
Stat 371-003 Lecture 6

Examples

1. Mendel’s peas.

Mendel’s peas had either purple or white flowers. Flower color was due to a single gene
with the purple allele (A) dominant to the white allele (a).

The F1 hybrid (obtained by crossing two pure-breeding lines, one with purple and one
with white flowers) has purple flowers and is heterozygous, Aa.

(a) Self the F1, pick an F2 seed at random and grow it up.
i. Pr(F2 plant has white flowers) = (1/2) × (1/2) = 1/4 = 25%.

ii. Pr(F2 plant has purple flowers) = 1 – (1/4) = 3/4 = 75%.
iii. Pr(F2 plant has genotype AA) = 1/4 = 25%.
iv. Pr(F2 plant has genotype AA | it has purple flowers)

= Pr(F2 has genotype AA and purple flowers) / Pr(F2 has purple flowers)
= (1/4) / (3/4) = 1/3 ≈ 33%.

(b) Self the F2. Grow up ten of the F3 seeds at random. To save writing, define the
following events:

P2 = { F2 has purple flowers }
Ho = { F2 has genotype AA }
He = { F2 has genotype Aa }
P3 = { all ten F3 plants have purple flowers }

Note that P2 = He or Ho. You may want to write out the following, using words. The
use of this notation makes things compact but also somewhat harder to follow.

i. Pr(P2) = 1 – (1/4) = 3/4 = 75%.
ii. Pr(P3 | Ho) = 100%.

iii. Pr(P3 | He) = (3/4)10 ≈ 5.6%.
iv. Pr(P3 | P2) = Pr(P3 and P2) / Pr(P2)

= { Pr(P3 and Ho) + Pr(P3 and He) } / Pr(P2)
= { Pr(Ho) × Pr(P3 | Ho) + Pr(He) × Pr(P3 | He) } / Pr(P2)
= { (1/4) × 1 + (1/2) × (3/4)10 } / (3/4) ≈ 37%

Alternatively, Pr(P3 | P2) = Pr(P3 and Ho | P2) + Pr(P3 and He | P2)
= Pr(Ho | P2) × Pr(P3 | Ho and P2) + Pr(He | P2) × Pr(P3 | He and P2)
= (1/3) × 1 + (2/3) × (3/4)10 ≈ 37%

v. Pr(Ho | P3, P2) = Pr(Ho and P3 | P2) / Pr(P3 | P2)
= Pr(P3 | Ho and P2) × Pr(Ho | P2) / Pr(P3 | P2)
= 1× (1/3)/[1× (1/3) + (3/4)10 × (2/3)]
≈ 90%.



2. The frequency of Down syndrome increases sharply with the age of the mother, and is
often a concern among pregnant women age 35 and higher. A common screening test
has a false positive rate of about 5% and a false negative rate of about 10%.

(a) The frequency of fetuses with Down syndrome among 33-year-old pregnant women
is about 1/420. Suppose a 33-year-old woman has a positive screening test. What
is the chance that she is carrying a child with Down syndrome?

Let D = { the women is carrying a child with Down syndrome } and P = { the women
has a positive screening test }.

From the information above, we have
Pr(not P | D) = 1/10 and Pr(P | not D) = 1/20. From this information, Pr(P | D) = 1 –
Pr(not P | D) = 9/10 and Pr(not P | not D) = 1 – Pr(P | not D) = 19/20.
Note further that Pr(D) = 1/420 and so Pr(not D) = 419/420.

We seek to calculate Pr(D | P). We use Bayes’s rule. (Why use Bayes’s rule here?
because we want to “turn around the conditioning.” We want to write Pr(D | P) in
terms of things like Pr(P | D).)

Pr(D | P) = Pr(D) Pr(P | D) / [ Pr(D) Pr(P | D) + Pr(not D) Pr(P | not D) ]
= (1/420) × (9/10) / [(1/420) × (9/10) + (419/420) × (19/20)] ≈ 4.1%

(b) The frequency of fetuses with Down syndrome among 40-year-old pregnant women
is about 1/75. Suppose a 40-year-old woman has a positive screening test. What is
the chance that she is carrying a child with Down syndrome?

In this case, we change Pr(D) = 1/75 and Pr(not D) = 1 – Pr(D) = 74/75.

Thus, Pr(D | P) = (1/75) × (9/10) / [(1/75) × (9/10) + (74/75) × (19/20)] ≈ 23%



3. The “Monty Hall” problem.

You’re on a game show, and are presented with three doors. One hides a car; the other
two hide goats. You’re allowed to choose a door. Monty Hall then opens one of the other
two doors to reveal a goat. You are now allowed to either stick with the door you chose
initially, or switch to the other closed door. What should you do (assuming that you are
hoping to get the car, and not a goat): stick with your original choice, or switch?

The answer depends on Monty’s behavior.
(a) If you choose the door with the car, Monty opens one of the other two doors at

random. If you choose a door hiding a goat, Monty opens the other door with a
goat.

(b) Monty Hall opens one of the other two doors at random. If he had revealed the
car, you would have lost, but you happen to be in the situation where he revealed
a goat.

Let us call the doors A, B and C, and let us assume (“without loss of generality,” as math-
ematicians like to say) that you choose door A. Moreover, let us initially not condition on
Monty revealing the goat.

There are six possible outcomes of the exeriment, { C G G, CG G , G C G, GC G , G G C,
GG C }. (The three letters denote the objects behind the three doors, so that CGG means
the car is behind door A. The boxes indicate which door Monty opens. Since you chose door
A, he won’t be opening that door, but one of the other two.)

In scenario (a), Monty always opens a door with a goat. Thus, if the door you chose hid
the car (that is, if the car was behind door A), he’ll choose at random between the doors B
and C. On the other hand, if the car is behind door B, he’ll always open door C, and vice
versa. Thus, under scenario A, the events { C G G } and { CG G } each have probability
1/6; events { GC G } and { G G C } each have probability 1/3, and events { G C G } and
{ GG C } each have probability 0.

In scenario (b), in which Monty chooses at random between the two remaining doors, the
six outcomes listed above each have probability 1/6.

Now, define the events A = { the car is behind door A } = { C G G, CG G }, B = { the car is
behind door B } = { G C G, GC G }, C = { the car is behind door C } = { G G C, GG C },
and D = { Monty opens a door with a goat } = { C G G, CG G , GC G , G G C }.

Our objective: we want to know the chance that the door we originally chose hides the car,
given that Monty has opened a door revealing a goat. This is Pr(A | D). If this probability is
< 1/2, we should switch doors; if it is > 1/2, we should stick with our first choice; if it is
= 1/2, it doesn’t matter whether we switch or stick.

The event “A and D” (the intersection between A and D) is simply event A, and Pr(A) = 1/3
in either case (a) or (b), so Pr(A and D) = 1/3.
In case (a), Pr(D) = 1, and so Pr(A | D) = 1/3. We should switch doors.
In case(b), Pr(D) = 2/3, and so Pr(A | D) = 1/2. It doesn’t matter what we do.
The appropriate action to take depends on what Monty is doing!



4. Mendel, revisited.

Mendel’s peas had either purple or white flowers; flower color is due to a single gene,
for which the purple allele (A) is dominant to the white allele (a).

We cross two pure-breeding lines (one purple and one white) to produce the F1 hybrid.
We self the F1 and choose an F2 seed at random. We grow and self the F2 and choose
two F3 seeds at random.

Consider the following events.

P = {F2 has purple flowers}
O = {F2 is homozygous AA}
E = {F2 is heterozygous Aa}

W = {F2 has white flowers}
A1 = {F3 number 1 has purple flowers}
A2 = {F3 number 2 has purple flowers}

Are A1 and A2 independent?

A1 and A2 are not independent! A1 and A2 are conditionally independent, given the genotype
of the F2 plant. But, as we will see, in the absence of information about the F2 parent’s
genotype, the flower color of the F3 plants are not independent.

First, note that the events E, O and W are mutually exclusive, and that [Pr(E) + Pr(O) +
Pr(W)] = 1.

Pr(A1) = Pr(A2) = Pr(A1 | E) Pr(E) + Pr(A1 | O) Pr(O) + Pr(A1 | W) Pr(W)
= (3/4) × (1/2) + (1) × (1/4) + 0 × (1/4) = 5/8 ≈ 63%.

Pr(A1 and A2) = Pr(A1 and A2 | E) Pr(E) + Pr(A1 and A2 | O) Pr(O)
+ Pr(A1 and A2 | W) Pr(W)

= (3/4)2 × (1/2) + 1 × (1/4) + 0 × (1/2) = 17/32 ≈ 53%.

Thus Pr(A2 | A1) = Pr(A1 and A2) / Pr(A1) = (17/32) / (5/8) = 17/20 = 85%, which is
considerably greater than Pr(A2). And so, A2 and A1 are not independent.


