Mapping multiple QTL in experimental crosses

Karl Broman
Biostatistics and Medical Informatics
University of Wisconsin – Madison

kbroman.org
github.com/kbroman
@kwbroman

250 male mice from the backcross \((A \times B) \times B\)

Blood pressure after two weeks drinking water with 1% NaCl
Genotype data
Goals

- Identify quantitative trait loci (QTL) (and interactions among QTL)
- Interval estimates of QTL location
- Estimated QTL effects
Estimated effects

Chr 1 @ 48 cM

Chr 4 @ 30 cM

Chr 6 @ 24 cM

Chr 15 @ 20 cM
Modeling multiple QTL

- Reduce residual variation \rightarrow increased power
- Separate linked QTL
- Identify interactions among QTL (epistasis)
Epistasis in BC

Additive

Epistatic

QTL 1

QTL 2

Ave. phenotype

A H

QTL 1

QTL 2

A H

A H

A H

A H
Epistasis in F_2
2-dim, 2-QTL scan

For all pairs of positions, fit the following models:

\[H_f : y = \mu + \beta_1 q_1 + \beta_2 q_2 + \gamma q_1 q_2 + \epsilon \]
\[H_a : y = \mu + \beta_1 q_1 + \beta_2 q_2 + \epsilon \]
\[H_1 : y = \mu + \beta_1 q_1 + \epsilon \]
\[H_0 : y = \mu + \epsilon \]

\text{log}_{10} \text{ likelihoods:}

\[l_f(s, t) \quad l_a(s, t) \quad l_1(s) \quad l_0 \]
2-dim, 2-QTL scan

LOD scores:

\[\text{LOD}_f(s, t) = l_f(s, t) - l_0 \]
\[\text{LOD}_a(s, t) = l_a(s, t) - l_0 \]
\[\text{LOD}_i(s, t) = l_f(s, t) - l_a(s, t) \]
\[\text{LOD}_1(s) = l_1(s) - l_0 \]
Results: LOD_i and LOD_f
Results: LOD_i and LOD_f
Consider each pair of chromosomes, \((j, k)\), and let \(c(s)\) denote the chromosome for position \(s\).

\[
M_f(j, k) = \max_{c(s)=j, c(t)=k} \text{LOD}_f(s, t)
\]
\[
M_a(j, k) = \max_{c(s)=j, c(t)=k} \text{LOD}_a(s, t)
\]
\[
M_1(j, k) = \max_{c(s)=j \text{ or } k} \text{LOD}_1(s)
\]
\[
M_i(j, k) = M_f(j, k) - M_a(j, k)
\]
\[
M_{fv1}(j, k) = M_f(j, k) - M_1(j, k)
\]
\[
M_{av1}(j, k) = M_a(j, k) - M_1(j, k)
\]
Results: LOD_i and LOD_{fv1}
Thresholds

A pair of chromosomes \((j, k)\) is considered interesting if:

\[
M_f(j, k) > T_f \quad \text{and} \quad \{ \quad M_{fv1}(j, k) > T_{fv1} \quad \text{or} \quad M_i(j, k) > T_i \quad \}
\]

or

\[
M_a(j, k) > T_a \quad \text{and} \quad M_{av1}(j, k) > T_{av1}
\]

where the thresholds \((T_f, T_{fv1}, T_i, T_a, T_{av1})\) are determined by a permutation test with a 2d scan.
2d scan summary

<table>
<thead>
<tr>
<th></th>
<th>pos1f</th>
<th>pos2f</th>
<th>lod.full</th>
<th>lod.fv1</th>
<th>lod.int</th>
</tr>
</thead>
<tbody>
<tr>
<td>c1:c4</td>
<td>71.3</td>
<td>30.0</td>
<td>14.36</td>
<td>6.78</td>
<td>0.27</td>
</tr>
<tr>
<td>c6:c15</td>
<td>55.0</td>
<td>20.5</td>
<td>6.91</td>
<td>4.95</td>
<td>2.92</td>
</tr>
<tr>
<td>c1:c1</td>
<td>39.3</td>
<td>78.3</td>
<td>5.10</td>
<td>1.58</td>
<td>0.09</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>pos1a</th>
<th>pos2a</th>
<th>lod.add</th>
<th>lod.av1</th>
</tr>
</thead>
<tbody>
<tr>
<td>c1:c4</td>
<td>68.3</td>
<td>30.0</td>
<td>14.09</td>
<td>6.50</td>
</tr>
<tr>
<td>c6:c15</td>
<td>24.0</td>
<td>22.5</td>
<td>3.99</td>
<td>2.03</td>
</tr>
<tr>
<td>c1:c1</td>
<td>48.3</td>
<td>79.3</td>
<td>5.02</td>
<td>1.50</td>
</tr>
</tbody>
</table>
Estimated effects

Chr 1 genotype

- **1 x 4**

- **6 x 15**

Chr 4 genotype

- **BB**
- **BA**

Chr 6 genotype

- **BB**
- **BA**

Blood pressure

- Ranges from 95 to 110
Chr 1: LOD$_i$ and LOD$_{av1}$
• In the past, QTL mapping has been regarded as a task of hypothesis testing.

 Is this a QTL?

 Much of the focus has been on adjusting for test multiplicity.

• It is better to view the problem as one of model selection.

 What set of QTL are well supported?
 Is there evidence for QTL-QTL interactions?

Model = a defined set of QTL and QTL-QTL interactions (and possibly covariates and QTL-covariate interactions).
Model selection

- **Class of models**
 - Additive models
 - + pairwise interactions
 - + higher-order interactions
 - Regression trees

- **Model fit**
 - Maximum likelihood
 - Haley-Knott regression
 - extended Haley-Knott
 - Multiple imputation
 - MCMC

- **Model comparison**
 - Estimated prediction error
 - AIC, BIC, penalized likelihood
 - Bayes

- **Model search**
 - Forward selection
 - Backward elimination
 - Stepwise selection
 - Randomized algorithms
• Selection of a model includes two types of errors:
 – Miss important terms (QTLs or interactions)
 – Include extraneous terms

• Unlike in hypothesis testing, we can make both errors at the same time.

• Identify as many correct terms as possible, while controlling the rate of inclusion of extraneous terms.
What is special here?

- Goal: identify the major players

- A continuum of ordinal-valued covariates (the genetic loci)

- Association among the covariates
 - Loci on different chromosomes are independent
 - Along chromosome, a very simple (and known) correlation structure
Exploratory methods

• Condition on a large-effect QTL
 – Reduce residual variation
 – Conditional LOD score:

\[
\text{LOD}(q_2 \mid q_1) = \log_{10} \left\{ \frac{\Pr(\text{data} \mid q_1, q_2)}{\Pr(\text{data} \mid q_1)} \right\}
\]

• Piece together the putative QTL from the 1d and 2d scans
 – Omit loci that no longer look interesting (drop-one-at-a-time analysis)
 – Study potential interactions among the identified loci
 – Scan for additional loci (perhaps allowing interactions), conditional on these
Controlling for chr 4

![Graph showing LOD scores across different chromosomes. The graph includes two lines: one for Interval mapping and another for Control for chr 4. Peaks are observed at various chromosomal locations, indicating areas of interest for further analysis.]
Drop-one-QTL table

<table>
<thead>
<tr>
<th>df</th>
<th>LOD</th>
<th>%var</th>
</tr>
</thead>
<tbody>
<tr>
<td>1068.3</td>
<td>1</td>
<td>6.30</td>
</tr>
<tr>
<td>4030.0</td>
<td>1</td>
<td>12.21</td>
</tr>
<tr>
<td>6061.0</td>
<td>2</td>
<td>7.93</td>
</tr>
<tr>
<td>15017.5</td>
<td>2</td>
<td>7.14</td>
</tr>
<tr>
<td>6061.0 : 15017.5</td>
<td>1</td>
<td>5.68</td>
</tr>
</tbody>
</table>
Automation

- Assistance to non-specialists
- Understanding performance
- Many phenotypes
Additive QTL

Simple situation:

- Dense markers
- Complete genotype data
- No epistasis

\[y = \mu + \sum \beta_j q_j + \epsilon \quad \text{which } \beta_j \neq 0? \]

\[p\text{LOD}(\gamma) = \text{LOD}(\gamma) - T |\gamma| \]
Additive QTL

Simple situation:
- Dense markers
- Complete genotype data
- No epistasis

\[y = \mu + \sum \beta_j q_j + \epsilon \] which \(\beta_j \neq 0 \)?

\[p\text{LOD}(\gamma) = \text{LOD}(\gamma) - T |\gamma| \]

0 vs 1 QTL: \(p\text{LOD}(\emptyset) = 0 \)

\[p\text{LOD}(\{\lambda\}) = \text{LOD}(\lambda) - T \]
Additive QTL

Simple situation:
- Dense markers
- Complete genotype data
- No epistasis

\[y = \mu + \sum \beta_j q_j + \epsilon \]

which \(\beta_j \neq 0 \)?

\[pLOD(\gamma) = LOD(\gamma) - T |\gamma| \]

For the mouse genome:
\[T = 2.69 \text{ (BC) or 3.52 (F}_2\text{)} \]
Experience

• Controls rate of inclusion of extraneous terms

• Forward selection over-selects

• Forward selection followed by backward elimination works as well as MCMC

• Need to define performance criteria

• Need large-scale simulations

Broman & Speed, JRSS B 64:641-656, 2002
Epistasis

\[y = \mu + \sum \beta_j q_j + \sum \gamma_{jk} q_j q_k + \epsilon \]

\[p\text{LOD}(\gamma) = LOD(\gamma) - T_m |\gamma|_m - T_i |\gamma|_i \]

\[T_m = \text{as chosen previously} \]

\[T_i = ? \]
Imagine there are two additive QTL and consider a 2d, 2-QTL scan.

\[T_i = 95\text{th percentile of the distribution of} \]
\[\max \text{LOD}_f(s, t) - \max \text{LOD}_a(s, t) \]
Imagine there are two additive QTL and consider a 2d, 2-QTL scan.

\[T_i = 95\text{th percentile of the distribution of} \]
\[\max \text{LOD}_f(s, t) - \max \text{LOD}_a(s, t) \]

For the mouse genome:

\[T_m = 2.69 \text{ (BC) or } 3.52 \text{ (F}_2\text{)} \]

\[T^H_i = 2.62 \text{ (BC) or } 4.28 \text{ (F}_2\text{)} \]
Imagine there is one QTL and consider a 2d, 2-QTL scan.

\[T_m + T_i = 95\text{th percentile of the distribution of} \]

\[\max \text{LOD}_f(s, t) - \max \text{LOD}_1(s) \]
Imagine there is one QTL and consider a 2d, 2-QTL scan.

\[T_m + T_i = 95\text{th percentile of the distribution of} \]
\[\max \text{LOD}_f(s, t) - \max \text{LOD}_1(s) \]

For the mouse genome:

\[T_m = 2.69 \text{ (BC) or } 3.52 \text{ (F}_2\text{)} \]
\[T_i^H = 2.62 \text{ (BC) or } 4.28 \text{ (F}_2\text{)} \]
\[T_i^L = 1.19 \text{ (BC) or } 2.69 \text{ (F}_2\text{)} \]
Models as graphs

A

B

C

D
Results

LOD = 23.1

1 4
6 15
Results

$T_m = 2.69 \quad T_i^H = 2.62 \quad T_i^L = 1.19 \quad T_m + T_i^H = 5.31 \quad T_m + T_i^L = 3.88 \quad 2T_m = 5.38$

LOD = 23.1
Results

\[T_m = 2.69 \quad T_i^H = 2.62 \quad T_i^L = 1.19 \quad T_m + T_i^H = 5.31 \quad T_m + T_i^L = 3.88 \quad 2T_m = 5.38 \]
Profile LOD curves
Drop-one-QTL table

<table>
<thead>
<tr>
<th>df</th>
<th>LOD</th>
<th>%var</th>
</tr>
</thead>
<tbody>
<tr>
<td>1(\circ)68.3</td>
<td>6.30</td>
<td>11.0</td>
</tr>
<tr>
<td>4(\circ)30.0</td>
<td>12.21</td>
<td>20.1</td>
</tr>
<tr>
<td>6(\circ)61.0</td>
<td>7.93</td>
<td>13.6</td>
</tr>
<tr>
<td>15(\circ)17.5</td>
<td>7.14</td>
<td>12.3</td>
</tr>
<tr>
<td>6(\circ)61.0 : 15(\circ)17.5</td>
<td>5.68</td>
<td>9.9</td>
</tr>
</tbody>
</table>
Add an interaction?

\[T_m = 2.69 \quad T_i^H = 2.62 \quad T_i^L = 1.19 \quad T_m + T_i^H = 5.31 \quad T_m + T_i^L = 3.88 \quad 2T_m = 5.38 \]
Add an interaction?

\[T_m = 2.69 \quad T_i^H = 2.62 \quad T_i^L = 1.19 \quad T_m + T_i^H = 5.31 \quad T_m + T_i^L = 3.88 \quad 2T_m = 5.38 \]
Add an interaction?

$T_m = 2.69 \quad T_i^H = 2.62 \quad T_i^L = 1.19 \quad T_m + T_i^H = 5.31 \quad T_m + T_i^L = 3.88 \quad 2T_m = 5.38$
Add an interaction?

\[T_m = 2.69 \quad T_i^H = 2.62 \quad T_i^L = 1.19 \quad T_m + T_i^H = 5.31 \quad T_m + T_i^L = 3.88 \quad 2T_m = 5.38 \]
Add an interaction?

\[T_m = 2.69 \quad T^H_i = 2.62 \quad T^L_i = 1.19 \quad T_m + T^H_i = 5.31 \quad T_m + T^L_i = 3.88 \quad 2T_m = 5.38 \]
Add another QTL?

\[T_m = 2.69 \quad T_i^H = 2.62 \quad T_i^L = 1.19 \quad T_m + T_i^H = 5.31 \quad T_m + T_i^L = 3.88 \quad 2T_m = 5.38 \]
Add another QTL?

\[T_m = 2.69 \quad T_i^H = 2.62 \quad T_i^L = 1.19 \quad T_m + T_i^H = 5.31 \quad T_m + T_i^L = 3.88 \quad 2T_m = 5.38 \]
Add another QTL?

\[T_m = 2.69 \quad T_i^H = 2.62 \quad T_i^L = 1.19 \quad T_m + T_i^H = 5.31 \quad T_m + T_i^L = 3.88 \quad 2T_m = 5.38 \]
Add a pair of QTL?

\[T_m = 2.69 \quad T_i^H = 2.62 \quad T_i^L = 1.19 \quad T_m + T_i^H = 5.31 \quad T_m + T_i^L = 3.88 \quad 2T_m = 5.38 \]
QTL mapping is a model selection problem.

The criterion for comparing models is most important.

We’re focusing on a penalized likelihood method, with penalties derived from permutation tests with 1d and 2d scans.