Review

Discrete RV’s:

- prob’y fctn: \(p(x) = \Pr(X = x) \)
- cdf: \(F(x) = \Pr(X \leq x) \)
- \(E(X) = \sum x \cdot p(x) \)
- \(SD(X) = \sqrt{E \{ (X - E(X))^2 \}} \)

Binomial\((n,p)\):

- no. successes in \(n \) indep. trials where
 - \(\Pr(\text{success}) = p \) in each trial
- If \(X \sim \text{binomial}(n,p) \), then:
 - \(\Pr(X = x) = \binom{n}{x} p^x (1 - p)^{n-x} \)
 - \(E(X) = np \)
 - \(SD(X) = \sqrt{np(1 - p)} \)

Binomial random variable

Number of successes in \(n \) trials where:

- Trials independent
- \(p = \Pr(\text{success}) \) is constant

The number of successes in \(n \) trials does not necessarily follow a binomial distribution.

Deviations from the binomial:

- Varying \(p \)
- Clumping or repulsion (non-independence)
Examples

Consider Mendel’s pea experiments. (Purple or white flowers; purple dominant to white.)

- **Pick a random F\(^2\).** Self it and acquire 10 progeny. The number of progeny with purple flowers is *not* binomial (unless we condition on the genotype of the F\(^2\) plant).

- **Pick 10 random F\(^2\)’s.** Self each and take one child from each. The number of progeny with purple flowers *is* binomial. \((p = (1/4) \times 1 + (1/2) \times (3/4) + (1/4) \times 0 = 5/8.\)

Suppose \(\text{Pr}(\text{survive} \mid \text{male}) = 10\%\) but \(\text{Pr}(\text{survive} \mid \text{female}) = 80\%\).

- **Pick 4 male mice and 6 female mice.** The number of survivors is *not* binomial.

- **Pick 10 random mice (with \(\text{Pr}(\text{mouse is male}) = 40\%).** The number of survivors *is* binomial.
Let $Y = a + b X$ where a and b are numbers. Then Y is a random variable (like X), and

$$E(Y) = a + b E(X)$$
$$SD(Y) = |b| SD(X)$$

In particular, if $\mu = E(X)$, $\sigma = SD(X)$, and $Z = (X - \mu) / \sigma$, then

$$E(Z) = 0 \text{ and } SD(Z) = 1$$

Example

Suppose $X \sim \text{binomial}(n, p)$.
(The number of successes in n independent trials where $p = \Pr(\text{success})$.)

Then $E(X) = n p$ and $SD(X) = \sqrt{n p (1 - p)}$

Let $P = X / n = \text{proportion}$ of successes.

$$E(P) = E(X / n) = E(X) / n = p$$
$$SD(P) = SD(X / n) = SD(X) / n = \ldots = \sqrt{p (1 - p) / n}$$

Toss a fair coin n times and count $X = \text{number of heads}$ and $P = X / n$.

For $n=50$: $E(X) = 25$, $SD(X) \approx 3.5$, $E(P) = 0.5$, $SD(P) \approx 0.07$

$\Pr(X = 25) = \Pr(P = 0.5) \approx 0.11$

For $n=5000$: $E(X) = 2500$, $SD(X) \approx 35$, $E(P) = 0.5$, $SD(P) \approx 0.007$

$\Pr(X = 2500) = \Pr(P = 0.5) \approx 0.011$
Consider a binomial\((n, p)\) where
- \(n\) is really large
- \(p\) is really small

For example, suppose each well in a microtiter plate contains 50,000 T cells, and that 1/100,000 cells respond to a particular antigen.

Let \(X\) be the number of responding cells in a well.

In this case, \(X\) follows a Poisson distribution.

Let \(\lambda = n \times p = E(X)\). Then \(p(x) = Pr(X = x) = e^{-\lambda} \lambda^x / x!\)

Note that \(SD(X) = \sqrt{\lambda}\).
Example

Suppose there are 100,000 T cells in each well of a microtiter plate. Suppose that 1/80,000 T cells respond to a particular antigen.

Let \(X = \) number of responding T cells in a well.

\[X \sim \text{Poisson}(\lambda = 1.25). \]

\[
\begin{align*}
E(X) &= 1.25; \quad SD(X) = \sqrt{1.25} \approx 1.12. \\
Pr(X = 0) &= \exp(-1.25) \approx 29\%. \\
Pr(X > 0) &= 1 - \exp(-1.25) \approx 71\%. \\
Pr(X = 2) &= \exp(-1.25) (1.25)^2/2 \approx 22\%.
\end{align*}
\]
In R

The following functions act just like `rbinom`, `dbinom`, etc., for the binomial distribution:

- `rpois(m, lambda)`
- `dpois(x, lambda)`
- `ppois(q, lambda)`
- `qpois(p, lambda)`

Continuous random variables

Suppose X is a continuous random variable. Instead of a probability function, X has a probability density function (pdf), sometimes called just the density of X.

\[
f(x) \geq 0
\]

\[
\int_{-\infty}^{\infty} f(x) \, dx = 1
\]

Areas under curve = probabilities

Cumulative distr’n func’n (cdf):

\[
F(x) = \Pr(X \leq x) =
\]
Means and SDs

Expected value (mean):

Discrete RV:
\[E(X) = \sum x \cdot p(x) \]

Continuous RV:
\[E(X) = \int_{-\infty}^{\infty} x \cdot f(x) \, dx \]

Standard deviation (SD):

Discrete RV:
\[SD(X) = \sqrt{\sum (x - E(X))^2 \cdot p(x)} \]

Continuous RV:
\[SD(X) = \sqrt{\int_{-\infty}^{\infty} (x - E(X))^2 \cdot f(x) \, dx} \]

Example: Uniform distribution

\(X \sim \text{Uniform}(a, b) \)

i.e., draw a number at random from the interval \((a, b)\).

Density function:

\[f(x) = \begin{cases} \frac{1}{b-a} & \text{if } a < x < b \\ 0 & \text{otherwise} \end{cases} \]

\[E(X) = \frac{b+a}{2} \quad SD(X) = \frac{b-a}{\sqrt{12}} \approx 0.29 \times (b-a) \]

Cumulative dist’n fdn (cdf):
By far the most important distribution:

The Normal distribution (also called the Gaussian distribution)

If $X \sim \mathcal{N}(\mu, \sigma)$, then

The pdf of X is $f(x) = \frac{1}{\sigma \sqrt{2\pi}} \cdot e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma} \right)^2}$

Also $E(X) = \mu$ and $SD(X) = \sigma$.

Of great importance: If $X \sim \mathcal{N}(\mu, \sigma)$ and $Z = (X - \mu) / \sigma$,

Then $Z \sim \mathcal{N}(0, 1)$.

This is the “Standard normal distribution”.

$\Pr(\mu - \sigma \leq X \leq \mu + \sigma) \approx 68\%$

$\Pr(\mu - 2\sigma \leq X \leq \mu + 2\sigma) \approx 95\%$
The normal CDF

Calculations with the normal curve

In R:
- Convert to a statement involving the cdf
- Use the function `pnorm`
 (See also `rnorm`, `dnorm`, and `qnorm`).

With a table:
- Convert to a statement involving the standard normal
- Convert to a statement involving the tabulated areas
- Look up the values in the table

Draw a picture!
Examples

Suppose the heights of adult males in the U.S. are approximately normal distributed, with mean = 69 in and SD = 3 in.

What proportion of men are taller than 5'7”?

\[X \sim N(\mu=69, \sigma=3) \]
\[Z = \frac{X - 69}{3} \sim N(0,1) \]
\[\Pr(X \geq 67) = \Pr\left(Z \geq \frac{67 - 69}{3} \right) = \Pr(Z \geq -\frac{2}{3}) \]

R (or a table)

Use either \(\text{pnorm}(2/3) \) or \(1 - \text{pnorm}(67, 69, 3) \) or \(\text{pnorm}(67, 69, 3, \text{lower.tail}=\text{FALSE}) \)

The answer: 75%.
Another calculation

What proportion of men are between 5'3" and 6'?

\[
\begin{align*}
\Pr(63 \leq X \leq 72) &= \Pr(-2 \leq Z \leq 1) \\
\end{align*}
\]

\[
\begin{align*}
\text{R (or a table)}
\end{align*}
\]

\[
\begin{align*}
\text{pnorm}(72, 69, 3) - \text{pnorm}(63, 69, 3) \\
\text{or} \\
\text{pnorm}(1) - \text{pnorm}(-2)
\end{align*}
\]

The answer: 82%.
One last example

Suppose that the measurement error in a laboratory scale follows a normal distribution with mean = 0 mg and SD = 0.1 mg.

What is the chance that the absolute error in a single measurement will be greater than 0.15 mg?

\[
\Pr(|X| \geq 0.15) = \Pr(|Z| \geq 1.5)
\]

\[= 2 \times \text{pnorm}(-0.15, 0, 0.1)\]

or

\[= 2 \times \text{pnorm}(-1.5)\]

The answer: 13%.