1. Basic concepts

1.1 Data Structure

Assume we have k treatment groups Group 1: Y_{11} , Y_{12} , Y_{13} , Y_{14} ,

• Group k: Y_{k1} , Y_{k2} , Y_{k3} , Y_{k4} ,

1.2 Some Notations

nt number of cases in treatment group t

N number of cases (overall)

Yti response i in treatment group t

 \bar{Y}_{t} average response in treatment group t

Y... average response (overall)

1.3 Sum of Squares

1) Sum of squares for each group

$$S_t = \sum_{i=1}^{n_t} (Y_{ti} - \bar{Y}_{t.})^2.$$

2) Within group sum of squares, $df_W = K-1$

$$S_W = S_1 + \cdots + S_k = \sum_t \sum_i (Y_{ti} - \bar{Y}_{t\cdot})^2$$

3) Between group sum of squares, $df_B = N-k$

$$S_B = \sum_{t=1}^{K} n_t (\bar{Y}_{t.} - \bar{Y}_{..})^2$$

4) Total group sum of squares: $S_T = S_W + S_B$, $df = N-1 = df_W + df_B$

1.4 ANOVA Table

source	sum of squares	df	mean square
between treatments	$S_B = \sum n_t (\bar{Y}_t \bar{Y})^2$	k – 1	$M_B = S_B/(k-1)$
within treatments	$S_W = \sum_t^t \sum_i (Y_{ti} - \bar{Y}_{t.})^2$	N – k	$M_W = S_W/(N-k)$
total	$S_T = \sum_t \sum_i (Y_{ti} - \bar{Y}_{})^2$	N – 1	
NT - + 1 1		MO	

Note: book uses SSB, SSW, SST, MSB, MSW

- 2. Standard ANOVA Model
- 2.1 Model

```
\begin{array}{l} Y_{\text{ti}} = \mu_{\text{t}} + \epsilon_{\text{ti}} \\ Y_{\text{ti}} = \mu + \tau_{\text{t}} + \epsilon_{\text{ti}}\text{,} \\ \text{where } Y_{\text{ti}} \sim \text{iid N}(\mu_{\text{t}}\text{, } \sigma^2) \text{ and } \epsilon_{\text{ti}} \sim \text{iid N}(0,\sigma^2) \end{array}
```

- 2.2 Hypothesis Test
 - 1) State the hypothesis $\label{eq:h0} \text{H}_0 \; : \; \mu_1 \; = \; \cdot \; \cdot \; = \; \mu_k \qquad \text{vs. Ha : H_0 is false}$
 - 2) Test statistic $F = M_B/M_W$
 - 3) Distribution of F under H_0 F~ $F_{k\,-\,1,\,N\,-\,k}$ where k-1 is the numerator degrees of freedom, N-k is the denominator degrees of freedom.
 - 4) Use one-sided F test to find the p-value
 p-value = Pr(F>F_{obs})
 Method I: Table 10
 Method II. P-value = 1-pf(F_{obs}, k-1, N-k)

3. Example

- 11. 13 A researcher studied the flexibility of 10 women in an aerobic exercise class, 10 women in a modern dance class and a control group of 9 women. One measurement she made on each woman was spinal extension, which was a measure of how far the woman could bend her back. Measurements were made before and after a 16-week training period. The change in spinal extension was recorded for each woman. The ANOVA SS_B is 7.04 and the SS_W is 15.08.
- (a) State the null hypothesis
- (b) Construct the ANOVA table and test the null hypothesis. Let $\alpha\,=\,0.01$