
<tr>
<th>7 cM</th>
<th>13 cM</th>
</tr>
</thead>
<tbody>
<tr>
<td>M₁</td>
<td>Q</td>
</tr>
</tbody>
</table>

- Two markers separated by 20 cM, with the QTL closer to the left marker.
- The figure at right shows the distributions of the phenotype conditional on the genotypes at the two markers.
- The dashed curves correspond to the components of the mixtures.

Interval mapping

Let $p_{ij} = \Pr(q_i = j | \text{marker data})$

$y_i | q_i \sim N(\mu_{qi}, \sigma^2)$

$\Pr(y_i | \text{marker data}, \mu_0, \mu_1, \sigma) = \sum_j p_{ij} f(y_i; \mu_j, \sigma)$

where $f(y; \mu, \sigma) = \exp\left[-(y - \mu)^2/(2\sigma^2)\right]/\sqrt{2\pi\sigma^2}$

Log likelihood: $l(\mu_0, \mu_1, \sigma) = \sum_i \log \Pr(y_i | \text{marker data}, \mu_0, \mu_1, \sigma)$

Maximum likelihood estimates (MLEs) of μ_0, μ_1, σ: values for which $l(\mu_0, \mu_1, \sigma)$ is maximized.
EM algorithm

Dempster et al. (1977)

E step:
Let \(w_{ij}^{(k)} = Pr(q_i = j|y_i, \text{marker data, } \hat{\mu}_0^{(k-1)}, \hat{\mu}_1^{(k-1)}, \hat{\sigma}^{(k-1)}) \)

\[
= \frac{p_{ij} f(y_i; \hat{\mu}_j^{(k-1)}, \hat{\sigma}^{(k-1)})}{\sum_j p_{ij} f(y_i; \hat{\mu}_j^{(k-1)}, \hat{\sigma}^{(k-1)})}
\]

M step:
Let \(\hat{\mu}_j^{(k)} = \frac{\sum_i y_i w_{ij}^{(k)}}{\sum_i w_{ij}^{(k)}} \)

\(\hat{\sigma}^{(k)} = \sqrt{\frac{\sum_i \sum_j w_{ij}^{(k)} (y_i - \hat{\mu}_j^{(k)})^2}{n}} \)

The algorithm:
Start with \(w_{ij}^{(1)} = p_{ij} \); iterate the E & M steps until convergence.

LOD scores

The LOD score is a measure of the strength of evidence for the presence of a QTL at a particular location.

\[
\text{LOD}(\lambda) = \log_{10} \text{likelihood ratio comparing the hypothesis of a QTL at position } \lambda \text{ versus that of no QTL}
\]

\[
= \log_{10} \left\{ \frac{Pr(y|\text{QTL at } \lambda, \hat{\mu}_0^{\lambda}, \hat{\mu}_1^{\lambda}, \hat{\sigma}_\lambda)}{Pr(y|\text{no QTL, } \hat{\mu}, \hat{\sigma})} \right\}
\]

\(\hat{\mu}_0^{\lambda}, \hat{\mu}_1^{\lambda}, \hat{\sigma}_\lambda \) are the MLEs, assuming a single QTL at position \(\lambda \).

No QTL model: The phenotypes are independent and identically distributed (iid) \(N(\mu, \sigma^2) \).
LOD curves

Interval mapping

Advantages
- Takes proper account of missing data.
- Allows examination of positions between markers.
- Gives improved estimates of QTL effects.
- Provides pretty graphs.

Disadvantages
- Increased computation time.
- Requires specialized software.
- Difficult to generalize.
- Only considers one QTL at a time.
Large LOD scores indicate evidence for the presence of a QTL

Question: How large is large?

LOD threshold = 95 \%ile of distr’n of max LOD, genome-wide, if there are no QTLs anywhere

Derivation:
- Analytical calculations (L & B 1989)
- Simulations (L & B 1989)
- Permutation tests (Churchill & Doerge 1994)

Null distribution of the LOD score

- Null distribution derived by computer simulation of backcross with genome of typical size.
- Dashed curve: distribution of LOD score at any one point.
- Solid curve: distribution of maximum LOD score, genome-wide.
Permutation test

markers

Genome-wide maximum LOD score

Permutation results

0 1 2 3 4 5 6

Genome-wide maximum LOD score

LOD scores

maximum LOD score
Modelling multiple QTL

- Reduce residual variation \implies increased power
- Separate linked QTL
- Identify interactions among QTL
References

 A review for non-statisticians.

 Chapter on QTL mapping.

 The seminal paper.

 LOD thresholds by permutation tests.

 An old but excellent general genetics textbook with a very interesting discussion of epistasis.

URLs

http://kbroman.org

http://kbroman.org/pages/teaching.html

http://www.biostat.wisc.edu/~kbroman/D3/em_alg

http://www.biostat.wisc.edu/~kbroman/D3/lod_and_effect

http://www.biostat.wisc.edu/~kbroman/D3/lod_random