Discussion #8

- 1. Chi-square (χ^2) test for Multinomial Distribution
- 1.1 Structure of data
 - 1) K groups
 - 2) There are n_i observations in the i^{th} group
 - 3) Total # of subjects $N = n_1 + n_2 + \cdots + n_k$
- 1.2 State of hypothesis

$$H_0$$
: $Pr(1) = p_1$, $Pr(2) = p_2$,, $Pr(k) = p_k$

H_A: At least one of the probabilities specified in H₀ is incorrect

Or
$$H_A$$
: $Pr(1) \neq p_1$, and/or $Pr(2) \neq p_2$,, and/or $Pr(k) \neq p_k$

If we let
$$X_1 = n_1, X_2 = n_2, \dots, X_k = n_k$$

Then under the null hypothesis, variables X_1, X_2, \ldots, X_k follow the multinomial distribution Multinomial $(p_1, p_2, \ldots, p_k, N)$, where

$$p_1 + p_2 + \cdots + p_k = 1$$

1.3 Test statistics

$$X^2 = \sum \frac{(\mathsf{observed} - \mathsf{expected})^2}{\mathsf{expected}}$$

where expected value for the i^{th} group is calculated by $N * p_i$.

1.4 Distribution of X^2 under null hypothesis when sample size is large (the expected count in each group is ≥ 5)

$$X^2 \sim \chi^2 (df=k-1)$$

- 1.5 Find the p-value = $Pr(X^2 > observed X^2)$
 - 1) Use table 9 in the textbook
 - 2) Use R: p-value = 1-pchisq(observed X^2 , k-1)
- 1.6 Use chisq.test() in R

chisq.test(
$$c(n_1, n_2, \dots, n_k), p=c(p_1, p_2, \dots, p_k)$$
)

2. Example: 10.10 from textbook

Scientists have used Mongolian gerbils when conducting neurological research. A certain breed of these gerbils were crossed and gave progeny of the following colors:

After these data consistent with the 1:2:1 ratio predicted by a certain genetic model? Use a chi-square test at α =0.05.

- 1) By hand discuss in class
- 2) Use chisq.test(): chisq.test(c(40, 59, 42), p=c(0.25, 0.5, 0.25))

Results given by R: Chi-squared test for given probabilities data: c(40, 59, 42)X-squared = 3.8085, df = 2, p-value = 0.1489

Notice that the p-value is 0.1489, which is $> \alpha$. Thus we fail to reject H₀.