Review

prob'y fctn:
$$p(x) = Pr(X = x)$$

cdf:
$$F(x) = Pr(X \le x)$$

$$E(X) = \sum_{x} x p(x)$$

$$SD(X) = \sqrt{E \{ (X - E X)^2 \}}$$

Binomial(n,p):

no. successes in n indep. trials where

$$Pr(success) = p$$
 in each trial

If
$$X \sim \text{binomial}(n,p)$$
, then:

$$Pr(X = x) = \binom{n}{p} p^{x} (1 - p)^{n-x}$$

$$E(X) = n p$$

$$\mathsf{SD}(X) = \sqrt{np(1-p)}$$

Binomial random variable

Number of successes in *n* trials where:

- Trials independent
- p = Pr(success) is constant

The number of successes in n trials does not necessarily follows a binomial distribution.

Deviations from the binomial:

- Varying p
- Clumping or repulsion (non-independence)

Examples

Consider Mendel's pea experiments. (Purple or white flowers; purple dominant to white.)

- Pick a random F₂. Self it and acquire 10 progeny. The number of progeny with purple flowers is *not* binomial (unless we condition on the genotype of the F₂ plant).
- Pick 10 random F_2 's. Self each and take one child from each. The number of progeny with purple flowers *is* binomial. ($p = (1/4) \times 1 + (1/2) \times (3/4) + (1/4) \times 0 = 5/8$.)

Suppose Pr(survive | male) = 10% but Pr(survive | female) = 80%.

- Pick 4 male mice and 6 female mice. The number of survivors is *not* binomial.
- Pick 10 random mice (with Pr(mouse is male) = 40%). The number of survivors is binomial.

$$Y = a + b X$$

Suppose X is a discrete random variable with probability function p, so that p(x) = Pr(X = x).

Expected value (mean): $E(X) = \sum_{x} x p(x)$

Standard deviation (SD): SD(X) = $\sqrt{\sum_{x}[x - E(X)]^2 p(x)}$

Let Y = a + b X where a and b are numbers. Then Y is a random variable (like X), and

$$E(Y) = a + b E(X)$$

$$SD(Y) = |b| SD(X)$$

In particular, if $\mu = E(X)$, $\sigma = SD(X)$, and $Z = (X - \mu) / \sigma$, then

$$E(Z) = 0$$
 and $SD(Z) = 1$

5

Example

Suppose $X \sim \text{binomial}(n, p)$.

(The number of successes in n independent trials where p = Pr(success).)

Then
$$E(X) = n p$$
 and $SD(X) = \sqrt{n p (1 - p)}$

Let P = X / n =proportion of successes.

$$\mathsf{E}(P) = \mathsf{E}(X \ / \ n) = \mathsf{E}(X) \ / \ n = p.$$

$$SD(P) = SD(X / n) = SD(X) / n = ... = \sqrt{p(1-p)/n}$$

Toss a fair coin n times and count X = number of heads and P = X/n.

For
$$n=50$$
: $E(X) = 25$, $SD(X) \approx 3.5$, $E(P) = 0.5$, $SD(P) \approx 0.07$
 $Pr(X = 25) = Pr(P = 0.5) \approx 0.11$

For
$$n=5000$$
: E(X) = 2500, SD(X) \approx 35, E(P) = 0.5, SD(P) \approx 0.007 Pr(X = 2500) = Pr(P = 0.5) \approx 0.011

Poisson distribution

Consider a binomial (n, p) where

- *n* is really large
- p is really small

For example, suppose each well in a microtiter plate contains 50,000 T cells, and that 1/100,000 cells respond to a particular antigen.

Let X be the number of responding cells in a well.

In this case, X follows a Poisson distribution.

Let
$$\lambda = n \times p = E(X)$$
. Then $p(x) = Pr(X = x) = e^{-\lambda} \lambda^x / x!$

Note that $SD(X) = \sqrt{\lambda}$.

9

10 11 12

Example

0.0

Suppose there are 100,000 T cells in each well of a microtiter plate. Suppose that 1/80,000 T cells respond to a particular antigen.

Let X = number of responding T cells in a well.

9

10 11 12

$$X \sim \text{Poisson}(\lambda = 1.25).$$

0.0

$$E(X) = 1.25$$
; $SD(X) = \sqrt{1.25} \approx 1.12$.

$$Pr(X = 0) = exp(-1.25) \approx 29\%.$$

$$Pr(X > 0) = 1 - exp(-1.25) \approx 71\%.$$

$$Pr(X = 2) = exp(-1.25) (1.25)^2/2 \approx 22\%.$$

In R

The following functions act just like rbinom, dbinom, etc., for the binomial distribution:

rpois(m, lambda)
dpois(x, lambda)
ppois(q, lambda)
qpois(p, lambda)

11

Continuous random variables

Suppose X is a continuous random variable.

Instead of a probability function, X has a probability density function (pdf), sometimes called just the density of X.

$$\begin{split} f(x) &\geq 0 \\ \int_{-\infty}^{\infty} f(x) \; dx \; &= 1 \end{split}$$

Areas under curve = probabilities

Cumulative distr'n func'n (cdf):

$$\mathsf{F}(\mathsf{x}) = \mathsf{Pr}(X \leq \mathsf{x}) =$$

Means and SDs

Expected value (mean):

Discrete RV: $E(X) = \sum_{x} x p(x)$

Continuous RV: $E(X) = \int_{-\infty}^{\infty} x f(x) dx$

Standard deviation (SD):

Discrete RV: SD(X) = $\sqrt{\sum_{x} [x - E(X)]^2 p(x)}$

Continuous RV: SD(X) = $\sqrt{\int_{-\infty}^{\infty} [x - E(X)]^2 f(x) dx}$

13

Example: Uniform distribution

$X \sim \text{Uniform(a, b)}$

i.e., draw a number at random from the interval (a, b).

Density function:

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{if } a < x < b \\ 0 & \text{otherwise} \end{cases}$$

$$E(X) = (b+a)/2$$
 $SD(X) = (b-a)/\sqrt{12} \approx 0.29 \times (b-a)$

Cumulative dist'n fdn (cdf):

The normal distribution

By far the most important distribution:

The Normal distribution (also called the Gaussian distribution)

If $X \sim N(\mu, \sigma)$, then

The pdf of X is
$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \cdot e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

Also $E(X) = \mu$ and $SD(X) = \sigma$.

Of great importance: If $X \sim N(\mu, \sigma)$ and $Z = (X - \mu) / \sigma$,

Then $Z \sim N(0, 1)$.

This is the "Standard normal distribution".

The normal distribution

$$Pr(\mu - \sigma \le X \le \mu + \sigma) \approx 68\%$$

$$Pr(\mu - 2\sigma \le X \le \mu + 2\sigma) \approx 95\%$$

The normal CDF

17

Calculations with the normal curve

In R:

- Convert to a statement involving the cdf
- Use the function pnorm

 (See also rnorm, dnorm, and qnorm.)

With a table:

- Convert to a statement involving the standard normal
- Convert to a statement involving the tabulated areas
- Look up the values in the table

Draw a picture!

Examples

Suppose the heights of adult males in the U.S. are approximately normal distributed, with mean = 69 in and SD = 3 in.

What proportion of men are taller than 5'7"?

$$X \sim N(\mu=69, \sigma=3)$$
 $Z = (X - 69)/3 \sim N(0,1)$
 $Pr(X \ge 67) = Pr(Z \ge (67 - 69)/3)$
 $= Pr(Z \ge -2/3)$

19

R (or a table)

Use either pnorm(2/3) or 1 - pnorm(67, 69, 3) or pnorm(67, 69, 3, lower.tail=FALSE)

The answer: 75%.

Another calculation

What proportion of men are between 5'3" and 6'?

$$Pr(63 \le X \le 72) = Pr(-2 \le Z \le 1)$$

21

R (or a table)

The answer: 82%.

One last example

Suppose that the measurement error in a laboratory scale follows a normal distribution with mean = 0 mg and SD = 0.1 mg.

What is the chance that the absolute error in a single measurement will be greater than 0.15 mg?

$$\Pr(|X| \geq 0.15) = \Pr(|Z| \geq 1.5)$$

23

R (or a table)

or

$$2 * pnorm(-1.5)$$

The answer: 13%.