QTL mapping 2: Special topics

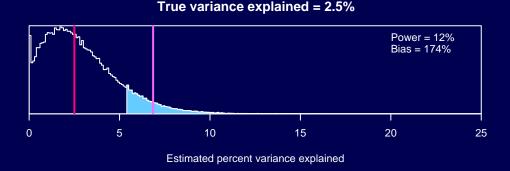
Karl Broman

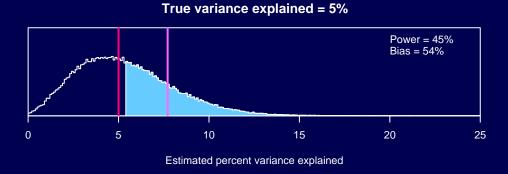
Biostatistics and Medical Informatics University of Wisconsin – Madison

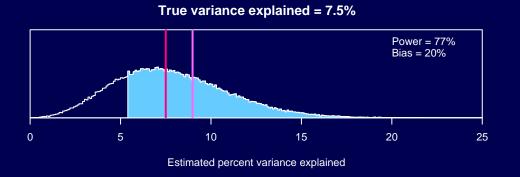
kbroman.org
github.com/kbroman
@kwbroman

Selection bias

- The estimated effect of a QTL will vary somewhat from its true effect.
- Only when the estimated effect is large will the QTL be detected.
- Among those experiments in which the QTL is detected, the estimated QTL effect will be, on average, larger than its true effect.
- This is selection bias.
- Selection bias is largest in QTLs with small or moderate effects.
- The true effects of QTLs that we identify are likely smaller than was observed.







Implications

- Estimated % variance explained by identified QTLs
- Repeating an experiment
- Congenics (aka near isogenic lines)
- Marker-assisted selection

Non-normal traits

- Standard interval mapping assumes normally distributed residual variation. (Thus the phenotype distribution is a mixture of normals.)
- In reality: we see dichotomous traits, counts, skewed distributions, outliers, and all sorts of odd things.
- Interval mapping, with LOD thresholds derived from permutation tests, generally performs just fine anyway.
- Alternatives to consider:
 - Nonparametric approaches (Kruglyak & Lander 1995)
 - Transformations (e.g., log, square root, normal quantiles)
 - Specially-tailored models (*e.g.*, a generalized linear model, the Cox proportional hazard model, and the two-part model in Broman 2003)

Haley-Knott regression

A quick approximation to Interval Mapping.

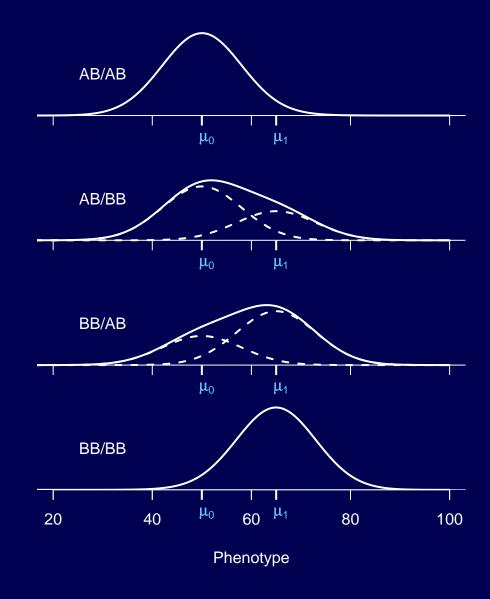
$$\begin{split} \mathsf{E}(y_i|q_i) \; &= \; \mu_q \\ \mathsf{E}(y_i|\mathsf{M}_i) \; &= \; \mathsf{E}[\; \mathsf{E}(y_i|q_i) \; |\mathsf{M}_i] = \sum_j \Pr(q=j|\mathsf{M}_i) \mu_j \\ &= \; \sum_j \mathsf{p}_{ij} \mu_j \end{split}$$

Regress y on p_i, pretending the residual variation is normally distributed (with constant variance).

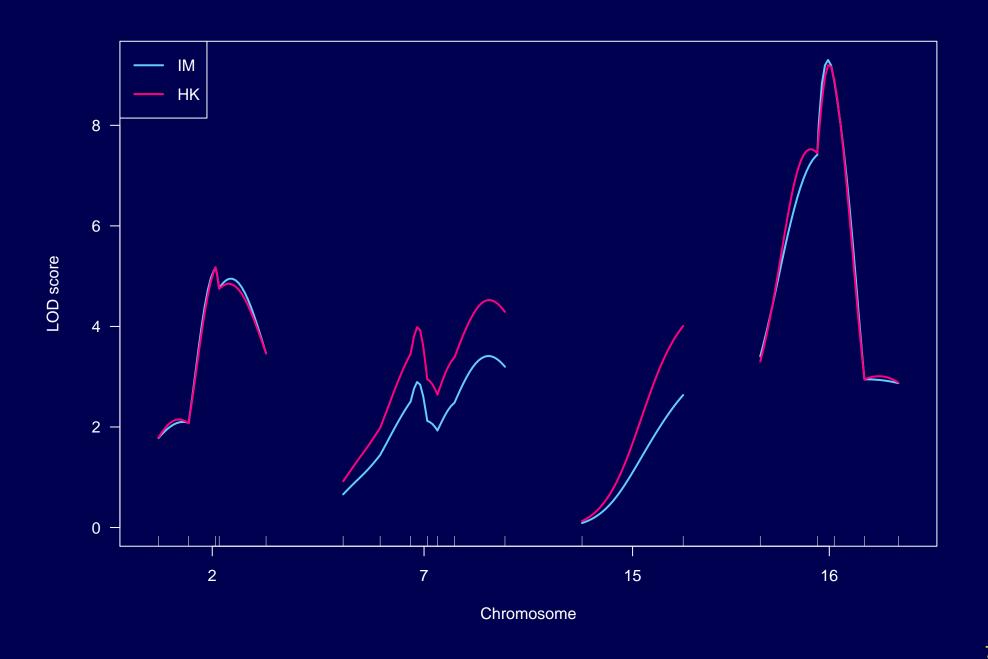
$$\mathsf{LOD} \, = \, \frac{\mathsf{n}}{2} \log_{10} \left(\frac{\mathsf{RSS}_0}{\mathsf{RSS}_1} \right)$$

The normal mixtures

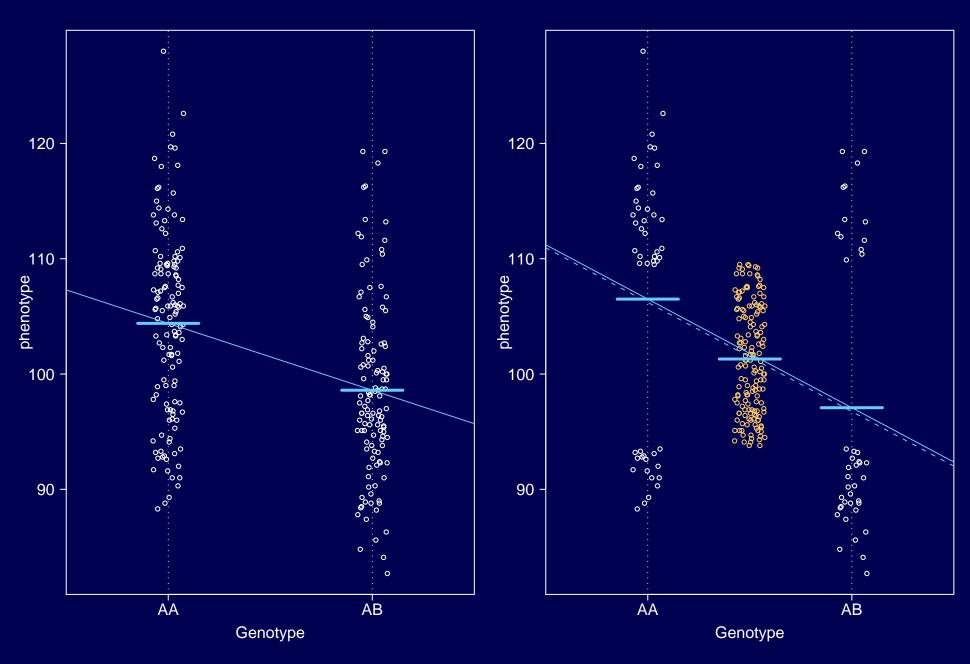
- Two markers separated by 20 cM, with the QTL closer to the left marker.
- The figure at right shows the distributions of the phenotype conditional on the genotypes at the two markers.
- The dashed curves correspond to the components of the mixtures.



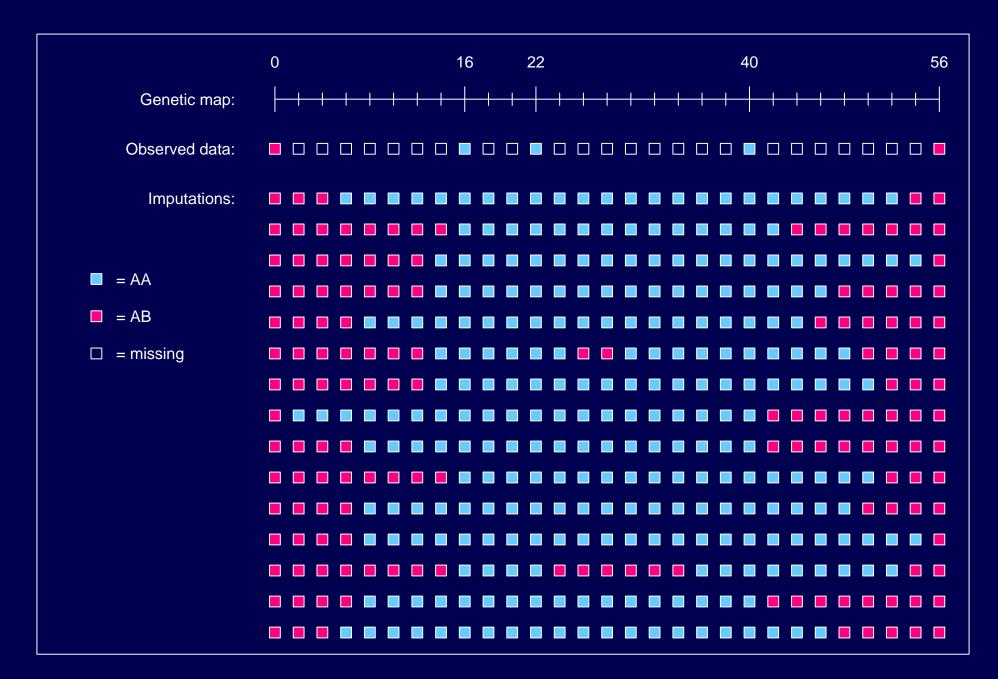
Haley-Knott results



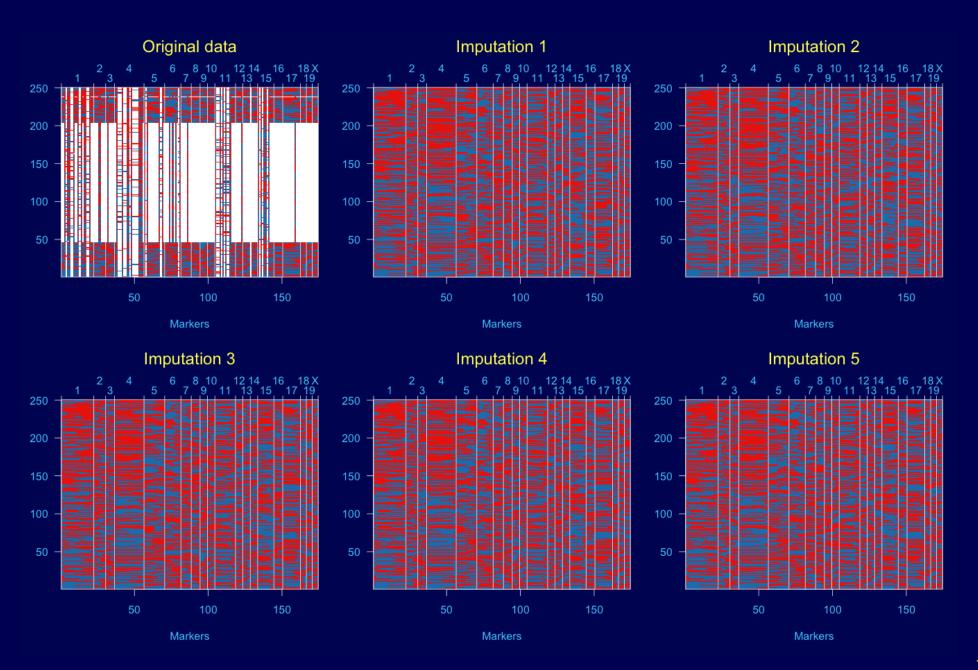
H-K with selective genotyping



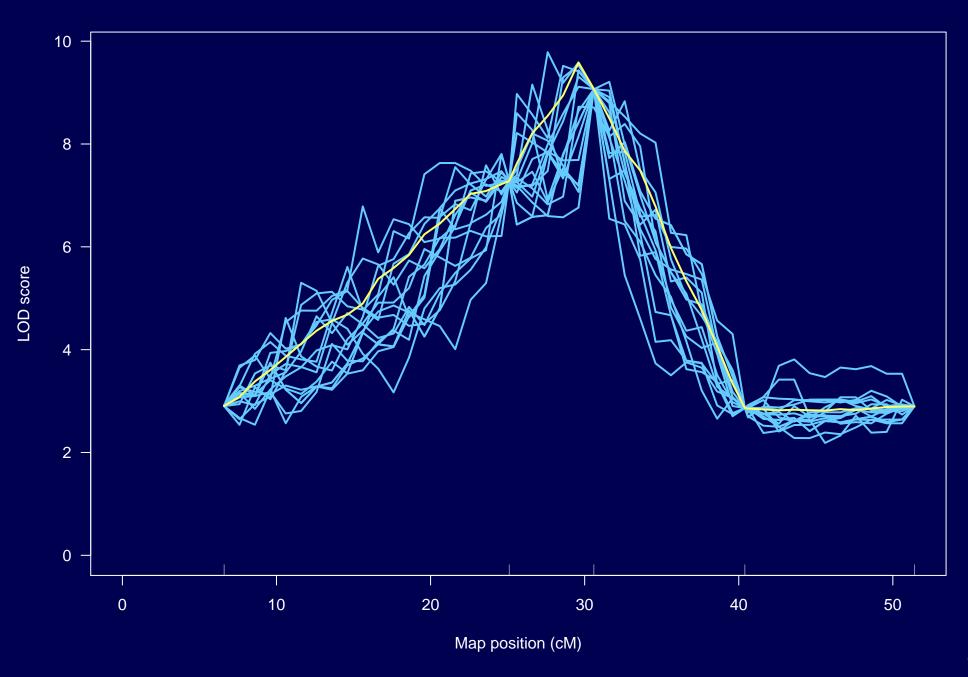
Multiple imputation



Multiple imputations



Imputation LOD curves



Summary comparison

Approach	Speed	Extensibility	Stability	Missing data	Parallelization
HK	++	+	+	_	++
EM	+	_	_	+	_
Imputation	_	+	+	+	+

Covariates

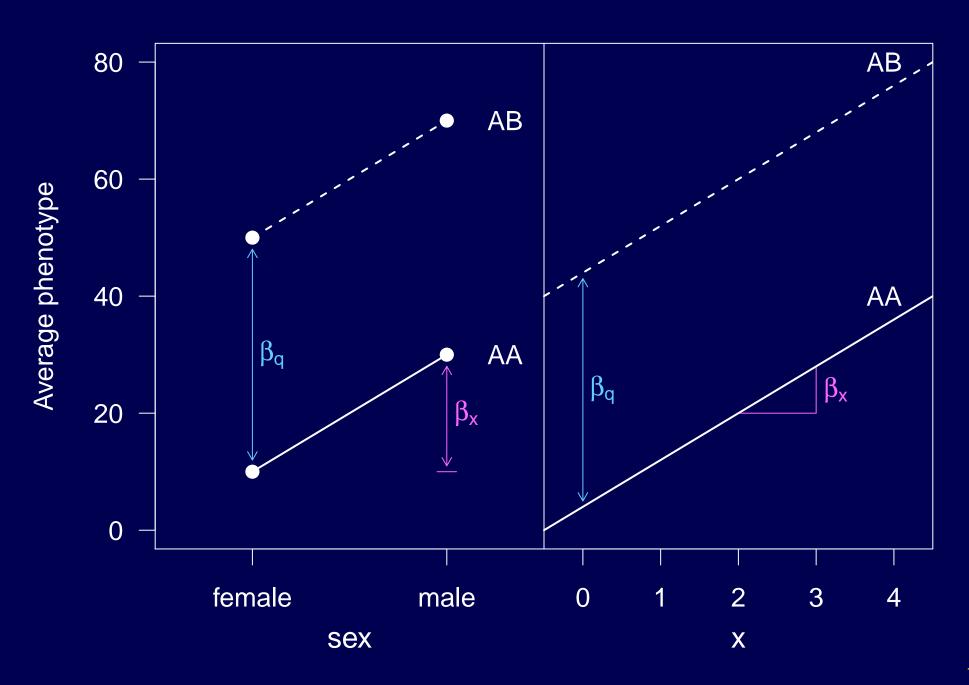
- Examples: treatment, sex, age, weight
- Control residual variation → increase power
- Look for QTL × covariate interactions

Additive covariate

$$\mathsf{H}_0: y = \mu + \beta_x x + \epsilon$$
 $\mathsf{H}_a: y = \mu + \beta_x x + \beta_q q + \epsilon$

- If covariate has strong effect on the phenotype, accounting for it can give improved power to detect QTL.
- In permutations, keep phenotype and covariate together
- Use care when the covariate is another phenotype

Additive covariate

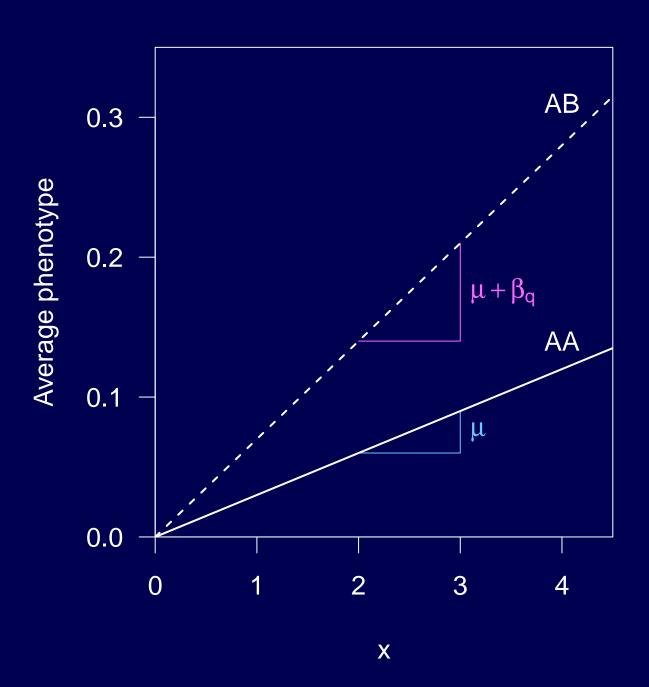


Adjust then scan?

- Consider adjusted phenotype y' = y/x
- \bullet The QTL model is $(y/x) = \mu + \beta_q q + \epsilon$
- Equivalently

$$y = \begin{cases} \mu x + \epsilon' & \text{if } q = 0\\ (\mu + \beta_q)x + \epsilon' & \text{if } q = 1 \end{cases}$$

Adjust then scan?



Interactive covariate

$$H_0: y = \mu + \beta_x x + \epsilon$$

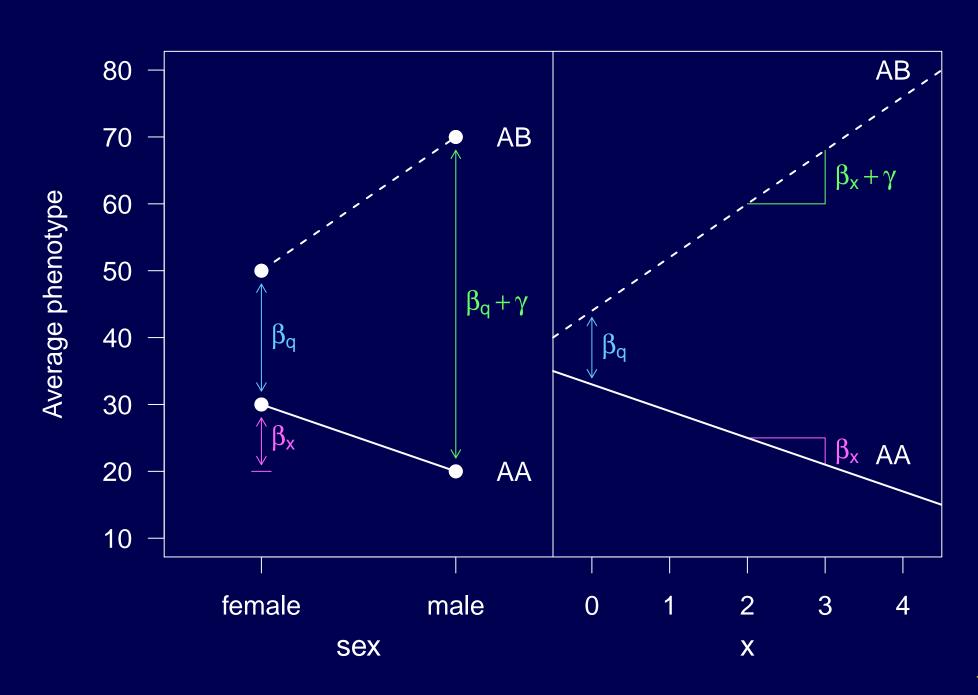
$$H_a: y = \mu + \beta_x x + \beta_q q + \epsilon$$

$$H_i: y = \mu + \beta_x x + \beta_q q + \gamma x q + \epsilon$$

Can consider 3 LOD scores:

- LOD_a comparing H_a and H₀
- LOD_f comparing H_i and H₀
- LOD_i comparing H_i and H_a

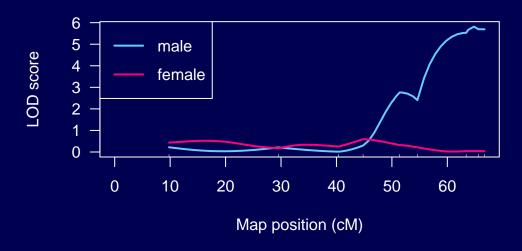
Interactive covariate



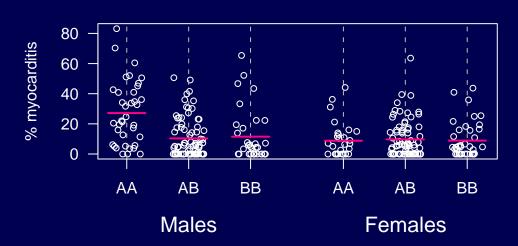
Split on sex?

- Informative, understandable
- But tempting to falsely conclude "sex-specific QTL"
- Absence of evidence is not evidence of absence.
- Use explicit test of QTL × sex interaction

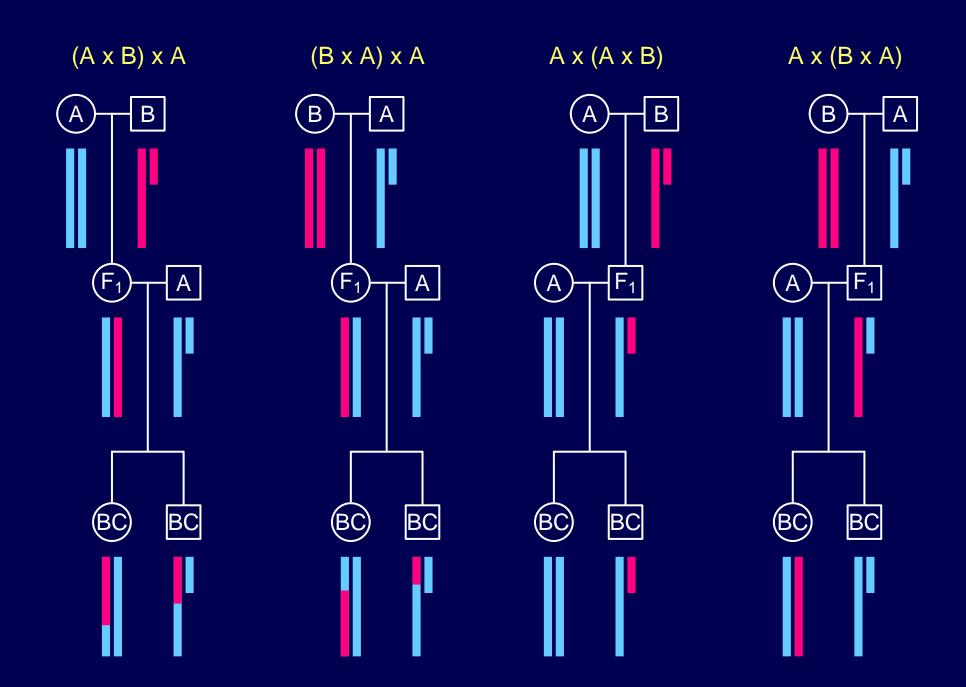
Chromosome 6



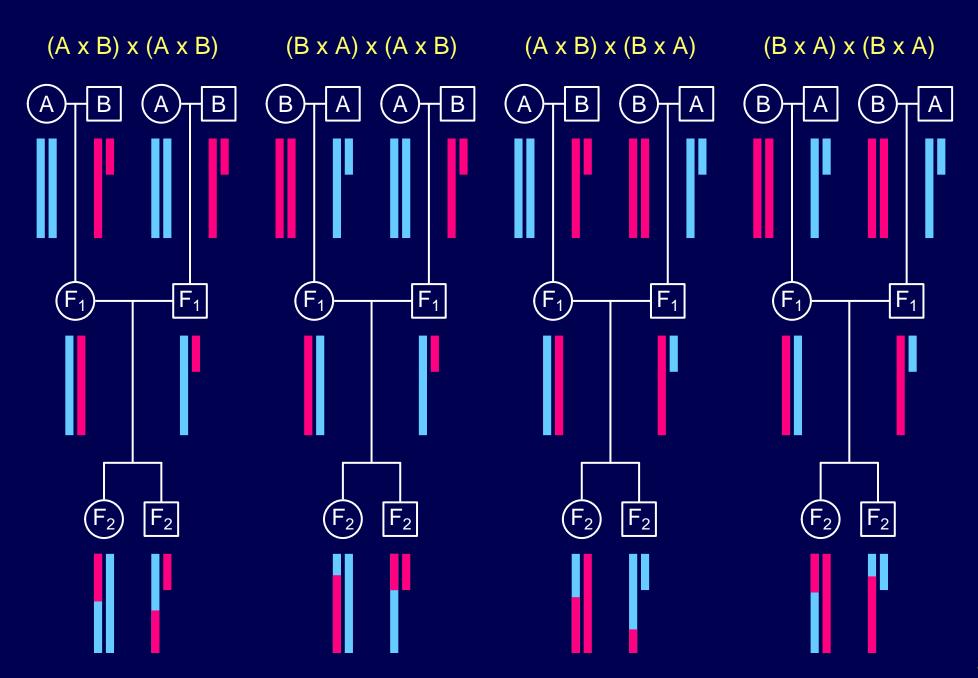
D6Mit373



X chr in backcross



X chr in intercross



Example

Intercross: both dir, both sexes

♀ reverse AB or BB

or BY

♂ reverse AY or BY

Principles

- Sex- or cross-direction-difference in the phenotype shouldn't lead to spurious linkage on the X chromosome
- Simple as possible
- Null nested within alternative

Approach

Cross	Direction	Sexes	Contrasts	H ₀	df
ВС		both	AA:AB:AY:BY	♀:♂	2
ВС		9	AA:AB	grand mean	1
ВС		♂	AY:BY	grand mean	1
F_2	both	both	AA:ABf:ABr:BB:AY:BY	${{}_{\hspace{1em} f}}{:}{{}_{\hspace{1em} r}}{:}{{}_{\hspace{1em} r}}{:}{{}_{\hspace{1em} r}}$	3
F_2	both	9	AA:ABf:ABr:BB	${ }_{f} \mathbf{:} { }_{r}$	2
F_2	both	o ⁷	AY:BY	grand mean	1
F_2	one	both	AA:AB:AY:BY	φ:♂	2
F_2	one	9	AA:AB	grand mean	1
F ₂	one	♂	AY:BY	grand mean	1

Chromosome-specific thresholds

Let α_i = false positive rate for chromosome i.

We need
$$1 - \alpha = \prod (1 - \alpha_i)$$

For example, $\alpha_1 = \alpha$ and $\alpha_j = 0$ for $j \neq 1$

The usual method: constant LOD threshold (i.e., constant power)

My approach: $\alpha_i \propto L_i$ where L_i = length of chr i

Similar and more convenient: $\alpha_i = (1 - \alpha)^{L_i/L}$

Data diagnostics

- Plot phenotypes
- Look for sample duplicates
- Look for excessive missing data
- Investigate segregation distortion
- Verify genetic maps/marker positions
- Look for genotyping errors
- Look at counts of crossovers

References

• Beavis WD (1994). The power and deceit of QTL experiments: Lessons from comparative QTL studies. In DB Wilkinson, (ed) 49th Ann Corn Sorghum Res Conf, pp 252–268. Amer Seed Trade Asso, Washington, DC.

Discusses selection bias in estimated QTL effects.

• Broman KW (2003) Mapping quantitative trait loci in the case of a spike in the phenotype distribution. Genetics 163:1169–1175

Two-part model; also discusses binary traits and non-parametric QTL mapping.

- Haley CS, Knott SA (1992) A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69: 315–324
 Haley-Knott regression
- Sen S, Churchill GA (2001) A statistical framework for quantitative trait mapping.
 Genetics 159: 371–387

Multiple imputation

- Solberg LC, et al. (2004) Sex- and line-specific lineage inheritance of depressionlike behavior in the rat. Mamm Genome 15:648–662
 - Additive and interactive covariates.
- Broman KW et al (2006) The X chromosome in quantitative trait locus mapping.
 Genetics 174:2151–2158